Cynodonteae Tribe

Total Page:16

File Type:pdf, Size:1020Kb

Cynodonteae Tribe POACEAE [GRAMINEAE] – GRASS FAMILY Plant: annuals or perennials Stem: jointed stem is termed a culm – internodial stem most often hollow but always solid at node, mostly round, some with stolons (creeping stem) or rhizomes (underground stem) Root: usually fibrous, often very abundant and dense Leaves: mostly linear, sessile, parallel veins, in 2 ranks (vertical rows), leaf sheath usually open or split and often overlapping, but may be closed Flowers: small in 2 rows forming a spikelet (1 to several flowers), may be 1 to many spikelets with pedicels or sessile to stem; each flower within a spikelet is between an outer limna (bract, with a midrib) and an inner palea (bract, 2-nerved or keeled usually) – these 3 parts together make the floret – the 2 bottom bracts of the spikelet do not have flowers and are termed glumes (may be reduced or absent), the rachilla is the axis that hold the florets; sepals and petals absent; 1-6 but often 3 stamens; 1 pistil, 1-3 but usually 2 styles, ovary superior, 1 ovule – there are exceptions to most everything!! Fruit: seed-like grain (seed usually fused to the pericarp (ovary wall) or not) Other: very large and important family; Monocotyledons Group Genera: 600+ genera; locally many genera 2 slides per species WARNING – family descriptions are only a layman’s guide and should not be used as definitive POACEAE [GRAMINEAE] – CYNODONTEAE TRIBE Sideoats Grama; Bouteloua curtipendula (Michx.) Torr. var. curtipendula - Cynodonteae (Tribe) Bermuda Grass; Cynodon dactylon (L.) Pers. (Introduced) - Cynodonteae (Tribe) Egyptian Grass [Durban Crowfoot]; Dactyloctenium aegyptium (L.) Willd (Introduced) [Indian] Goose Grass; Eleusine indica (L.) Gaertn. (Introduced – Cynodonteae (Tribe) Stink Grass; Eragrostis cilianensis (All.) Vign. Ex Janchen (Introduced) - Cynodonteae (Tribe) Purple Love Grass; Eragrostis spectabilis (Pursh) Steud. - Cynodonteae (Tribe) Sand [Thread] Love Grass; Eragrostis trichodes (Nutt.) Alph. Wood - Cynodonteae (Tribe) Mucronate Sprangeltop; Leptochloa panicea (Retz.) Ohwi ssp. Brachiata (Steud.) N. Snow - Cynodonteae (Tribe) Amazon Sprangletop; Leptochloa panicoides (J. Presl) Hitchc. - Cynodonteae (Tribe) Nimblewill; Muhlenbergia schreberi J.F. Gmel. - Cynodonteae (Tribe) Rock Muhly; Muhlenbergia sobolifera (Muhl. ex Willd.) Trin. - Cynodonteae (Tribe) Prairie Cord [Slough] Grass [Ripgut]; Spartina pectinata Bosc ex Link - Cynodonteae (Tribe) Purpletop Tridens [Tall Redtop]; Tridens flavus (L.) Hitchc. var. flavus - Cynodonteae (Tribe) Longspike Tridens; Tridens strictus (Nutt.) Nash - Cynodonteae (Tribe) Sea-Oats; Uniola paniculata L. - Cynodonteae (Tribe) Sideoats Grama – p1 USDA Bouteloua curtipendula (Michx.) Torr. var. curtipendula Poaceae (Grass Family); Cynodonteae (Tribe) La Petite Gemme Prairie, Polk County, Missouri Notes: Plant perennial, erect, to 1+ m, some clumping; Culm terete, nodes slightly swollen; Roots fibrous, with slender rhizomes; Leaf Blades glabrous to sometimes hairy; Leaf Sheaths hairy or not, open; Ligules membranous and ciliate; Inflorescence a panicle with 30 to 70+ spikes 1 to 2.5+ cm long; 3 to 7 spikelets per spike with 1 perfect and usually 1(rarely 2) sterile florets per spikelet; Glumes present, lower glume smaller than upper; sterile lemma often with longer awn than fertile lemma; disarticulating above glumes or the spikes may be shed whole; anthers usually red to reddish orange, usually not purple or yellow; plains and prairies; summer to early fall [V Max Brown, 2013] Sideoats Grama – p2 Bouteloua curtipendula (Michx.) Torr. var. curtipendula [V Max Brown, 2013] Spike with several spikelets hanging down Spikelet Lower Glume Upper glume Spike axis Reddish- orange anthers USDA Blades often Bermuda Grass – p1 hairy near Cynodon dactylon (L.) Pers. (Introduced) base Poaceae (Grass Family); Cynodonteae (Tribe) Nixa, Christian County, Missouri Notes: Plant perennial, decumbent to mostly creeping, with both rhizomes and stolons, mat forming, flowering stems erect; Culm terete, nodes swollen and greenish; Roots fibrous; Leaf Blades glabrous, often hairy near base; Leaf Sheaths glabrous; Ligules membranous (< 1 mm), hairy; Inflorescence of terminal spikes (palmate panicle), 2 to several spikes; Spikelets to 3+ mm, in 2 rows, appressed to Ligule small, 1 side of axis; Florets 1, perfect; Glumes present, single membranous, nerve, to 2 mm; Lemma to 3mm, keeled, with hairs; Palea with hairs mostly glabrous; early summer to fall (variable species) [V Max Brown, 2013] Roots at node Long Stolons, rooting at nodes Bermuda Grass – p2 Cynodon dactylon (L.) Pers. (Introduced) [V Max Brown, 2013] Inflorescence of 2 to several terminal spikes Lemma Palea Upper Glume Lower Glume Spikelets tightly appressed and slightly offset in 2 rows on one A single Spikelet side of the spike or axis Egyptian Grass [Durban Crowfoot] - p1 USDA Dactyloctenium aegyptium (L.) Willd (Introduced) Poaceae (Grass Family); Cynodonteae (Tribe) Clearwater, Pinellas County, Florida Notes: Plant annual to perennial, stolons or not, tuft-forming or not; stems erect; Culm terete, up to 100 cm, may root at lower nodes; Roots fibrous; Leaf Blades with some hairs; Leaf Sheaths hairy distally; Ligules membranous (to 1.5 mm); Inflorescence of 2 to 6 (usually) panicle branches (up to 6 mm), branch axes extend beyond spikelets; Spikelets to 4+ mm, in 2 rows on axis; Florets 3 to 7, perfect; Glumes present, upper with awn (see p2 for details of spikelets); a widespread weedy species; spring [V Max Brown, 2016] Egyptian Grass [Durban Crowfoot] – p2 Dactyloctenium aegyptium (L.) Willd (Introduced) [V Max Brown, 2016] Inflorescence usually has 2 to 6 branches up to 6 cm in length, each branch has a double row of spikelets; note that the axis of the inflorescence branch extends beyond the spikelets Glume with awn Florets Upper glume with awn, glume awns vary from 1 Lower glume to 2.5 mm (no awn) Spikelet (3 to 4+ mm) usually has 3 to 7 florets, lemmas with small awns, paleas similar to lemmas but no awns [Indian] Goose Grass – p1 USDA Eleusine indica (L.) Gaertn. (Introduced Poaceae (Grass Family); Cynodonteae (Tribe) Near Strafford, Dallas County, Missouri Notes: Plant annual, spreading to somewhat ascending; Culm terete but somewhat flattened or compressed toward base, flowering stem erect; Roots fibrous; Leaf Blades up to 8 mm, up to 40 cm long; Leaf Sheaths keeled, some long hairs; Ligules membranous (up to 1+ mm); Inflorescence a panicle of 4-9(10) spikes (branches) up to 10 to 12 cm; Spikelets attached to rachilla in 2 rows (alterntely angled) on the base of the branch, spikelets up to 7+ mm; Florets (2 to mostly 5 - 7 ); Glumes present, lower glume smaller than upper (up to 5 mm), lower; Lemma up to 4 mm; Palea smaller than lemma; seed reddish to reddish brown; spring to summer [V Max Brown, 2013] [Indian] Goose Grass – p2 Eleusine indica (L.) Gaertn. (Introduced) [V Max Brown, 2013] This Inflorescence with 5 spikes, each spike with 2 rows of spikelets (alternately angled) on the lower side of the spike Number of florets varies up to about 7 Fertile Florets Upper Glume longer Lower Glume A single Spikelet Stink Grass – p1 USDA Eragrostis cilianensis (All.) Vign. ex Janchen (Introduced) Poaceae (Grass Family); Cynodonteae (Tribe) Near Strafford, Greene County, Missouri Notes: Plant annual, erect to somewhat decumbent (up to 50+ cm), tuft forming; Culm terete, motly glabrous, glands near nodes; Roots fibrous; Leaf blades up to 1 cm wide, 20 cm long, glabrous, some glands present; Leaf Sheaths long hairy; Ligules membranous (up to 1 mm); Inflorescence a panicle (15 to 20 cm long), warty glands found at branch axils; spikelets up to 2.5 cm long, on short stalks from branches; 10 to 40 perfect florets; Glumes present, often with warty resinous glands on keel or midrib; many glands habitats; summer to fall (has an odor when fresh specimens are crushed) [V Max Brown, 2013] Stink Grass – p2 Eragrostis cilianensis (All.) Vign. ex Janchen (Introduced) [V Max Brown, 2013] Spikelets vary with 10 to 40 perfect florets Small hairy and warty glands in axils of inflorescence branches Spikelets age from bottom up and florets disarticulate leaving paleas and rachis 18 mm Glumes with warty glands on midrib Purple Love Grass – p1 USDA Eragrostis spectabilis (Pursh) Steud. Poaceae (Grass Family); Cynodonteae (Tribe) Near Prairie State Park, Barton County, Missouri Notes: Plant perennial, mostly erect (up to 70+ cm), tuft forming; Culm terete, mostly glabrous; Roots fibrous with short knotty rhizomes; Leaf blades less than 1 cm wide, up to 40+ cm long, large tuft of hair at base, otherwise glabrous or hiary; Leaf Sheaths long hairy at tip, maybe some on margins; Ligules membranous and small; Inflorescence a large open panicle (up to 75% of plant height), branches very rough; spikelets 3 to 7+ mm and about 1 to 2.5 mm Tuft of long hair at base of leaf sheath, wide, on short to long stalks, often with a strong reddish Pulvini (swelling at ligule (small) tinge; 6 to 12 perfect florets; Glumes present (see photos base of secondary membranous on p2); Lemmas with 3 veins, lateral veins very prominent; axis of inflorescence) many habitats, common; summer to fall usually with hairs 5+ [V Max Brown, 2013] mm long Short, knotty rhizomes Red spikelets, Purple Love Grass – p2 inflorescence 0.5 to Eragrostis spectabilis (Pursh) Steud. 0.75 of total plant [V Max Brown, 2013] height Spilelet, flattened, with 6 to 12 florets, usually reddish in color Floret, perfect, lemma with acute tip, 3-veined, and with a roughened keel palea
Recommended publications
  • A Phylogeny of the Hubbardochloinae Including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae)
    Peterson, P.M., K. Romaschenko, and Y. Herrera Arrieta. 2020. A phylogeny of the Hubbardochloinae including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae). Phytoneuron 2020-81: 1–13. Published 18 November 2020. ISSN 2153 733 A PHYLOGENY OF THE HUBBARDOCHLOINAE INCLUDING TETRACHAETE (CYNODONTEAE: CHLORIDOIDEAE: POACEAE) PAUL M. PETERSON AND KONSTANTIN ROMASCHENKO Department of Botany National Museum of Natural History Smithsonian Institution Washington, D.C. 20013-7012 [email protected]; [email protected] YOLANDA HERRERA ARRIETA Instituto Politécnico Nacional CIIDIR Unidad Durango-COFAA Durango, C.P. 34220, México [email protected] ABSTRACT The phylogeny of subtribe Hubbardochloinae is revisited, here with the inclusion of the monotypic genus Tetrachaete, based on a molecular DNA analysis using ndhA intron, rpl32-trnL, rps16 intron, rps16- trnK, and ITS markers. Tetrachaete elionuroides is aligned within the Hubbardochloinae and is sister to Dignathia. The biogeography of the Hubbardochloinae is discussed, its origin likely in Africa or temperate Asia. In a previous molecular DNA phylogeny (Peterson et al. 2016), the subtribe Hubbardochloinae Auquier [Bewsia Gooss., Dignathia Stapf, Gymnopogon P. Beauv., Hubbardochloa Auquier, Leptocarydion Hochst. ex Stapf, Leptothrium Kunth, and Lophacme Stapf] was found in a clade with moderate support (BS = 75, PP = 1.00) sister to the Farragininae P.M. Peterson et al. In the present study, Tetrachaete elionuroides Chiov. is included in a phylogenetic analysis (using ndhA intron, rpl32- trnL, rps16 intron, rps16-trnK, and ITS DNA markers) in order to test its relationships within the Cynodonteae with heavy sampling of species in the supersubtribe Gouiniodinae P.M. Peterson & Romasch. Chiovenda (1903) described Tetrachaete Chiov. with a with single species, T.
    [Show full text]
  • The Relation Between Road Crack Vegetation and Plant Biodiversity in Urban Landscape
    Int. J. of GEOMATE, June, 2014, Vol. 6, No. 2 (Sl. No. 12), pp. 885-891 Geotech., Const. Mat. & Env., ISSN:2186-2982(P), 2186-2990(O), Japan THE RELATION BETWEEN ROAD CRACK VEGETATION AND PLANT BIODIVERSITY IN URBAN LANDSCAPE Taizo Uchida1, JunHuan Xue1,2, Daisuke Hayasaka3, Teruo Arase4, William T. Haller5 and Lyn A. Gettys5 1Faculty of Engineering, Kyushu Sangyo University, Japan; 2Suzhou Polytechnic Institute of Agriculture, China; 3Faculty of Agriculture, Kinki University, Japan; 4Faculty of Agriculture, Shinshu University, Japan; 5Center for Aquatic and Invasive Plants, University of Florida, USA ABSTRACT: The objective of this study is to collect basic information on vegetation in road crack, especially in curbside crack of road, for evaluating plant biodiversity in urban landscape. A curbside crack in this study was defined as a linear space (under 20 mm in width) between the asphalt pavement and curbstone. The species composition of plants invading curbside cracks was surveyed in 38 plots along the serial National Route, over a total length of 36.5 km, in Fukuoka City in southern Japan. In total, 113 species including native plants (83 species, 73.5%), perennial herbs (57 species, 50.4%) and woody plants (13 species, 11.5%) were recorded in curbside cracks. Buried seeds were also obtained from soil in curbside cracks, which means the cracks would possess a potential as seed bank. Incidentally, no significant differences were found in the vegetation characteristics of curbside cracks among land-use types (Kolmogorov-Smirnov Test, P > 0.05). From these results, curbside cracks would be likely to play an important role in offering habitat for plants in urban area.
    [Show full text]
  • Grasses Plant List
    Grasses Plant List California Botanical Name Common Name Water Use Native Aristida purpurea purple three-awn Very Low X Arundinaria gigantea cane reed Low Bothriochloa barbinodis cane bluestem Low X Bouteloua curtipendula sideoats grama Low X Bouteloua gracilis, cvs. blue grama Low X Briza media quaking grass Low Calamagrostis x acutiflora cvs., e.g. Karl feather reed grass Low Foerster Cortaderia selloana cvs. pampas grass Low Deschampsia cespitosa, cvs. tufted hairgrass Low X Distichlis spicata (marsh, reveg.) salt grass Very Low X Elymus condensatus, cvs. (Leymus giant wild rye Low X condensatus) Elymus triticoides (Leymus triticoides) creeping wild rye Low X Eragrostis elliottii 'Tallahassee Sunset' Elliott's lovegrass Low Eragrostis spectabilis purple love grass Low Festuca glauca blue fescue Low Festuca idahoensis, cvs. Idaho fescue Low X Festuca mairei Maire's fescue Low Helictotrichon sempervirens, cvs. blue oat grass Low Hordeum brachyantherum Meadow barley Very Low X Koeleria macrantha (cristata) June grass Low X Melica californica oniongrass Very Low X Melica imperfecta coast range onion grass Very Low X Melica torreyana Torrey's melic Very Low X Muhlenbergia capillaris, cvs. hairy awn muhly Low Muhlenbergia dubia pine muhly Low Muhlenbergia filipes purply muhly Low Muhlenbergia lindheimeri Lindheimer muhly Low Muhlenbergia pubescens soft muhly Low Muhlenbergia rigens deer grass Low X Nassella gigantea giant needle grass Low Panicum spp. panic grass Low Panicum virgatum, cvs. switch grass Low Pennisetum alopecuroides, cvs.
    [Show full text]
  • Poaceae Pollen from Southern Brazil: Distinguishing Grasslands (Campos) from Forests by Analyzing a Diverse Range of Poaceae Species
    ORIGINAL RESEARCH published: 06 December 2016 doi: 10.3389/fpls.2016.01833 Poaceae Pollen from Southern Brazil: Distinguishing Grasslands (Campos) from Forests by Analyzing a Diverse Range of Poaceae Species Jefferson N. Radaeski 1, 2, Soraia G. Bauermann 2* and Antonio B. Pereira 1 1 Universidade Federal do Pampa, São Gabriel, Brazil, 2 Laboratório de Palinologia da Universidade Luterana do Brasil–ULBRA, Universidade Luterana do Brazil, Canoas, Brazil This aim of this study was to distinguish grasslands from forests in southern Brazil by analyzing Poaceae pollen grains. Through light microscopy analysis, we measured the size of the pollen grain, pore, and annulus from 68 species of Rio Grande do Sul. Measurements were recorded of 10 forest species and 58 grassland species, representing all tribes of the Poaceae in Rio Grande do Sul. We measured the polar, equatorial, pore, and annulus diameter. Results of statistical tests showed that arboreous forest species have larger pollen grain sizes than grassland and herbaceous forest species, and in particular there are strongly significant differences between arboreous and grassland species. Discriminant analysis identified three distinct groups representing Edited by: each vegetation type. Through the pollen measurements we established three pollen Encarni Montoya, types: larger grains (>46 µm), from the Bambuseae pollen type, medium-sized grains Institute of Earth Sciences Jaume < Almera (CSIC), Spain (46–22 µm), from herbaceous pollen type, and small grains ( 22 µm), from grassland Reviewed by: pollen type. The results of our compiled Poaceae pollen dataset may be applied to the José Tasso Felix Guimarães, fossil pollen of Quaternary sediments. Vale Institute of Technology, Brazil Lisa Schüler-Goldbach, Keywords: pollen morphology, grasses, pampa, South America, Atlantic forest, bamboo pollen Göttingen University, Germany *Correspondence: Jefferson N.
    [Show full text]
  • Molecular Phylogenetic Analysis Resolves Trisetum
    Journal of Systematics JSE and Evolution doi: 10.1111/jse.12523 Research Article Molecular phylogenetic analysis resolves Trisetum (Poaceae: Pooideae: Koeleriinae) polyphyletic: Evidence for a new genus, Sibirotrisetum and resurrection of Acrospelion Patricia Barberá1,3*,RobertJ.Soreng2 , Paul M. Peterson2* , Konstantin Romaschenko2 , Alejandro Quintanar1, and Carlos Aedo1 1Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid 28014, Spain 2Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington DC 20013‐7012, USA 3Department of Africa and Madagascar, Missouri Botanical Garden, St. Louis, MO 63110, USA *Authors for correspondence. Patricia Barberá. E‐mail: [email protected]; Paul M. Peterson. E‐mail: [email protected] Received 4 March 2019; Accepted 5 May 2019; Article first published online 22 June 2019 Abstract To investigate the evolutionary relationships among the species of Trisetum and other members of subtribe Koeleriinae, a phylogeny based on DNA sequences from four gene regions (ITS, rpl32‐trnL spacer, rps16‐trnK spacer, and rps16 intron) is presented. The analyses, including type species of all genera in Koeleriinae (Acrospelion, Avellinia, Cinnagrostis, Gaudinia, Koeleria, Leptophyllochloa, Limnodea, Peyritschia, Rostraria, Sphenopholis, Trisetaria, Trisetopsis, Trisetum), along with three outgroups, confirm previous indications of extensive polyphyly of Trisetum. We focus on the monophyletic Trisetum sect. Sibirica cladethatweinterprethereasadistinctgenus,Sibirotrisetum gen. nov. We include adescriptionofSibirotrisetum with the following seven new combinations: Sibirotrisetum aeneum, S. bifidum, S. henryi, S. scitulum, S. sibiricum, S. sibiricum subsp. litorale,andS. turcicum; and a single new combination in Acrospelion: A. distichophyllum. Trisetum s.s. is limited to one, two or three species, pending further study. Key words: Acrospelion, Aveneae, grasses, molecular systematics, Poeae, Sibirotrisetum, taxonomy, Trisetum.
    [Show full text]
  • Moorhead Ph 1 Final Report
    Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 4. Title and Subtitle 5. Report Date Ecological Assessment of a Wetlands Mitigation Bank August 2001 (Phase I: Baseline Ecological Conditions and Initial Restoration Efforts) 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Kevin K. Moorhead, Irene M. Rossell, C. Reed Rossell, Jr., and James W. Petranka 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Departments of Environmental Studies and Biology University of North Carolina at Asheville Asheville, NC 28804 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered U.S. Department of Transportation Final Report Research and Special Programs Administration May 1, 1994 – September 30, 2001 400 7th Street, SW Washington, DC 20590-0001 14. Sponsoring Agency Code 15. Supplementary Notes Supported by a grant from the U.S. Department of Transportation and the North Carolina Department of Transportation, through the Center for Transportation and the Environment, NC State University. 16. Abstract The Tulula Wetlands Mitigation Bank, the first wetlands mitigation bank in the Blue Ridge Province of North Carolina, was created to compensate for losses resulting from highway projects in western North Carolina. The overall objective for the Tulula Wetlands Mitigation Bank has been to restore the functional and structural characteristics of the wetlands. Specific ecological restoration objectives of this Phase I study included: 1) reestablishing site hydrology by realigning the stream channel and filling drainage ditches; 2) recontouring the floodplain by removing spoil that resulted from creation of the golf ponds and dredging of the creek; 3) improving breeding habitat for amphibians by constructing vernal ponds; and 4) reestablishing floodplain and fen plant communities.
    [Show full text]
  • El Género Muhlenbergia
    www.unal.edu.co/icn/publicaciones/caldasia.htm CaldasiaGiraldo-Cañas 31(2):269-302. & Peterson 2009 EL GÉNERO MUHLENBERGIA (POACEAE: CHLORIDOIDEAE: CYNODONTEAE: MUHLENBERGIINAE) EN COLOMBIA1 The genus Muhlenbergia (Poaceae: Chloridoideae: Cynodonteae: Muhlenbergiinae) in Colombia DIEGO GIRALDO-CAÑAS Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, Apartado 7495, Bogotá D.C., Colombia. [email protected] PAUL M. PETERSON Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, U.S.A. [email protected] RESUMEN Se presenta un estudio taxonómico de las especies colombianas del género Muhlenbergia. Se analizan diversos aspectos relativos a la clasificación, la nomenclatura y la variación morfológica de los caracteres. El género Muhlenbergia está representado en Colombia por 14 especies. Las especies Aegopogon bryophilus Döll, Aegopogon cenchroides Humb. & Bonpl. ex Willd., Lycurus phalaroides Kunth y Pereilema crinitum J. Presl se transfi eren al género Muhlenbergia. El binomio Muhlenbergia cleefi i Lægaard se reduce a la sinonimia de Muhlenbergia fastigiata (J. Presl) Henrard. Las especies Muhlenbergia beyrichiana Kunth, Muhlenbergia ciliata (Kunth) Trin. y Muhlenbergia nigra Hitchc. se excluyen de la fl ora de Colombia. Se presentan las claves para reconocer las especies presentes en Colombia, así como también las descripciones de éstas, sus sinónimos, la distribución geográfi ca, se comentan algunas observaciones morfológicas y ecológicas, los usos y los números cromosómicos. Del tratamiento taxonómico se excluyen las especies Muhlenbergia erectifolia SwallenSwallen [[== Ortachne erectifolia (Swallen)(Swallen) CClayton]layton] y Muhlenbergia wallisii Mez [= Agrostopoa wallisii (Mez) P. M. Peterson, Soreng & Davidse]. Palabras clave. Aegopogon, Lycurus, Muhlenbergia, Pereilema, Chloridoideae, Poaceae, Gramíneas neotropicales, Flora de Colombia.
    [Show full text]
  • Master Plant List for Texas Range and Pasture Plant
    MASTER PLANT LIST FOR TEXAS RANGE AND RS1.044 PASTURE PLANT IDENTIFICATION CONTEST MASTER PLANT LIST NAME OF PLANT SEASON OF LONGEVITY GROWTH ORIGIN ECONOMIC VALUE Latin Names are for reference only WILDLIFE GRAZING GRASSES Annual Perennial Cool Warm Native Introduced Good Fair Poor Good Fair Poor Poison 1 Alkali sacaton Sporobolus airoides X X X X X 2 Bahiagrass Paspalum notatum X X X X X 3 Barnyardgrass Echinocloa crusgalli var. crusgalli X X X X X 4 Beaked panicum Panicum anceps X X X X X 5 Bermudagrass Cynodon dactylon X X X X X 6 Big bluestem Adropogon gerardii X X X X X 7 Black grama Bouteloua eriopoda X X X X X 8 Blue grama Bouteloua gracilis X X X X X 9 Broomsedge bluestem Andropogon virginicus X X X X X 10 Brownseed paspalum Paspalum plicatulum X X X X X 11 Buffalograss Buchloe dactyloides X X X X X 12 Buffelgrass Pennisetum ciliare X X X X X 13 Burrograss Scleropogon brevifolius X X X X X 14 Bush muhly Muhlenbergia porteri X X X X X 15 California cottontop Digitaria californica X X X X X 16 Canada wildrye Elymus canadensis X X X X X 17 Common carpetgrass Axonopus affinis X X X X X 18 Common curlymesquite Hilaria belangeri X X X X X 19 Dallisgrass Paspalum dilatatum X X X X X 20 Eastern gamagrass Tripsacum dactyloides X X X X X 21 Fall witchgrass Leptoloma cognatum X X X X X 22 Florida paspalum Paspalum floridanum X X X X X 23 Green sprangletop Leptochloa dubia X X X X X 24 Gulf cordgrass Spartina spartinae X X X X X 25 Hairawn muhly Muhlenbergia capillaris X X X X X 26 Hairy grama Boutelous hirsuta X X X X X 27 Hairy tridens Erioneuron pilosum X X X X X 28 Hall panicum Panicum hallii var.
    [Show full text]
  • MSD Plant List 031009.Xlsx
    Bioretention and Organic Filters Latin Name Grasses/Sedges Andropogon gerardii Big bluestem x x x 4-6 2 plum x x Bouteloua curtipendula Sideoats grama x x 1-2 1 tan Carex praegracilis* Tollway sedge x x x 1-2 1.5 tan x x x x x Carex grayii Bur sedge x x 1-2 1.5 tan x x x Carex shortiana Short's sedge x x x 2 1.5 bluish x x x x x x Carex vulpinoidea Fox sedge x x 2-3 1.5 tan x x x x x x x x x H 24 3 L L Chasmanthium latifolium River oats x x x 2-4 1.5 green Schizachyrium scoparium Little bluestem x x 2-3 1.5 bronze x x Sporobolus heterolepis Prairie dropseed x x 2-3 1.5 tan Common Name Forbs Amsonia illustris Shining bluestarGrasses/Sedges x x x 2-3 3 lt. blue x x x x x x x x x H 36 5 L H Aster novae-angliae New England aster x x 3-4 2 violet x x x x x x x x M 24 3 L H Chelone obliqua Rose turtlehead x x 3-4 2 Coreopsis lanceolata Lanceleaf coreopsis x x 1-2 1.5 yellow x x x x x x x L M Echinacea pallida Pale purple coneflower x 2-3 1.5 violet x x x x x x x L L Echinacea purpurea Purple coneflower x 2-3 1.5 violet x x x x x x x x x L L Eryngium yuccifolium Rattlesnake master 2-3 1.5 green Eupatorium coelestinum Mist flower; wild ageratum x x x 1-2 1.5 Hibiscus lasiocarpos Rose mallow x x 3-5 2.5 Iris virginica Southern blueflag iris x x 2-3 2 blue x x x x x x x H 36 4 M M Pycnanthemum tenuifolium Slender Mountain Mint x 2-3 1.5 white x x x x x x x x L H Ratibida pinnata Yellow/Grey coneflower x 3-5 1.5 yellow x x xSubmerge xd & x Emerg xent x (wate xr xdepth x in M 12 1 M H L Rudbeckia fulgida Orange coneflower x 2 2 yellow Rudbeckia hirta
    [Show full text]
  • Theo Witsell Botanical Report on Lake Atalanta Park November 2013
    A Rapid Terrestrial Ecological Assessment of Lake Atalanta Park, City of Rogers, Benton County, Arkansas Prairie grasses including big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparium), and side‐oats grama (Bouteloua curtipendula) thrive in a southwest‐facing limestone glade overlooking Lake Atalanta. This area, on a steep hillside east of the Lake Atalanta dam, contains some of the highest quality natural communities remaining in the park. By Theo Witsell Arkansas Natural Heritage Commission November 30, 2013 CONTENTS Executive Summary ....................................................................................................................................... 3 Background and History ................................................................................................................................ 3 Site Description ............................................................................................................................................. 4 General Description .................................................................................................................................. 4 Karst Features ........................................................................................................................................... 5 Ecological Significance .............................................................................................................................. 5 Plant Communities ...................................................................................................................................
    [Show full text]
  • Grass Identification
    Grass Identification The vegetation of Konza Prairie is predominantly tallgrass prairie with limited gallery forests along the larger streams. Tallgrass prairie = consists of grasses, forbs (wildflowers), shrubs and trees but the distinctive feature is the dominance of warm season grasses. Gallery forest = a forest that forms a corridor along a river or stream and projects into landscapes that are otherwise only sparsely forested such as grasslands or deserts. Most abundant warm season grasses: Big Bluestem Andropogon gerardii Little Bluestem Schizachyrium scoparium Indiangrass Sorghastrum nutans Switchgrass Panicum virgatum Sideoats Grama Bouteloua curtipendula These grasses are perennials = plants that live for many years; producing new foliage, flowers, and seeds annually. Their foliage may die back or burn completely to the soil surface each year but the vast majority of its body (“biomass”) is safely located underground. These grasses are easiest to identify when they have produced seed heads – in late July through September. These grasses are illustrated and described in the booklet “Range Grasses of Kansas” that is included in your Docent Handbook. It is also helpful to have someone knowledgeable to show you the distinguishing characteristics with the illustrations in hands. In the spring and early summer when the seed heads are not available identification of the grasses is more difficult. Here are some basic tips for grass identification (minus the seed heads): Big Bluestem: Stems are oval (not round) and often hairy at the base, grooved on one side, and covered with a whitish, waxy layer that rubs off easily (“glaucous layer” - like that seen on the skin of grapes).
    [Show full text]
  • Grasses of the Texas Hill Country: Vegetative Key and Descriptions
    Hagenbuch, K.W. and D.E. Lemke. 2015. Grasses of the Texas Hill Country: Vegetative key and descriptions. Phytoneuron 2015-4: 1–93. Published 7 January 2015. ISSN 2153 733X GRASSES OF THE TEXAS HILL COUNTRY: VEGETATIVE KEY AND DESCRIPTIONS KARL W. HAGENBUCH Department of Biological Sciences San Antonio College 1300 San Pedro Avenue San Antonio, Texas 78212-4299 [email protected] DAVID E. LEMKE Department of Biology Texas State University 601 University Drive San Marcos, Texas 78666-4684 [email protected] ABSTRACT A key and a set of descriptions, based solely on vegetative characteristics, is provided for the identification of 66 genera and 160 grass species, both native and naturalized, of the Texas Hill Country. The principal characters used (features of longevity, growth form, roots, rhizomes and stolons, culms, leaf sheaths, collars, auricles, ligules, leaf blades, vernation, vestiture, and habitat) are discussed and illustrated. This treatment should prove useful at times when reproductive material is not available. Because of its size and variation in environmental conditions, Texas provides habitat for well over 700 species of grasses (Shaw 2012). For identification purposes, the works of Correll and Johnston (1970); Gould (1975) and, more recently, Shaw (2012) treat Texas grasses in their entirety. In addition to these comprehensive works, regional taxonomic treatments have been done for the grasses of the Cross Timbers and Prairies (Hignight et al. 1988), the South Texas Brush Country (Lonard 1993; Everitt et al. 2011), the Gulf Prairies and Marshes (Hatch et al. 1999), and the Trans-Pecos (Powell 1994) natural regions. In these, as well as in numerous other manuals and keys, accurate identification of grass species depends on the availability of reproductive material.
    [Show full text]