The Tree, the Spiral and the Web of Life: a Visual Exploration of Biological Evolution

Total Page:16

File Type:pdf, Size:1020Kb

The Tree, the Spiral and the Web of Life: a Visual Exploration of Biological Evolution Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/LEON_a_00321 by guest on 27 September 2021 artists’ article on ti The Tree, the Spiral and the l connec tia Web of Life: A Visual Exploration en of Biological Evolution for ss a b s t r a c t Public Murals he authors created the Spiral T ence: The e I of Life as a new, accessible c symbol for the evolution of life. ts r This novel visual interpreta- A tion of evolution challenges Joana Ricou and traditional tenets of the field in light of emerging new themes John Archie Pollock in research. The Spiral brings recent principles to the general public and also provides scien- tists with a new visual concept to support further discussion. ur science outreach work constantly reveals the case, because Ricou is an artist The Spiral emerged from the O combination of the analysis of the growing disconnect between the current state of science trained in cellular biology and ge- the latest scientific research and the general public’s understanding of fundamental prin- netics and Pollock is a physicist/ with an artistic process to ciples of science. In keeping with what C.P. Snow observed in biology researcher with a second- create new images and icons. A Two Cultures [1] and a recent National Academy of Sciences ary career in science visualization resulting complementary series report highlighted [2], this disconnect has had a profound, and education. Both artistic and of artworks was installed in five cultural institutions and muse- pervasive and negative impact on science education, public scientific opinions contributed to ums in Pittsburgh, PA. policy and health in the United States. the making of this project, with a Evolution struck us as an interesting topic within which to concern for the general accessibility address this divide. The coincidence of Charles Darwin’s 200th of the science. The decision-making birthday and the 150th anniversary of the publication of On process was guided by the tug-of- the Origin of Species in 2009 was the impetus for a worldwide war between the scientific point of view that resists generaliza- movement that promoted awareness of evolution and spurred tion and the artistic point of view that is traditionally more our own efforts. The dialogue surrounding this topic is obfus- concerned with the big picture. As Goodsell and Johnson sug- cated by the cultural debate that still rages over the validity of gest [4], artistic license allows selective disclosure, purposeful the science in this area and the lack of understanding of the distortion of scale or perspective and simplification, among relevance that evolution has to everyday life. Communicating other tools, to serve the goal of clarifying a bigger picture and the principle of common descent and evolutionary relation- exciting interest. The artist is willing to incorporate what is ship of all living things was also interesting to us because the known and create a visual hypothesis of what is not certain, subject is currently actively researched by scientists, who still while the scientist in both of us reached for exacting content see defining over-arching principles as a significant challenge. based on the modern molecular genetic data in the published Visualization is a part of evolutionary research. Different scientific literature. diagrams are created depending on the specific point of view, Given the pace of research on evolution, we are aware that intellectual framework, data sets and other constraints. While any images committed to paper today will become outdated scientific visualizations must not allow for “artistic license,” in a few short years. Nonetheless, there is a need for a sym- they always have an aesthetic component [3]. Since the cur- bol that captures and clarifies the principles currently under rent research into evolution still has many questions to ad- discussion. We needed a symbol that would be accessible to dress, and the way that the data is visualized is important to the general public and have the potential to serve as a men- data interpretation, we find that image explorations can con- tal framework for researchers to model, anticipate and hypo- tribute both as support for visualization and as propositions. thesize with. These characteristics make evolution promising territory for The first step in our creative process was to review the a fruitful art-and-science collaboration. current scientific literature, news articles, imagery and web The traditional split between the roles of the scientist and resources. In this process we considered over 84 different pri- the artist is harder to define in our collaboration than is often mary sources, texts and web projects [5]. The primary research data we collected had unsettled, changing and/or contradic- tory aspects. We resolved individual conflicts by consulting a Joana Ricou (artist), 631 Grand Street, Floor 4, Brooklyn, NY 11211, U.S.A. E-mail: panel of experts (listed in this paper’s acknowledgments). For <[email protected]>. example, opinions on the branching pattern and the dates of John Archie Pollock (scientist, educator), Department of Biological Sciences, 222 Mellon Hall, Duquesne University, Pittsburgh, PA 15282, U.S.A. E-mail: <[email protected]>. the branching in bacteria are not settled. Different evidence See <www.mitpressjournals.org/toc/leon/45/1> for supplemental files associated with this points lead to conflicting answers. We based our project on issue. the dates provided in Madigan and Martinko’s 11th edition of Brock Microbiology of Microorganisms [6], with guidance from article Frontispiece. Spiral of Life III: Animal Evolution, digital art on John Stolz of Duquesne University. We collected data simulta- vinyl, 18 × 10 ft, 2009, Pittsburgh Zoo & PPG aquarium. this piece neously with spreadsheets and diagrams and subjected both focuses on the animal kingdom. (© Joana ricou and John Pollock) to feedback from our scientific advisors. ©2012 ISAST LEONARDO, Vol. 45, No. 1, pp. 18–25, 2012 19 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/LEON_a_00321 by guest on 27 September 2021 on ti organisms appear similar in size, to fur- ther communicate their evolutionary equality. A “future” ring tantalizes the imagination and serves as a reminder l connec tia that evolution is ongoing. Through an en iterative process, we combined a logical ss organization of the visual space with the constraints of multiple discrete branches and enormous time (see “Collapsing Time” below). In this way, a spiral shape ence: The e I emerged at the center of our image, em- Sc phasizing the connection between the T Ar evolution of all major taxa. This shape became the heart of our reconceptual- ization of evolution as the Spiral of Life (Color Plate A). From Spiral To Web The idea that many natural and human processes are best represented as a col- lection of linked entities or network has achieved significant prominence in the Fig. 1. (digitally enhanced) (a, left) First evolutionary tree drawn by charles Darwin in his cultural and scientific zeitgeist in recent Notebook b in 1837 (public domain). For Darwin, the tree described the relationships years. It should come as no surprise that between groups of organisms, revealing that all species are related through common ances- evolutionary biology is also participating try and that they change over time. (b, right) Evolution of Man—Pedigree of Man Plate XV by in this conceptual revolution. Scientists Haeckel, 1879 (public domain). Within a decade of Darwin’s publication of The Origin of Spe- cies, ernst Haeckel had drafted multiple views of evolutionary trees, which typically placed now recognize that “horizontal transfer,” humans as the most evolved species. processes that violate the strictly tree-like flow of genetic information proposed by Darwin, have been contributing to evolu- tion over the millennia [14] (Fig. 3). The Tree The CirCle Traditional cladograms represent While Charles Darwin was not the first to Historically, a circular design has also “vertical” processes and refer to the pas- use a tree structure to organize living or- been used to represent the organization sage of genetic material from a parent ganisms, the “tree of life” he drew in 1837 of the natural world and has inspired generation to an offspring generation. became an icon and cognitive model for more recent evolutionary diagrams that We found that there is another type of evolution (Fig. 1a) and is recognizable are radial or circular [10] (Fig. 2). The process, “horizontal,” that plays an im- in modern cladograms. His model es- radial diagrams include the branching portant role in evolution. Horizontal tablished that all species are related by pattern but place the origin of the dia- transfer occurs when genetic informa- common descent (common root) and gram at the center, unequivocally con- tion gets passed from one individual to that they diversified (ramification). The noting a common origin. An example of another not through reproduction but length of the branches can signify time this type is the interactive Tree of Life by a virus, transposable elements [15] or evolutionary difference. As decades [11]. However, this type of geometry is or other means, and this information passed by, the popularized interpretation the least represented in sites to which the is passed on to progeny. The existence of this revolutionary image accumulated general public has ready access, such as of horizontal processes means that evo- misconceptions: for example, that evolu- in museums (less than 10% in a sample lution can occur during the lifetime of tion is a linear, vertical process and that of 112) [12]. an organism, which is an idea closer all of life descends from a single common to Lamarck’s theories than Darwin’s. ancestor and culminated in the human There is a consensus that these pro- species (as shown in Fig.
Recommended publications
  • The Parasitic Host: Symbiosis Contra Neo-Darwinism
    Pli 9 (2000), 119-38. The Parasitic Host: Symbiosis contra Neo-Darwinism MICHELLE SPEIDEL Introduction Darwinism, and its modern formulation, neo-Darwinism, have often been the target of philosophically motivated attacks which centre on what are often seen as the ideological underpinnings, assumptions or consequences that are believed to emanate from Darwinism’s Malthusian origins. More often than not, these attacks focus on the ‘improper’ extensions of Darwinism into the social realm, in the areas of social engineering, evolutionary psychology (or its much-derided former incarnation, sociobiology), biopolitics, and the like. Occasionally, some attacks on Darwinism and neo-Darwinism have a force that is more ‘scientific’ in nature, that is, the attacks on the ideology attempt to show the entailment of real consequences for the methodology and practice of biological science itself, and are serious challenges not just to the ideological aspects of Darwinism, but to the theory itself. The group of approaches to evolution that can be grouped under the heading of ‘symbiosis’ appear to be challenges of precisely this kind. Symbiosis, the phenomenon that describes the ‘coevolution’ of two distinct species into a partnership-oriented evolutionary relationship, does appear at first glance to be absent from most descriptions of neo- Darwinism as a scientific theory, since such descriptions invariably prescribe competition as the primary impetus for evolutionary change. As I hope to show, there is a real sense in which a theory which emphasises competition cannot explain cooperative behaviours, except by fairly circuitous reroutings of the operational terms of the theory. Furthermore, I will argue that the real strength of symbiosis as a challenge to neo- 120 Pli 9 (2000) Darwinism lies in the very notion of symbiosis itself, quite apart from the ‘cooperative’ nature of symbiotic associations.
    [Show full text]
  • Copyright by Paul Harold Rubinson 2008
    Copyright by Paul Harold Rubinson 2008 The Dissertation Committee for Paul Harold Rubinson certifies that this is the approved version of the following dissertation: Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War Committee: —————————————————— Mark A. Lawrence, Supervisor —————————————————— Francis J. Gavin —————————————————— Bruce J. Hunt —————————————————— David M. Oshinsky —————————————————— Michael B. Stoff Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War by Paul Harold Rubinson, B.A.; M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2008 Acknowledgements Thanks first and foremost to Mark Lawrence for his guidance, support, and enthusiasm throughout this project. It would be impossible to overstate how essential his insight and mentoring have been to this dissertation and my career in general. Just as important has been his camaraderie, which made the researching and writing of this dissertation infinitely more rewarding. Thanks as well to Bruce Hunt for his support. Especially helpful was his incisive feedback, which both encouraged me to think through my ideas more thoroughly, and reined me in when my writing overshot my argument. I offer my sincerest gratitude to the Smith Richardson Foundation and Yale University International Security Studies for the Predoctoral Fellowship that allowed me to do the bulk of the writing of this dissertation. Thanks also to the Brady-Johnson Program in Grand Strategy at Yale University, and John Gaddis and the incomparable Ann Carter-Drier at ISS.
    [Show full text]
  • Publications of Peter H. Raven
    Peter H. Raven LIST OF PUBLICATIONS 1950 1. 1950 Base Camp botany. Pp. 1-19 in Base Camp 1950, (mimeographed Sierra Club report of trip). [Upper basin of Middle Fork of Bishop Creek, Inyo Co., CA]. 1951 2. The plant list interpreted for the botanical low-brow. Pp. 54-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). 3. Natural science. An integral part of Base Camp. Pp. 51-52 in Base Camp 1951, (mimeographed Sierra Club report of trip). 4. Ediza entomology. Pp. 52-54 in Base Camp 1951, (mimeographed Sierra Club report of trip). 5. 1951 Base Camp botany. Pp. 51-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). [Devils Postpile-Minaret Region, Madera and Mono Counties, CA]. 1952 6. Parsley for Marin County. Leafl. West. Bot. 6: 204. 7. Plant notes from San Francisco, California. Leafl. West. Bot. 6: 208-211. 8. 1952 Base Camp bird list. Pp. 46-48 in Base Camp 1952, (mimeographed Sierra Club report of trip). 9. Charybdis. Pp. 163-165 in Base Camp 1952, (mimeographed Sierra Club report of trip). 10. 1952 Base Camp botany. Pp. 1-30 in Base Camp 1952, (mimeographed Sierra Club report of trip). [Evolution Country - Blaney Meadows - Florence Lake, Fresno, CA]. 11. Natural science report. Pp. 38-39 in Base Camp 1952, (mimeographed Sierra Club report of trip). 1953 12. 1953 Base Camp botany. Pp. 1-26 in Base Camp 1953, (mimeographed Sierra Club report of trip). [Mono Recesses, Fresno Co., CA]. 13. Ecology of the Mono Recesses. Pp. 109-116 in Base Camp 1953, (illustrated by M.
    [Show full text]
  • James A. Mccloskey, Jr
    CHEMICAL HERITAGE FOUNDATION JAMES A. MCCLOSKEY, JR. Transcript of Interviews Conducted by Michael A. Grayson at the McCloskeys’ Home Helotes, Texas on 19 and 20 March 2012 (With Subsequent Corrections and Additions) James A. McCloskey, Jr. ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancement of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry. This oral history is designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Center for Oral History to credit CHF using the format below: James A. McCloskey, Jr., interview by Michael A. Grayson at the McCloskeys’ home, Helotes, Texas, 19-20 March 2012 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0702). Chemical Heritage Foundation Center for Oral History 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society.
    [Show full text]
  • Chapter 9. NATURAL SELECTION and BIOLOGICAL EVOLUTION
    Chapter 9. NATURAL SELECTION AND BIOLOGICAL EVOLUTION Which beginning of time [the Creation] according to our Chronologie, fell upon the entrance of the night preced- ing the twenty third day of Octob. in the year of the Julian Calendar, 710 [i.e. B.C. 4004]. Archbishop James Ussher (1581—1656) The Annals of the World1 (1658:1) “How stupid not to have thought of that!” Thomas Huxley (1825-1895), about Darwin’s theory of Evolution by Nat- ural Selection. I. Introduction A. Classical Discoveries of Biology From the mid 18th Century to the early part of the 20th, a large fraction of biologists’ efforts went into two massive collective discoveries, the discovery of biotic diversity, and the discovery of evolution. Over the period from 1750 to 1950 the careful descriptive analyses of Swedish biol- ogist Karl von Linné and his followers showed there to be on the order of 10 million or so different types of living organisms. The differences in biotas in different parts of the world came to be appreciated, the amazing diversity of the tropics was documented, and previ- ously unimagined major groups of organisms were discovered, including microorganisms and the biota of odd habitats like the oceanic plankton. The sometimes bizarre and always impressive adaptation of organisms to their habitats and ways of life greatly impressed the early scientific naturalists, who argued that it proved the existence of an All Seeing Design- er. Similarly, paleontologists described a huge variety of fossil plants and animals. The succession of forms, and the presence of many detailed structural similarities between liv- ing and extinct forms, as well as structural parallels between living forms, strongly suggest- ed that living and ancient forms of life were connected by branching lines of descent.
    [Show full text]
  • The Great-Grandmother of LUCA (Last Universal Common Ancestor)
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 doi:10.20944/preprints201806.0035.v1 Be introduced to the First Universal Common Ancestor (FUCA): the great-grandmother of LUCA (Last Universal Common Ancestor) Francisco Prosdocimi1*, Marco V José2 and Sávio Torres de Farias3* 1 Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil. 2 Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 CDMX, Mexico. 3 Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brasil. * Correspondence: [email protected]; [email protected] Abstract The existence of a common ancestor to all living organisms in Earth is a necessary corollary of Darwin idea of common ancestry. The Last Universal Common Ancestor (LUCA) has been normally considered as the ancestor of cellular organisms that originated the three domains of life: Bacteria, Archaea and Eukarya. Recent studies about the nature of LUCA indicate that this first organism should present hundreds of genes and a complex metabolism. Trying to bring another of Darwin ideas into the origins of life discussion, we went back into the prebiotic chemistry trying to understand how LUCA could be originated 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 doi:10.20944/preprints201806.0035.v1 under gradualist assumptions. Along this line of reasoning, it became clear to us that the definition of another ancestral should be of particular relevance to the understanding about the emergence of biological systems.
    [Show full text]
  • Beyond the Big Bang • the Amazon's Lost Civilizations • the Truth
    SFI Bulletin winter 2006, vol. 21 #1 Beyond the Big Bang • The Amazon’s Lost Civilizations • The Truth Behind Lying The Bulletin of the Santa Fe Institute is published by SFI to keep its friends and supporters informed about its work. The Santa Fe Institute is a private, independent, multidiscipli- nary research and education center founded in 1984. Since its founding, SFI has devoted itself to creating a new kind of sci- entific research community, pursuing emerging synthesis in science. Operating as a visiting institution, SFI seeks to cat- alyze new collaborative, multidisciplinary research; to break down the barriers between the traditional disciplines; to spread its ideas and methodologies to other institutions; and to encourage the practical application of its results. Published by the Santa Fe Institute 1399 Hyde Park Road Santa Fe, New Mexico 87501, USA phone (505) 984-8800 fax (505) 982-0565 home page: http://www.santafe.edu Note: The SFI Bulletin may be read at the website: www.santafe.edu/sfi/publications/Bulletin/. If you would prefer to read the Bulletin on your computer rather than receive a printed version, contact Patrisia Brunello at 505/984-8800, Ext. 2700 or [email protected]. EDITORIAL STAFF: Ginger Richardson Lesley S. King Andi Sutherland CONTRIBUTORS: Brooke Harrington Janet Yagoda Shagam Julian Smith Janet Stites James Trefil DESIGN & PRODUCTION: Paula Eastwood PHOTO: ROBERT BUELTEMAN ©2004 BUELTEMAN PHOTO: ROBERT SFI Bulletin Winter 2006 TOCtable of contents 3 A Deceptively Simple Formula 2 How Life Began 3 From
    [Show full text]
  • The Mesozoic Era Alvarez, W.(1997)
    Alles Introductory Biology: Illustrated Lecture Presentations Instructor David L. Alles Western Washington University ----------------------- Part Three: The Integration of Biological Knowledge Vertebrate Evolution in the Late Paleozoic and Mesozoic Eras ----------------------- Vertebrate Evolution in the Late Paleozoic and Mesozoic • Amphibians to Reptiles Internal Fertilization, the Amniotic Egg, and a Water-Tight Skin • The Adaptive Radiation of Reptiles from Scales to Hair and Feathers • Therapsids to Mammals • Dinosaurs to Birds Ectothermy to Endothermy The Evolution of Reptiles The Phanerozoic Eon 444 365 251 Paleozoic Era 542 m.y.a. 488 416 360 299 Camb. Ordov. Sil. Devo. Carbon. Perm. Cambrian Pikaia Fish Fish First First Explosion w/o jaws w/ jaws Amphibians Reptiles 210 65 Mesozoic Era 251 200 180 150 145 Triassic Jurassic Cretaceous First First First T. rex Dinosaurs Mammals Birds Cenozoic Era Last Ice Age 65 56 34 23 5 1.8 0.01 Paleo. Eocene Oligo. Miocene Plio. Ple. Present Early Primate First New First First Modern Cantius World Monkeys Apes Hominins Humans A modern Amphibian—the toad A modern day Reptile—a skink, note the finely outlined scales. A Comparison of Amphibian and Reptile Reproduction The oldest known reptile is Hylonomus lyelli dating to ~ 320 m.y.a.. The earliest or stem reptiles radiated into therapsids leading to mammals, and archosaurs leading to all the other reptile groups including the thecodontians, ancestors of the dinosaurs. Dimetrodon, a Mammal-like Reptile of the Early Permian Dicynodonts were a group of therapsids of the late Permian. Web Reference http://www.museums.org.za/sam/resource/palaeo/cluver/index.html Therapsids experienced an adaptive radiation during the Permian, but suffered heavy extinctions during the end Permian mass extinction.
    [Show full text]
  • Signature of Controversy
    I n “In this volume Granville Sewell provides “As the debate over intelligent design grows T delightful and wide-ranging commentary on increasingly heated... it is refreshing to find a HE the origins debate and intelligent design... discussion of the topic that is calm, thoughtful, Sewell provides much needed clarity on topics and far-ranging, with no sense of having to B e ignature f that are too often misunderstood. His discussion advance an agenda or decimate the opposition. G I S o of the commonly confused problem of entropy In this regard, Granville Sewell’s In the NNI is a must read.” Beginning succeeds brilliantly.” Cornelius G. Hunter, Ph.D. William A. Dembski, Ph.D. N author of The Design Inference author of Science’s Blind Spot G ontroversy A N c In this wide-ranging collection of essays on origins, mathematician Granville Sewell looks at the D big bang, the fine-tuning of the laws of physics, and the evolution of life. He concludes that while O there is much in the history of life that seems to suggest natural causes, there is nothing to support THER Responses to critics of signature in the cEll Charles Darwin’s idea that natural selection of random variations can explain major evolutionary E S advances (“easily the dumbest idea ever taken seriously by science,” he calls it). Sewell explains S A Y why evolution is a fundamentally different and much more difficult problem than others solved s ON by science, and why increasing numbers of scientists are now recognizing what has long been I obvious to the layman, that there is no explanation possible without design.
    [Show full text]
  • ORIGIN and EVOLUTION of BIRDS Dr. Ramesh Pathak B.Sc. (Hons.) –II
    ORIGIN AND EVOLUTION OF BIRDS Dr. Ramesh Pathak B.Sc. (hons.) –II Prof. Parker has shown a number of peculiarities between birds and repiles,so,he said “birds are transformed and glorified reptiles”. Huxley has established a very close relationship by saying birds are “feathered reptiles”. THEORIES OF ORIGIN OF BIRDS A. Cursorial theory : This theory was championed by Baron Nopsa who maintained that the birds evolved from cursorial bipedal dinosaurs. In attempt to move faster during running to pull themselves a bit faster they moved and beat their arms. In such condition, due to continuous use of arms as propellers brought constant increase in the length and breadth of scales present on them. As the scales lengthened ,the pressure against the air caused their edges frayed leading to scales changing into feathers. But this theory was rejected because scales and feathers are fundamentally different structures arising from different layers of skin. B.Tetrapteryx theory :It was proposed by Beebe and Gregorg. According to this theory the ancestors of birds were arboreal reptiles who used to jump from branch to branch and in doing so the scales were transformed into feathers by fraying of the edges. After developing feathers on all the four limbs (Tetrapteryx stage), they used only the anterior wings and the unused posterior wings were lost. This theory was also discarded because there is no evidence that birds had ever four wings. C. Gliding thery : It is based on the idea of Beebe and Georg.It was proposed by Heilmann but does not recognize the tetrapteryx stage.
    [Show full text]
  • Lynn Margulis and Dorion Sagan, Acquiring Genomes
    CONTENTS Forewordby Ernst Mayr XI xv CaJ1•1thtO JOOJ by lfnn M.,1i1ll1111J l>nrlun S1tc11n Preface Pulttl1h,Jby 1111k Rook,, PART ONE. THE EVOLUTIONARY IMPERATIVE AM,mber of rh, l'wucu1Book, Group. 1 Darwinism Not Neodarwinism 3 Allrlahu re1crved. Printed in the United States of America. No part of this book may be 2 Darwin's Dilemma 25 rc~r<>ducedin any manner whatsoever without written permission except in the case of 3 Relative Individuality 51 briefquotations embodied in critical articles and reviews.For information, address Basic 67 Books, 387 Park Avenue South, New York NY 10016-8810. 4 The Natural Selector 5 Principles of Evolutionary Novelty 71 Library of Congress Cataloging-in-Publication Data PART TWO. THE MICROBE IN EVOLUTION Margulis, Lynn, 1938- Acquiring genomes : a theory of the origins of species / Lynn Margulis and Dorion 6 Species and Cells 81 Sagan.-lst ed. 7 History of the Heritable 89 p. cm. Includes bibiliographical references PART THREE. PLANETARY LEGACY ISBN 0-465-04391-7 (hardcover) 1. Species. 2. Symbiogenesis. 3. Evolution (Biology). 4. Sagan Dorion 1959- II 123 Title. ' ' . 8 Gaian Planet 139 QH380 .M37 2002 9 Eukaryosis in an Anoxic World 576.8'6-dc21 2002001521 PART FOUR. CONSORTIA 165 Text design by TrishWilkimon 10 Seaworthy Alliances Set in 12.5-point AGaramond by The Perseus Books Group 11 Plant Proclivities 185 12 Chromosome Dance: The Fission Theory 191 FIRST EDITION 13 Darwin Revisited: 02 03 04 05 / IO 9 8 7 6 5 4 3 2 1 Spedes in the Evolutionary Dialogue 201 ..•,, •HI /,,/tit,,,,,,/ 1//11,11,111,,,,,
    [Show full text]
  • History of the Department of Microbiology 1868 – 2009
    June 2015 HISTORY OF THE DEPARTMENT OF MICROBIOLOGY 1868 – 2009 University of Illinois at Urbana-Champaign 1 A HISTORY OF THE DEPARTMENT OF MICROBIOLOGY 1868 – 2009 This 141 year history of the Department of Microbiology includes an article (Chapter 1), written and published in 1959 by the Department, which covers the period 1868 to 1959. I joined the Department in 1953, and my recounting of the Department’s history includes personal observations as well as anecdotes told to me by H. O. Halvorson and others. Later I realized what a unique experience it had been to join a first-class department, and I resolved to play a role in maintaining its research stature. Ralph Wolfe 2 Department of Microbiology History of the Headship: 1950 – 1959 Halvor Halvorson 1960 – 1963 Kim Atwood 1963 – 1972 Leon Campbell 1972 – 1982 Ralph DeMoss 1982 – 1987 Samuel Kaplan 1987 – 1990 Jordan Konisky 1990 – 1991 Ralph Wolfe (Acting Head) 1991 – 1997 Charles Miller 1997 – 2002 John Cronan 2003 – 2004 Jeffrey Gardner (Acting Head) 2005 – Present John Cronan 3 Organization of the History of the Department In Chapters 2 to 6 the data are divided into Academic Decades, each containing the following sections: Section I, an overview of the decade; Section II, some events for each year of the decade; Section III, a summary of the research interests, honors received, publications, and invited off-campus lectures or seminars for each faculty member. These data have been obtained from the annual reports of the faculty submitted to the departmental secretary. 4 CHAPTER 1 1868 – 1959 During this time period the name of the Department was Department of Bacteriology (Anecdotes by Ralph Wolfe) A SHORT HISTORY OF THE DEPARTMENT OF BACTERIOLOGY H.
    [Show full text]