Diffusion Coefficients of Silver Ion in Lino3-Csno3 and KNO3-Csno3 Mixtures*

Total Page:16

File Type:pdf, Size:1020Kb

Diffusion Coefficients of Silver Ion in Lino3-Csno3 and KNO3-Csno3 Mixtures* Diffusion Coefficients of Silver Ion in LiNO3-CsNO3 and KNO3-CsNO3 Mixtures* By Kazutaka Kawamura** The diffusion coefficients of silver ion in molten lithium nitrate-cesium nitrate and potassium nitrate-cesium nitrate mixtures have been determined by chronopotentiometry in the temperature range from 260 to 380℃. The diffusion coefficient of silver ion in lithium nitrate-cesium nitrate mixture increases with the increase of concentra- tion of cesium nitrate from 0 to 20 mol % and decreases with the increase of concentration of cesium nitrate from 20 to 100 mol %, indicating a maximum value at 20 mol % of cesium nitrate. The diffusion coefficient of silver ion inthe potassium nitrate-cesium nitrate mixture decreases monotonously with the increase of the concentration of cesium nitrate. The activation energy for diffusion of silver ion has a minimum value at about 20 mol % of cesium nitrate in the lithium nitrate-cesium nitrate mixture and increases monotonously with the increase of concentration of cesium nitrate in the potassium nitrate-cesium nitrate mixture. By comparing the determined diffusion coefficients of silver ion in alkali nitrate mixtures with those in pure alkali nitrates, it is found that the circumstances around the silver ion diffused at the concentration of about 20 mol % ofcesium nitrate in the lithium nitrate-cesium nitrate mixture approach that in pure sodium nitrate. Such a finding may explain the above concentration dependence of the activation energy for diffusion of silver ion in the lithium nitrate-cesiumnitrate and potassium nitrate-cesium nitrate mixtures. (ReceivedAugust 15, 1973) materials by filtering the melt through the fritted silica Ⅰ.Introduction disc under dry nitrogen atmosphere followed by bubbl- ing dry nitrogen gas for about 2 hr through the filtered Although much efforts have been expended in the melt in order to remove small amounts of moisture measurements of the chronopotentiometric diffusion in the melt. The details of this method have been coefficients† of silver ion in pure molten alkali ni- reported previously(10). A small amount of silver trates(1)~(5), only a few attempts have been made to nitrate from reagent grade material was then added. examine how the chronopotentiometric diffusion coef- After the diffusion experiment, the solidified salt ficient of silver ion in binary molten alkali nitrate mixtures were dissolved in 22 of distilled water. Fifty ml mixtures(6) varies with the concentration of alkali of the solution was transferred to the electrolytic cell nitrate. in order to determine the concentration of silver ion It is thus the purpose of this work to determine the electrolytically. The remaining solution was also chronopotentiometric diffusion coefficients of silver electrolyzed to remove the silver ion and evaporated to ion in molten lithium nitrate-cesium nitrate and potas- dryness. The obtained dry salt mixture was reused sium nitrate-cesium nitrate mixtures. Moreover, the for the measurement of chronopotentiometric dif- obtained values of the chronopotentiometric diffusion fusion coefficients. coefficients, together with our previously obtained values of chronopotentiometric diffusion coefficients of Ⅲ. Results silver ion in molten lithium nitrate-potassium nitrate (7) and sodium nitrate-potassium nitrate(8) mixtures, are The chronopotentiometric diffusion coefficients of explained by the values of chronopotentiometric dif- silver ion, together with the activation energies of the fusion coefficients of silver ion in pure molten alkali diffusion(calculated mainly fbr the temperature range nitrates. from 260 to 380℃ for lithium nitrate-cesium nitrate and from 315 to 380℃ for potassium nitrate-cesium Ⅱ. Experimental nitrate), over the almost entire range from pure lithium nitrate to pure cesium nitrate and from pure The apparatus for chronopotentiometry described in previous papers(1)(7)~(9)was used. The lithium potassium nitrate to pure cesium nitrate are shown in Tables 1 and 2, respectively. The probable errors are nitrate-cesium nitrate and potassium nitrate-cesium also listed in these tables. nitrate mixtures were purified from the reagent grade The chronopotentiometric diffusion coefficients of * Presented on 6th Fused Salt Chemistry Conference silver ion in lithium nitrate-cesium nitrate and potas- , Nov. 1972, at Okayama. sium nitrate-cesium nitrate mixtures are summarized ** Research Laboratory of Nuclear Reactor , Tokyo Institute in Figs. 1 and 2, respectively, together with the pub- of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo lished data on diffusion coefficients of silver ion in 152, Japan. pure lithium nitrate(7)and potassium nitrate(7)~(9)(11). † It is noted that the chronopotentiometric diffusion It can be seen from Fig. 1 that the chronopotentio- coefficient of silver ion can only be measured for the dilute solution of silver ion in the pure molten alkali metric diffusion coefficient of silver ion in the lithium nitrate or alkali nitrate mixture. nitrate-cesium nitrate mixture increases with the Trans. JIM 1974 Vol. 15 414 Kazutaka Kawamura Table 1 Diffusion coefficients and activation energies for silver ion in LiNO3-CsNO3(D=×10-5cm2/sec, ED=kcal/ mol). Table 2 Diffusion coefficients and activation energies for silver ion in KNO3-CsNO3(D=×10-5cm2/sec, ED= kcal/mol) Fig. 2 Diffusion coefficients and activation energies for silver ion in KNO3-CsNO3. Fig. 1 Diffusion coefficients and activation energies for silver ion in LiNO3-CsNO3. increaseincrease of concentration of cesium nitrate from 0 to 20 mol % and decreases with the increase of con- centration of cesium nitrate from 20 to 100 mol %, showing a maximum value at 20 mol % of cesium ni- trate. On the other hand, it is seen from Fig. 2 that the chronopotentiometric diffusion coefficient of silver ion in potassium nitrate-cesium nitrate mixture de- creases monotonously with the increase of the con- centration of cesium nitrate. Since the variations of chronopotentiometric diffusion ceofficients of silver ion in the lithium nitrate-cesium nitrate and potassium nitrate-cesium nitrate mixtures with temperature are given by the Arrhenius relation, the activation energies of diffusion process can be calculated from the slope of the Arrhenius plot. As an example, the typical variation of the chronopotentiometric diffusion coef- Fig. 3 Arrhenius plot of ln D versus 1/T for silver ion ficient of silver ion in lithium nitrate-cesium nitrate in LiNO3-CsNO3. Diffusion Coefficients of Silver Ion in LiNO3-CsNO3 and KNO3-CsNO3 Mixtures 415 with temperature (Arrhenius plot) is shown in Fig. 3. The activation energy of the diffusion process de- creases with the increase of concentration of cesium nitrate from 0 to about 20 mol % and increases with the increase of concentration of cesium nitrate from about 20 to 100 mol % in the lithium nitrate-cesium nitrate mixture, indicating a minimum value at about 20 mol % of cesium nitrate. In the potassium nitrate- cesium nitrate mixture, the activation energy of diffusion process increases monotonously with the increase of concentration of cesium nitrate. Ⅳ. Discussion Since the chronopotentiometric diffusion coefficient of silver ion is identical with the self-diffusion coef- ficient of silver ion and the interdiffusion coefficient for the dilute solution of silver ion(12)(13), the term "diffusion coefficient of silver ion" is used hereafter Fig.4 Diffusion coefficients(at 360℃)and activation instead of the chronopotentiometric diffusion coeffi- energies for silver ion in LiNO3-KNO3 and NaNO3-KNO3(7). cient of silver ion. Now, let us determine the relation between the obtained diffusion coefficient of silver ion in the binary with the diffusion coefficient of silver ion in pure alkali nitrate mixture and that in pure alkali nitrate. sodium nitrate as shown in Fig. 4(7). The diffusion coefficients of silver ion in various pure A possible explanation of the maximum value of alkali nitrates at 360℃ are shown in Table 3, in which the diffusion coefficient of silver ion in the lithium the diffusion coefficient of silver ion in pure cesium nitrate-cesium nitrate and lithium nitrate-potassium nitrate at 360℃ is obtained from the extrapolation of nitrate mixtures is that the circumstances around the the diffusion coefficient of silver ion at 80 mol % of silver ion diffused at the concentration of about 20 cesium nitrate in the lithium nitrate-cesium nitrate and mol % cesium nitrate in the lithium nitrate-cesium potassium nitrate-cesium nitrate mixtures to that at nitrate mixture and at the concentration of about 100 mol % of cesium nitrate as shown in Figs. 1 and 2. 50 mol % of potassium nitrate in the lithium nitrate- It can be seen from Table 3 that the diffusion coeffi- potassium nitrate mixture approach that in pure cient of silver ion in pure sodium nitrate has the molten sodium nitrate. Qualitatively, such an explana- highest value among those in various pure alkali ni- tion may be supported by the fact that in the periodical trates and the activation energy of diffusion process table the sodium has the position between lithium and of silver ion has the lowest value in pure sodium ni- cesium or has the position between lithium and potas- trate. In other words, the silver ion is more mobile sium. In other words, since the values of the ionic in pure sodium nitrate than in other pure alkali ni- radius and the polarizability of sodium ion, which are trates. considered to play an important role in the dynamic It is evident from Fig. 1 that the maximum value process,
Recommended publications
  • Thermal Studies on Rubidium Dinitramide
    University of Huddersfield Repository Charsley, Edward L., Laye, Peter G., Markham, H.M., Rooney, James J., Berger, B., Griffiths, Trevor T. and Wasko, M.P. Thermal Studies on Rubidium Dinitramide Original Citation Charsley, Edward L., Laye, Peter G., Markham, H.M., Rooney, James J., Berger, B., Griffiths, Trevor T. and Wasko, M.P. (2008) Thermal Studies on Rubidium Dinitramide. In: 35th International Pyrotechnics Seminar, 13-18 July 2008, Fort Collins, USA. This version is available at http://eprints.hud.ac.uk/id/eprint/15577/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Proceedings 35 th International Pyrotechnic Seminar, Fort Collins, USA, IPSUSA, INC, 2008, 331. Thermal Studies on Rubidium Dinitramide E.L.Charsley l, P.G.Laye 1, H.M.Markham 1, J.J.Rooney 1, B.Berger 2, T.T.Griffiths 3 and M.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Material Safety Data Sheet
    Date of Issue: 22 September 2015 SAFETY DATA SHEET 1. SUBSTANCE AND SOURCE IDENTIFICATION Product Identifier SRM Number: 3145a SRM Name: Rubidium (Rb) Standard Solution Other Means of Identification: Not applicable. Recommended Use of This Material and Restrictions of Use This Standard Reference Material (SRM) is intended for use as a primary calibration standard for the quantitative determination of rubidium. A unit of SRM 3145a consists of five 10 mL sealed borosilicate glass ampoules of an acidified aqueous solution prepared gravimetrically to contain a known mass fraction of rubidium. The solution contains nitric acid at a volume fraction of approximately 1 %, which is equivalent to an amount-of-substance concentration (molarity) of approximately 0.16 mol/L. Company Information National Institute of Standards and Technology Standard Reference Materials Program 100 Bureau Drive, Stop 2300 Gaithersburg, Maryland 20899-2300 Telephone: 301-975-2200 Emergency Telephone ChemTrec: FAX: 301-948-3730 1-800-424-9300 (North America) E-mail: [email protected] +1-703-527-3887 (International) Website: http://www.nist.gov/srm 2. HAZARDS IDENTIFICATION Classification Physical Hazard: Not classified. Health Hazard: Skin Corrosion/Irritation Category 1B Serious Eye Damage/Eye Irritation Category 1 Label Elements Symbol Signal Word DANGER Hazard Statement(s) H314 Causes severe skin burns and eye damage. Precautionary Statement(s) P260 Do not breathe fumes, mists, vapors, or spray. P264 Wash hands thoroughly after handling. P280 Wear protective gloves, protective clothing, and eye protection. P301+P330+P331 If swallowed: Rinse mouth. Do NOT induce vomiting. P303+P361+P353 If on skin (or hair): Remove immediately all contaminated clothing.
    [Show full text]
  • Infrared Illuminating Composition
    Office europeen des brevets (fi) Publication number : 0 652 277 A2 @ EUROPEAN PATENT APPLICATION @ Application number: 94308192.7 © Int. CI.6: C10L 5/40, C10L 9/10 (22) Date of filing : 08.11.94 (30) Priority: 09.11.93 US 150427 (72) Inventor: David R. Dillehay 107 Hashwood Terrace, Marshall Texas 75670 (US) @ Date of publication of application : Inventor : David W. Turner 10.05.95 Bulletin 95/19 4305 Ambassador Boulevard, Marshall Texas 75670 (US) (S) Designated Contracting States : DE FR GB SE @ Representative : Belcher, Simon James et al Urquhart-Dykes & Lord Tower House © Applicant : THIOKOL CORPORATION Merrion Way 2475 Washington Boulevard Leeds LS2 8PA (GB) Ogden Utah 84401 (US) (54) Infrared illuminating composition. (57) Infrared illuminant compositions are disclosed which produce significant quantities of infrared radiation when burned but which produce very little visible light. The infrared illuminant compositions provide specific illumination in the spectral range visible with night vision devices. The disclosed infrared illuminant compositions include ammonium nitrate as the main oxidizer, an infrared generator such as cesium nitrate, rubidium nitrate, or mixtures thereof, and a fuel. By eliminating potassium and its direct and indirect visible light contributions, from the illuminant compositions, improved conceal- ment indexes are obtained. Other additives, including conventional binders and burn rate modifiers may be used as to tailor the performance and physical characteristics of the infrared illuminant composition. CM < h- CM CM IO CO UJ Jouve, 18, rue Saint-Denis, 75001 PARIS EP 0 652 277 A2 BACKGROUND OF THE INVENTION 1. The Field of the Invention 5 The present invention relates to infrared illuminant compositions.
    [Show full text]
  • Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds
    EPA/690/R-16/012F l Final 9-02-2016 Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (CASRN 7440-17-7, Rubidium) (CASRN 7791-11-9, Rubidium Chloride) (CASRN 1310-82-3, Rubidium Hydroxide) (CASRN 7790-29-6, Rubidium Iodide) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGERS Puttappa R. Dodmane, BVSc&AH, MVSc, PhD National Center for Environmental Assessment, Cincinnati, OH Scott C. Wesselkamper, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY SRC, Inc. 7502 Round Pond Road North Syracuse, NY 13212 PRIMARY INTERNAL REVIEWER Paul G. Reinhart, PhD, DABT National Center for Environmental Assessment, Research Triangle Park, NC This document was externally peer reviewed under contract to: Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this PPRTV assessment should be directed to the EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). ii Rubidium Compounds TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS AND ACRONYMS .................................................. iv BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1
    [Show full text]
  • Title on a New Method for Separating Rubidium and Cesium from Potassium Author(S) Ishibashi, Masayoshi; Yamamoto, Toshio; Hara
    On a New Method for Separating Rubidium and Cesium from Title Potassium Author(s) Ishibashi, Masayoshi; Yamamoto, Toshio; Hara, Tadashi Bulletin of the Institute for Chemical Research, Kyoto Citation University (1959), 37(3): 159-166 Issue Date 1959-09-15 URL http://hdl.handle.net/2433/75710 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University On a New Method for Separating Rubidium and Cesium from Potassium Masayoshi IsxmBASH-i[,Toshio YAMAMOTO and Tadashi HARA (Ishibashi Laboratory) ReceivedFebruary 4, 1959 In order to separate rubidium and cesim from potassium, a new reagent, Naz.AgBi (NOz)o,was proposed and a method using it was established. As this reagents reacts selectively with rubidium and cesium, the amounts of rubidium and cesium in a large amount of potassium can be accurately determined by this method. This method is also convenient for the identification of rubidium and cesium since a yellow precipitate is formed even when only small amounts are present. The amounts of rubidium contained in several kinds of potassium salts were also found. INTRODUCTION There are a lot of reagentswhich have been used for the separation of rubidium and cesium from potassium, but it is not an exaggeration to say that there is no satisfactory reagent because none of them involve any selective reaction with rubidium and cesium and therefore their exact separation from potassium is not only incomplete but also very difficult. The authors have already studied the reagents for the separation of potassium, rubidium and cesium, and Na2AgBi (No2)6 reagent has been reported as an excellent one for the separation of rubidium and cesium from Potassium.
    [Show full text]
  • Growth, Morphology and Solid State Miscibility of Alkali Nitrates
    Growth, Morphology and Solid State Miscibility of Alkali Nitrates Raúl Benages Vilau ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns
    7 NATL INST OF STANDARDS & TECH R.I.C. Nes AlllOD Ififib^fi PUBLICATIONS 100988698 ST5°5rv'25-17;1980 C.1 NBS-PUB-C 19 cr»T OF NBS MONOGRAPH 25-SECTION 1 V) J U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards Standard X-ray Diffraction Powder Patterns . NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act ot Congress on March 3, 1901 The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods ol measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities- — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.
    [Show full text]
  • Acetic Acid Toxic
    Chemical Waste Name or Mixtures: Listed Characteristic Additional Info Disposal Notes (-)-B- bromodiisopropinocampheyl (-)-DIP-Bromide Non Hazardous None liquid: sanitary sewer/ solid: trash borane (-)-B- chlorodiisopropinocampheylb (-)-DIP-Chloride Non Hazardous None liquid: sanitary sewer/ solid: trash orane [(-)-2-(2,4,55,7-tetranitro-9- fluorenyodeneaminooxy)pro (-)-TAPA Non Hazardous None liquid: sanitary sewer/ solid: trash pionic acid] (+)-B- bromodiisopropinocampheyl (+)-DIP-Bromide Non Hazardous None liquid: sanitary sewer/ solid: trash borane (+)-B- chlorodiisopropinocampheylb (+)-DIP-Chloride Non Hazardous None liquid: sanitary sewer/ solid: trash orane [(+)-2-(2,4,55,7-tetranitro-9- fluorenylideneaminooxy)prop (+)-TAPA Non Hazardous None liquid: sanitary sewer/ solid: trash ionic acid] (2,4,5-Trichlorophenoxy) Acetic Acid Toxic None EHS NA (2,4-Dichlorophenoxy) Acetic Acid Toxic None EHS NA trans-8,trans-10-dodecadien- (E,E)-8,10-DDDA Non Hazardous None liquid: sanitary sewer/ solid: trash 1-ol trans-8,trans-10-dodecadien- (E,E)-8,10-DDDOL Non Hazardous None liquid: sanitary sewer/ solid: trash 1-yl acetate trans-7,cis-9-dodecadien-yl (E,Z)-7,9-DDDA Non Hazardous None liquid: sanitary sewer/ solid: trash acetate (Hydroxypropyl)methyl Cellulose Non Hazardous None liquid: sanitary sewer/ solid: trash NA ammonium phosphate (NH4)2HPO4 Non Hazardous None liquid: sanitary sewer/ solid: trash (dibasic) (NH4)2SO4 Non Hazardous None liquid: sanitary sewer/ solid: trash ammonium sulfate ammonium phosphate (NH4)3PO4 Non Hazardous None
    [Show full text]
  • Phase Equilibria of Alkali Nitrates (Nano3, KNO3, Rbno3, Csno3)..., Kem
    H.-Y. ZHANG et al.: Phase Equilibria of Alkali Nitrates (NaNO3, KNO3, RbNO3, CsNO3)..., Kem. Ind. 63 (5-6) 155−162 (2014) 155 DOI: 10.15255/KUI.2013.015 Phase Equilibria of Alkali Nitrates (NaNO3, KUI-10/2014 Received July 17, 2013 KNO3, RbNO3, CsNO3) in Glycerol + H2O Accepted October 31, 2013 System at Various Temperatures H.-Y. Zhang,a,b S.-N. Li,a Q.-G. Zhai,a Y.-M. Ou,b Y.-C. Jiang,a and M.-C. Hua* a Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an, Shaanxi, 710 062 b Department of Chemistry and Life Science, Hechi University, Yizhou, Guangxi, 546 300 By using a homemade research device for phase equilibrium, the equilibrium solubility of the alkali nitrates (NaNO3/KNO3/RbNO3/CsNO3) in the mixed solvent glycerol [HOCH2CH(OH)CH2OH] + H2O in the mass fraction range of glycerol (0.0 to 1.0) at 35 and 45 °C was measured. Moreover, the density and refractive index of the saturated solutions of NaNO3/KNO3/RbNO3/CsNO3 + mixed solvent glycerol + H2O were determined. The experimental results showed that, in all systems, with the increase of mass fraction of glycerol, the solubility of the salts and the density of the solution de- creased, while the refractive index increased gradually. The solubility, refractive index, and density data were fitted by a four-parameter empirical equation. Key words: Alkali nitrate, glycerol, solubility, density, refractive index Introduction and Cs) salts + alcohol/PEG (polyethylene glycol) + water systems.9–12 As a continuation of our work in this field, this Aqueous solutions containing salts are of increasing impor- paper presents the systematic study we carried out on the tance in separation and purification processes in chemical properties, including solubility, density and refractive index engineering.
    [Show full text]
  • Safety Data Sheet Acc
    Page 1/16 Safety Data Sheet acc. to OSHA HCS Printing date 05/13/2020 Review date 05/13/2020 * 1 Identification ∙ Product identifier ∙ Trade name: STANDARD-3ICPMS MULTIELEM CAL ∙ Article number N9300233 ∙ Application of the substance / the mixture Laboratory chemicals ∙ Details of the supplier of the safety data sheet ∙ Manufacturer/Supplier: PerkinElmer, Inc. 710 Bridgeport Avenue Shelton, Connecticut 06484 USA [email protected] 203-925-4600 ∙ Emergency telephone number: CHEMTREC (within US) 800-424-9300 CHEMTREC (from outside US) +1 703-527-3887 (call collect) CHEMTREC (within AU) +(61)-290372994 * 2 Hazard(s) identification ∙ Classification of the substance or mixture Corrosion Skin Corr. 1B H314 Causes severe skin burns and eye damage. Eye Dam. 1 H318 Causes serious eye damage. ∙ Label elements ∙ GHS label elements The product is classified and labeled according to the Globally Harmonized System (GHS). ∙ Hazard pictograms GHS05 ∙ Signal word Danger ∙ Hazard-determining components of labeling: Nitric Acid ∙ Hazard statements H314 Causes severe skin burns and eye damage. ∙ Precautionary statements P260 Do not breathe dusts or mists. P264 Wash thoroughly after handling. P280 Wear protective gloves/protective clothing/eye protection/face protection. P301+P330+P331 If swallowed: Rinse mouth. Do NOT induce vomiting. P303+P361+P353 If on skin (or hair): Take off immediately all contaminated clothing. Rinse skin with water/ shower. P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. P305+P351+P338 If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P310 Immediately call a poison center/doctor.
    [Show full text]