States of Consciousness in Sleep, Dream, and Beyond: a Biothermodynamic and Neurocybernetic Evolutionary Study

Total Page:16

File Type:pdf, Size:1020Kb

States of Consciousness in Sleep, Dream, and Beyond: a Biothermodynamic and Neurocybernetic Evolutionary Study States of Consciousness in Sleep, Dream, and Beyond: A Biothermodynamic and Neurocybernetic Evolutionary Study Prasun K. Royl,2+ and D. Dutta Majumder2,3* ^Neurobiology Division, LSA-129, University of California, Berkeley, CA 94720, USA;2tNeuro-imaging program, ECSU, Indian Statistical Institute, Calcutta-700 035, India;3 World Organization of Systems & Cybernetics, 2 rue de Voiulle, Paris 75015, France. ABSTRACT We study the inter-relationship between the states of sleep, dream, and wakefulness vis-a-vis the evolution of human brain. Various states and transformations of human consciousness are described in terms of the cognitive activation or entropy-production continuum. The evolutionaiy appearance of sleep, dream and allied states in the animal kingdom can be phylogenetically graded at each interval of about 125 million years (MY), as: Anabiosis Hibernation —> Torpor -* Sleep —• Dream -*· Lucidity Lucidity has three phases of increasing cognitive or information-processing levels: Lucid dream —• Luminous lucidity Ecstasic lucidity. Ecstasic lucid dream is the somnolent counterpart of the hyperarousal state of wakefulness called Ecstasis. Luminous lucidity is the intermediary state, generating the entoptic sensation of colored radiance. Prigogine-Zotin's non-equilibrium biothermodynamic Principle of Evolution accounts for our formalism, by taking the brain as a self-adaptive energy-dissipative structure. The equation for evolution of cognitive activation (ψ) in dream or lucid ecstasis is derived as ψ = ψ0 [1+A exp (at)]. We propose a heuristic neurocybernetic basis of dream/lucidity evolution using concepts of Short and Long-term memories, complex programming process, stochastic resonance and fuzzy periodicity. Corresponding author fax: +91(33) 245-7456/337-6926 e-mail: [email protected]; *[email protected] 57 Vol. 10, No. I, 2000 Evolution of Sleep, Dream and Beyond KEYWORDS evolution; dream; sleep; thermodynamics; lucid dream; consciousness; cybernetics " Very little attention is paid to the fact that we are endowed with two naturally recurring forms of consciousness, one experienced during the waking state, the other during the course of sleep. "—Montague Ullman (1999). 1. INTRODUCTION The evolution of the human brain and mind is a culminating landmark development of the biological evolutionary process which began with the primordial soup of self-organizing and self-replicating biotic polymers, thereby initiating the evolutionary chain: unicellular organisms, multicellular organisms, vertebrates, primates, and finally man with his own civilization, culture, and psyche and encompassing his various cognitive states and transformations. As the evolutionary process was actuated by increased supply of energy, the discipline of bioenergetics or biothermodynamics can furnish suitable approaches to help develop the theoretical foundations as relevant to state of the neural infrastructure, the nervous system, the brain and the mind. The newer discipline of non-equilibrium thermodynamics has been found to be a new paradigm to analyze the fundamental phenomenology of biological evolution (Zotin 1990; Brooks & Wiley 1988; Abraham & Gilgen, 1995) as well as that of psychological evolution or transformation (Roy et al., 1992, 1993a, 1993b, 1995; Badalamenti & Langs, 1992). The development of irreversible or non-equilibrium thermodynamics so as to elucidate biological processes was pioneered by Onsager (1968) and Prigogine (1976, 1977). A number of biologists and psychologists have used the paradigm of non-equilibrium dynamics and entropy production or the related techniques of bifurcation and stability theory to analyze various problems in behavioral systems, developmental physiology, psychodynamics, and bioregulation (Kugler et al., 1983; Murray, 1995). In the course of evolution, a gradual increase in the complexity of the organismic processes occurred, along with the ascendance of organization, regulation, control, and cognition. The higher the cognitive metabolic level or energy dissipation, the 58 P.K. Roy and D.Dutta Majumder Journal of Intelligent Systems higher the evolutionary advancement toward intelligence, and the more the organism departs from equilibrium. This is the well-known concept of "Dissipative Structure", as elucidated by the Brussels school of Glansdorff, Prigogine, and Nicolis, whereby energy dissipation, i.e. entropy production, becomes a fundamental locomotive of evolution, as shown in Schema-I below: Non-equilibrium Threshold Intestability through Fluctuations t EVOLUTION Energy Dissipation of Entropy Production Schema-I: "Dissipative Structure" concept: Energy dissipation or Entropy production generates Evolution The development of dreaming and sleeping at widely separated eras during vertebrate evolution were two significant land-marks in the development of higher animals and respectively related to information reprogramming and to homeostatic adaptive control (thermoregulation or warm-bloodedness). Dream and sleep are the two major States of Consciousness (SoC), besides the so-called waking normal state of consciousness (NSC). Various SoC have recently been the subject of considerable scholarly investigations (Kokozska, 1990; Rose, 1998; CIBA Foundation, 1993). We propose here that there are plausibly more states of consciousness in night sleep that could be the gateway to further newer states of consciousness. Analyzing experimental evidence, we propose that there is a continuum of further evolutionary and cognitive states in night sleep, beyond dream. This continuum is the Lucidity phenomenology, consisting of Lucid dream proper, Luminous lucidity, and Ecstasis lucidity, that are successively associated with increasingly more information-processing, cognitive activation, and energy- dissipative structuration'. 'Clarification of certain issues of lucidity in this paper is available at URL: www.luciditv.cora the website of lucidity research of the Stanford University Sleep Research Center, The Lucidity Institute—Stanford and Stanford Research Institute (SRI), a well recommended visit for the reader. The term 'Dreamlight' can be taken as an alternate word for Luminous lucidity (Gillespie, 1987; Gackenbach & Bosveld, 1990). LaBerge and Levitan (1995) used the word Dreamlight for photic-modulated lucidity; Hewitt (1988) and Gackenbach and Bosveld (1990) originated the term "Ecstatic lucid dream". 59 Vol. 10, No. 1, 2000 Evolution of Sleep, Dream and Beyond From paleozoological evidence we show that the resting phase or 'sleep' process is actually a series of evolutionary transformations across a geo- biological time span of almost a billion years as per the following sequential stages, each stage occurring at an approximate constant time interval of 125 ±5 MY (Schema-II): Δ»125χ106 yr A»125xl06yr A«125xl06yr A«125xl06yr A«125xl06yr Anabiosis —> Hibernation -> Torpor -» Sleep —> Dream —> Lucidity Schema-IIa: Development of the resting phase in animal evolution with the corresponding geobiological periods and organisms; energy dissipation of the phases are given as percentage of the dissipation at basal waking level. Note the gradual increase of energy dissipation factor consistent with a 'dissipative structure' interpretation of evolution of resting phase. Anabiosis or dormant state (625x 106 yr ago, at Precambrian era in nematode worms) (ψ=0.15%) ^Hibernation state (500x106 yr ago, at Cambrian era, in molluscs) (ψ=2%-5%) ^ Torpor (375xl06 yr ago, at Devonian era, in lung fishes) (ψ=10%-15%) ^ Sleep: Slow wave sleep (ψ=60%-70%) (250x 106 yr ago, at Permian era, in warm-blooded reptiles) ^ Dream: REM or Active Sleep (125xl06 yr ago, at Cretaceous era, in mammals) (ψ=95%-115%) ^ Lucidity:(0.1 χ40 10 Hz6 y r +ago K-complexed, at Quaternar overshooty era, in REMman) (ψ= 120%-130%) Schema-lib: The various resting phases and the corresponding biological conditions that necessitated the evolution of those phases. Anabiosis [for Desiccation] Hibernation [for Cold Acclimatization] Torpor [for Land Colonization] Sleep [for Energy Containment] Dream [for Memory Consolidation] Lucidity [for Thalamocortical Expansion] 60 P.K. Roy and D.Dutta Majumder Journal of Intelligent Systems We call this important evolutionary temporal unit of 125 MY as a 'somnochron' from the Greek root words of sleep and time. In the following sections we develop the thermodynamic and cybernetic foundations of the research problem. We elaborate the experimental and experiential evidence available and also elucidate the theoretical methodology derived from an information processing, bioenergetic, and neurocognitive approach. One of the central concerns of this paper is to develop the non-equilibrium dynamic equation of activation, entropy production or energy dissipation, during the gamut of evolution of consciousness, whether during the evolutionary development of vertebrates over millions of years, or during development of ecstasis, lucidity, or dream over few hours or minutes. Such universality of mathematical entropy production formalism is an expression of the ubiquity of thermodynamics from neuronal processes in brain to the evolution of life in biosphere. Nicolis and Prigogine (1977) have corroborated our point. We show that a similar mathematical formalism, based on statistical fluctuation theory, can unify these diverse types of evolution of consciousness, thereby emphasizing the universality and applicability of bioenergetics and thermo- dynamics to the study of consciousness. 2. CYBERNETICS: A BRIDGE TO THEORETICAL PSYCHOLOGY
Recommended publications
  • Participant Guide
    Participant Guide Get Enough Sleep Session Focus Getting enough sleep can help you prevent or delay type 2 diabetes. This session we will talk about: z Why sleep matters z Some challenges of getting enough sleep and ways to cope with them You will also make a new action plan! Tips: ✓ Go to bed and get up at the same time each day. This helps your body get on a schedule. ✓ Follow a bedtime routine that helps you wind down. Participant Guide: Get Enough Sleep 2 Jenny’s Story Jenny is at risk for type 2 diabetes. Her doctor asks her if she gets at least 7 hours of sleep each night. Jenny laughs. “Are you serious?” she asks. “I’m lucky if I get 5 hours.” Jenny usually doesn’t have much trouble falling asleep. But she often has to use the bathroom in the early morning. This gets her thinking about all the things she needs to do the next day. Plus, her husband’s breathing is loud. Both of these things make it hard for Jenny to fall back to sleep. She often lies awake for hours. These days, Jenny drinks less water and avoids caffeine in the evening. She makes a list of things to do the next day. Then she sets it aside. Jenny rarely needs to get up to use the bathroom during the night. If she does, she breathes deeply to help her get back to sleep. She also runs a fan to cover up the sound of her husband’s breathing. Jenny is closer to getting 7 hours of sleep a night.
    [Show full text]
  • Sleep Apnea Sleep Apnea
    Health and Safety Guidelines 1 Sleep Apnea Sleep Apnea Normally while sleeping, air is moved at a regular rhythm through the throat and in and out the lungs. When someone has sleep apnea, air movement becomes decreased or stops altogether. Sleep apnea can affect long term health. Types of sleep apnea: 1. Obstructive sleep apnea (narrowing or closure of the throat during sleep) which is seen most commonly, and, 2. Central sleep apnea (the brain is causing a change in breathing control and rhythm) Obstructive sleep apnea (OSA) About 25% of all adults are at risk for sleep apnea of some degree. Men are more commonly affected than women. Other risk factors include: 1. Middle and older age 2. Being overweight 3. Having a small mouth and throat Down syndrome Because of soft tissue and skeletal alterations that lead to upper airway obstruction, people with Down syndrome have an increased risk of obstructive sleep apnea. Statistics show that obstructive sleep apnea occurs in at least 30 to 75% of people with Down syndrome, including those who are not obese. In over half of person’s with Down syndrome whose parents reported no sleep problems, sleep studies showed abnormal results. Sleep apnea causing lowered oxygen levels often contributes to mental impairment. How does obstructive sleep apnea occur? The throat is surrounded by muscles that are active controlling the airway during talking, swallowing and breathing. During sleep, these muscles are much less active. They can fall back into the throat, causing narrowing. In most people this doesn’t affect breathing. However in some the narrowing can cause snoring.
    [Show full text]
  • Socionics: the Effective Theory of the Mental Structure and the Interpersonal Relations Forecasting Bukalov A.V., Karpenko O.B., Chykyrysova G.V
    Socionics: the effective theory of the mental structure and the interpersonal relations forecasting Bukalov A.V., Karpenko O.B., Chykyrysova G.V. (International Institute of Socionics, Melnikova str., 12, Kiev, 02206, Ukraine. E-mail: [email protected] ) Socionics, the theory of informational metabolism, has developed a whole spec- trum of new intellectual technologies used in personnel management, pedagogic, investigation of interpersonal relations in family, psychotherapy, for formation of effective workgroups and development of artificial intelligence systems. It is de- scribed the basic categories of modeling of the informational structure of psyche and the main principles of modeling of interaction between the subjects as the dif- ferent types of the informational structures. 1. Introduction The scientific basis of Socionics was created in early 70-th of the XX century by Aušra Augustinavičiūtė (Lithuania). Socionics is a further development of Jung ty- pology transformed into a science of 16 psychological types of personality. A. Augustinavičiūtė used A. Kępiński concept of information processes in creating her own informational model of human mind - the “A” (Aušra's 8-element) mod- els. This allowed describing various aspects of personality thinking and behavior by representing personality as a type of informational metabolism (TIM) with indi- cation of its strong and weak sides. This implied the possibility of describing and forecasting not only behavior of IM types, but relationships between such types as well. These relationships are condi- tioned by informational exchange between identical IM functions located at differ- ent positions in the IM model of types. Such description is an advance in the sphere of sciences about human being.
    [Show full text]
  • Towards a Passive BCI to Induce Lucid Dream Morgane Hamon, Emma Chabani, Philippe Giraudeau
    Towards a Passive BCI to Induce Lucid Dream Morgane Hamon, Emma Chabani, Philippe Giraudeau To cite this version: Morgane Hamon, Emma Chabani, Philippe Giraudeau. Towards a Passive BCI to Induce Lucid Dream. Journée Jeunes Chercheurs en Interfaces Cerveau-Ordinateur et Neurofeedback 2019 (JJC- ICON ’19), Mar 2019, Villeneuve d’Ascq, France. hal-02108903 HAL Id: hal-02108903 https://hal.archives-ouvertes.fr/hal-02108903 Submitted on 29 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TOWARDS A PASSIVE BCI TO INDUCE LUCID DREAM JJC-ICON ’19 Morgane Hamon Emma Chabani Philippe Giraudeau Ullo Institut du Cerveau et de la Moelle épinière Inria La Rochelle, France Paris, France Bordeaux, France [email protected] [email protected] [email protected] April 29, 2019 ABSTRACT Lucid dreaming (LD) is a phenomenon during which the person is aware that he/she dreaming and is able to control the dream content. Studies have shown that only 20% of people can experience lucid dreams on a regular basis. However, LD frequency can be increased through induction techniques. External stimulation technique relies on the ability to integrate external information into the dream content.
    [Show full text]
  • A New Biological Definition of Life
    BioMol Concepts 2020; 11: 1–6 Research Article Open Access Victor V. Tetz, George V. Tetz* A new biological definition of life https://doi.org/10.1515/bmc-2020-0001 received August 17, 2019; accepted November 22, 2019. new avenues for drug development and prediction of the results of genetic interventions. Abstract: Here we have proposed a new biological Defining life is important to understand the definition of life based on the function and reproduction development and maintenance of living organisms of existing genes and creation of new ones, which is and to answer questions on the origin of life. Several applicable to both unicellular and multicellular organisms. definitions of the term “life” have been proposed (1-14). First, we coined a new term “genetic information Although many of them are highly controversial, they are metabolism” comprising functioning, reproduction, and predominantly based on important biological properties creation of genes and their distribution among living and of living organisms such as reproduction, metabolism, non-living carriers of genetic information. Encompassing growth, adaptation, stimulus responsiveness, genetic this concept, life is defined as organized matter that information inheritance, evolution, and Darwinian provides genetic information metabolism. Additionally, approach (1-5, 15). we have articulated the general biological function of As suggested by the Nobel Prize-winning physicist, life as Tetz biological law: “General biological function Erwin Schrödinger, in his influential essay What Is of life is to provide genetic information metabolism” and Life ?, the purpose of life relies on creating an entropy, formulated novel definition of life: “Life is an organized and therefore defined living things as not just a “self- matter that provides genetic information metabolism”.
    [Show full text]
  • The Foundations of Socionics ᅢ까タᅡモ a Review
    Available online at www.sciencedirect.com ScienceDirect Cognitive Systems Research 47 (2018) 1–11 www.elsevier.com/locate/cogsys The foundations of socionics – A review Karol Pietrak Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland Received 3 May 2017; received in revised form 22 June 2017; accepted 16 July 2017 Available online 22 July 2017 Abstract This paper discusses the foundations of the theory of socionics, including the rationale behind Ausˇra Augustinavicˇiut e’s_ model of information processing by the human psyche, and the philosophical thought behind the concept of information metabolism elements. Socionics was developed in the former Soviet Union and may be regarded as analogous to the Myers-Briggs Type Indicator typology of personality. The main goal of this paper is to present socionics to the English-speaking community, in order to better take advantage of its explanatory potential in the fields of interpersonal communication and psychological disorders. Reviewed topics include aspects of Jungian analytical psychology and Kezpin´ski’s information metabolism theory, upon which Augustinavicˇiut e_ based her model. After the model is presented, its theoretical implications are briefly discussed. Ó 2017 Elsevier B.V. All rights reserved. Keywords: Cognitive psychology; Biological cybernetics; Socionics; Information metabolism 1. Introduction it is built upon the analysis of interactions between living organisms (especially humans) with their environment. In the 1980s, Lithuanian sociologist Ausˇra Augustinav The work of Augustinavicˇiut e_ is based on the findings of icˇiut e_ wrote several papers collected and published in Freudian psychoanalysis (Freud, 1915, 1920, 1923), Jun- 1998 in a book entitled ‘‘Socionics.
    [Show full text]
  • Obstructive Sleep Apnea in Adults? NORMAL AIRWAY OBSTRUCTED AIRWAY
    American Thoracic Society PATIENT EDUCATION | INFORMATION SERIES What Is Obstructive Sleep Apnea in Adults? NORMAL AIRWAY OBSTRUCTED AIRWAY Obstructive sleep apnea (OSA) is a common problem that affects a person’s breathing during sleep. A person with OSA has times during sleep in which air cannot flow normally into the lungs. The block in CPAP DEVICE airflow (obstruction) is usually caused by the collapse of the soft tissues in the back of the throat (upper airway) and tongue during sleep. Apnea means not breathing. In OSA, you may stop ■■ Gasping breathing for short periods of time. Even when you are or choking trying to breathe, there may be little or no airflow into sounds. the lungs. These pauses in airflow (obstructive apneas) ■■ Breathing pauses observed by someone watching can occur off and on during sleep, and cause you to you sleep. wake up from a sound sleep. Frequent apneas can cause ■■ Sudden or jerky body movements. many problems. With time, if not treated, serious health ■■ Restless tossing and turning. problems may develop. ■■ Frequent awakenings from sleep. OSA is more common in men, women after menopause CLIP AND COPY AND CLIP Common symptoms you may have while awake: and people who are over the age of 65. OSA can also ■■ Wake up feeling like you have not had enough sleep, occur in children. Also see ATS Patient Information Series even after sleeping many hours. fact sheet on OSA in Children. People who are at higher ■■ Morning headache. risk of developing sleep apnea include those with: ■■ Dry or sore throat in the morning from breathing ■■ enlarged tonsils and/or adenoids through your mouth during sleep.
    [Show full text]
  • Constructing Protocells: a Second Origin of Life
    04_SteenRASMUSSEN.qxd:Maqueta.qxd 4/6/12 11:45 Página 585 Session I: The Physical Mind CONSTRUCTING PROTOCELLS: A SECOND ORIGIN OF LIFE STEEN RASMUSSEN Center for Fundamental Living Technology (FLinT) Santa Fe Institute, New Mexico USA ANDERS ALBERTSEN, PERNILLE LYKKE PEDERSEN, CARSTEN SVANEBORG Center for Fundamental Living Technology (FLinT) ABSTRACT: What is life? How does nonliving materials become alive? How did the first living cells emerge on Earth? How can artificial living processes be useful for technology? These are the kinds of questions we seek to address by assembling minimal living systems from scratch. INTRODUCTION To create living materials from nonliving materials, we first need to understand what life is. Today life is believed to be a physical process, where the properties of life emerge from the dynamics of material interactions. This has not always been the assumption, as living matter at least since the origin of Hindu medicine some 5000 years ago, was believed to have a metaphysical vital force. Von Neumann, the inventor of the modern computer, realized that if life is a physical process it should be possible to implement life in other media than biochemistry. In the 1950s, he was one of the first to propose the possibilities of implementing living processes in computers and robots. This perspective, while being controversial, is gaining momentum in many scientific communities. There is not a generally agreed upon definition of life within the scientific community, as there is a grey zone of interesting processes between nonliving and living matter. Our work on assembling minimal physicochemical life is based on three criteria, which most biological life forms satisfy.
    [Show full text]
  • Thermodynamics of Irreversible Processes. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes
    DOCUMENT RESUME ED 195 434 SE 033 595 AUTHOR Levin, Michael: Gallucci, V. F. TITLE Thermodynamics of Irreversible Processes. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes. TNSTITUTION Washington Univ., Seattle. Center for Quantitative Science in Forestry, Fisheries and Wildlife. SPONS AGENCY National Science Foundation, Washington, D.C. PUB DATE Oct 79 GRANT NSF-GZ-2980: NSF-SED74-17696 NOTE 87p.: For related documents, see SE 033 581-597. EDFS PRICE MF01/PC04 Plus Postage. DESCRIPTORS *Biology: College Science: Computer Assisted Instruction: Computer Programs: Ecology; Energy: Environmental Education: Evolution; Higher Education: Instructional Materials: *Interdisciplinary Approach; *Mathematical Applications: Physical Sciences; Science Education: Science Instruction; *Thermodynamics ABSTRACT These materials were designed to be used by life science students for instruction in the application of physical theory tc ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes the application of irreversible thermodynamics to biology. It begins with explanations of basic concepts such as energy, enthalpy, entropy, and thermodynamic processes and variables. The First Principle of Thermodynamics is reviewed and an extensive treatment of the Second Principle of Thermodynamics is used to demonstrate the basic differences between reversible and irreversible processes. A set of theoretical and philosophical questions is discussed. This last section uses irreversible thermodynamics in exploring a scientific definition of life, as well as for the study of evolution and the origin of life. The reader is assumed to be familiar with elementary classical thermodynamics and differential calculus. Examples and problems throughout the module illustrate applications to the biosciences.
    [Show full text]
  • Biology Track
    Degree Plan for Biology (B.S.) 3+3 Leading to Pharm.D. Fall Spring First Year UNV101: University Seminar I (3 credits) & X FYT100: First Year Transitions (1 credit) BIO111: General Biology I & Lab (4 credits) X CHM113: General Chemistry I & Lab (4 credits) X MTH191: Applied Calculus (3 credits) X UNV102: University Seminar II (3 credits) X BIO112: General Biology II & Lab (4 credits) X CHM114: General Chemistry II & Lab (4 credits) X STA173: Statistical Methods (3 credits) X ECN101: Introductory Macroeconomics (3 credits) X Second Year RTS225: Quest for the Ultimate (3 credits) or X X PHL225: Quest for the Good Life (3 credits) (one each semester) BIO220: Cell Biology and Chemistry & Lab (4 credits) X CHM205: Organic Chemistry I & Lab (4 credits) X Literature Core Course (3 credits) X Foreign Language Core Course (3 credits) X X CHM206: Organic Chemistry II & Lab (4 credits) X BIO253: Genetics: Classical, Molecular and Population (4 credits) X Visual & Performing Arts Core Course (3 credits) X Third Year BIO210: Microbiology (4 credits) X BIO305: Human Anatomy (4 credits) X PHY201: General Physics I & Lab (4 credits) X History Core Course (3 credits) X Religious & Theological Studies Core Course (3 credits) X BIO471: Biology Capstone (3 credits) X BIO325: Human Physiology (4 credits) X PHY202: General Physics II & Lab (4 credits) X Social Science Core Course (3 credits) X Philosophy Core Course (3 Credits) X Fourth Year at University of Saint Joseph PHCY701: Introduction to the Profession of Pharmacy (2 credits) PHCY704: Pharmaceutical
    [Show full text]
  • Sleep Self-Care
    University of California, Berkeley 2222 Bancroft Way Berkeley, CA 94720 SLEEP SELF-CARE All of us have trouble sleeping from time to time. This is perfectly normal. Sleep problems (also known as insomnia) are often triggered by sudden life changes that lead to increased stress. For instance, following the death of a loved one, a car accident or a promotion to a new job, many people experience difficulties getting a good night’s sleep. This normal response to stress usually lasts for a short time, rarely longer than a week or two. However, some people have chronic problems sleeping which do not seem to go away. If you are one of these people, or you are having temporary insomnia, this Self-Care Guide should help. It will give you some general information about sleep, as well as provide a number of helpful suggestions to aid those with sleep problems. Read it carefully, as many common sleep problems are caused by one’s own habits, and by adopting some of the following sleep-promoting behaviors, most people can get a good night’s rest without the aid of drugs. Taking sleeping pills is not the answer! For people whose only complaint is I can’t sleep well or I can’t get to sleep easily, taking sleeping pills may do more harm than good. Most authorities recommend against the regular use of sedative drugs (like Valium, Dalmane, Librium and barbiturates) for the following reasons: ! Sedatives change nervous system activities during sleep; for example, they may reduce the normal periods of dreaming.
    [Show full text]
  • Brain Computer Interface for Sleep Apnea Detection
    Special Issue - 2020 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 NCAIT - 2020 Conference Proceedings Brain Computer Interface for Sleep Apnea Detection Poorvitha H R1, Aishwarya K Gowda2, Kavya K B2, Nayana R2 Vivekananda Institute of Technology Gudimavu, Kumbalagodu Post, Kengeri Hobli, Bengaluru – 560 074 Abstract - A brain-computer interface (BCI) is the varied phases of sleep and may be a crucial step in a interface method that someone to deliver instructions and shot to assist doctor within the designation and medical messages to a automated gadget, via way of means of care of connected sleep obstruction. using person mind activity. An electroencephalogram (EEG), mounted BCI became related with a synthetic gadget to command a home automation application. It provides an alternative to built-in interface and control. It is a digital surroundings shape that enters the body’s everyday prepared pathways, which might be neuromuscular output passage. Sleep apnea is personification of sickness which occurs during sleep, which impacts the human fitness via way of means of blockage in respiratory for positive period of time. The prognosis is critical that's viable via way of means of the perceiving of apnea episodes the use of electroencephalogram (EEG) reports. EEG is an adjustable decomposition for the identifying of apnea events using EEG signals. EEG plays an essential role in identifying the sleep apnea by recognizing and producing the brain neurons activities. The EEG sign dataset is filtered, the purified EEG sign is subjected for sub-band separation and 5 frequency bands inclusive of Gamma, Beta, Alpha, Theta, and Delta.
    [Show full text]