Zoogeography of Cetaceans Off Puerto Rico and the Virgin Islands

Total Page:16

File Type:pdf, Size:1020Kb

Zoogeography of Cetaceans Off Puerto Rico and the Virgin Islands Caribbean Journal of Science, Vol. 34, No. 3-4, 173-190, 1998 Copyright 1998 College of Arts and Sciences University of Puerto Rico, Mayagüez Zoogeography of Cetaceans off Puerto Rico and the Virgin Islands ANTONIO A. MIGNUCCI-GIANNONI Department of Marine Affairs, The University of Rhode Island, Washburn Hall, Kingston, Rhode Island 02881 Present address: Red Caribeña de Varamientos • Caribbean Stranding Network, PO Box 361715, San Juan, Puerto Rico 00936-1715 [email protected]. ABSTRACT.—A zoogeographical analysis of cetaceans in the waters of Puerto Rico, US Virgin Islands, and British Virgin Islands was conducted to document the different species found, and to relate their occurrences to patterns of ocean floor topography. A total of 2,016 sighting records was entered into a specially formatted database system, and analyzed for distributional and temporal patterns. Species included 13 odontocetes and four mysticetes. The hypothesis that the spatial distribution of cetaceans is highly correlated to the area’s bathymetric relief, whether high or low, was generally supported. Through the use of a relative slope index measure, each sighting was characterized by depth classes (shelf, shelf edge, or offshore), and by sea floor relief. RESUMEN.—Para documentar la presencia de las distintas especies de cetáceos y relacionar la misma con patrones de topografía del fondo marino, se llevó a cabo un análisis zoogeográfico de los cetáceos de Puerto Rico, Islas Vírgenes Estadounidenses e Islas Vírgenes Británicas. Un total de 2,016 avistamientos fueron ano- tados en una base de datos con formato específico para avistamientos, y los datos fueron analizados en bus- queda de patrones de distribución espacial y temporal. Las especies estudiadas incluyeron 13 odontocetos y cuatro misticetos. La hipótesis de que la distribución espacial de los cetáceos está estrechamente relacionada con el relieve batimétrico del área, ya sea alto o bajo, fue apoyada generalmente. A través de una medida de índice de pendiente relativa, cada avistamiento fue caracterizado por categoría de profundidad (de plata- forma, borde de plataforma o mar afuera) y por relieve del fondo marino. INTRODUCTION 1935), including water temperature, bottom depth, tidal flow, currents, areas of Whales and dolphins are an intricate part upwelling or areas of convergence and of the marine and coastal fauna of the divergence, prey movements or concentra- northeastern Caribbean Sea, with some of tions, and sea floor relief. Of these condi- the islands serving as primary habitat for tions, water temperature seems to be the the mating and calving of endangered spe- most important factor in determining cies. Although the presence of these crea- breeding and calving grounds, at least in tures has been documented (Erdman, 1970; large whales (Gaskin, 1982). In contrast, Erdman et al., 1973; Taruski and Winn, whale and dolphin congregations in high 1976; Mattila and Clapham, 1989), there is latitude feeding grounds appear to be more still a lack of information on the basic biol- related to phenomena such as ocean fronts, ogy, life history and distribution of the spe- eddies and areas of upwelling which con- cies in the northeastern Caribbean. Two centrate prey. These three features can be of basic questions remain: where and when either of a dynamic or topographic nature, are each of the cetacean species found, and with the latter highly induced by surface which factors affect their distribution in the land masses or underwater sea floor relief northeastern Caribbean. (i.e. sea mounts, subsurface ridges and Cetacean distribution may be deter- edges of the continental shelf) (Gaskin, mined by factors which enhance the avail- 1982). ability of food and the suitable conditions There is a direct relationship between required for reproduction (Townsend, cetacean distribution and bottom topogra- 173 174 A. A. MIGNUCCI-GIANNONI phy in some areas (Hui, 1985; Kenney and between 1987 and 1989, 18 fishing villages Winn, 1987; Selzer and Payne, 1988). In were visited throughout Puerto Rico, and many instances, sea floor contour appears locals were interviewed on the occurrence to be the limiting factor affecting species of all species of marine mammals in the aggregations (Gaskin, 1971). Probably as area. State and federal government officials bottom topography increases in complex- and previous researchers (H. E. Winn, D. K. ity, so does the complexity of the total Mattila, J. C. Jiménez and D. S. Erdman) aquatic environment (Hui, 1979). This com- were also interviewed, and their marine plexity is characterized by seasonal areas of mammal data files kindly made available upwelling, bringing high levels of nutrients for analysis. which enhance primary productivity, and By its nature, most of the data presented therefore facilitating the build up of pri- here are non-random and biased in a vari- mary and secondary consumers such as ety of ways, mainly by observational zooplankton, cephalopods and fish (Hui, chance and effort. The location of some of 1979; Gaskin, 1982). Consequently, oppor- the occurrences may relate more to the dis- tunistic apex predators such as whales and tribution of human populations or activi- dolphins appear. The assumption that com- ties, and not necessarily to the distribution plex sea floor relief enhances food avail- of the animals. Therefore, conclusions ability has been well documented in the based on the statistical analysis must be western North Atlantic, especially for the treated with caution. However, since this is area off the northeastern coast of the the only available information, it serves as United States (Kenney, 1984; Kenney and a general overview of expected patterns of Winn, 1986; Hain et al., 1985), where most aggregation, spatial distribution, and sea- large species of cetaceans migrate to feed. sonality of the species. Only Wells et al. (1980), Dorf (1982) and A database management system was Baumgartner (1997), have examined under- established to file sighting records for each water topography as a factor affecting ceta- species in the study area. Opportunistic cean distribution in tropical or subtropical sightings were included after they proved areas of the western North Atlantic. Rela- to be reliable in terms of species identifica- tionships between underwater topography tion, date, and event location. A serial num- and areas of breeding and calving have not ber (NEPSGXXXX) and a quadrant number been analyzed. were assigned to each sighting in the data- The waters of the northeastern Carib- base. bean are feeding grounds for some species, The study area included the insular shelf and reproductive grounds for others at dif- waters of Puerto Rico, the US Virgin ferent times of the year. Some species do Islands, and the British Virgin Islands (Fig. not migrate, utilizing these waters for feed- 1). The area was partitioned into 864 quad- ing and reproduction throughout the year. rants, each measuring five minutes of lati- Given the presence of whales and dolphins tude by five minutes of longitude, and with off Puerto Rico and the Virgin Islands, it is an area of approximately 68 km2. The hypothesized that their spatial distribution bathymetry of the study area was analyzed is correlated with the area’s bottom topog- by calculating a Slope Index (SI) for each raphy. Some cetaceans are expected to be quadrant, following Kenney’s (1984) tech- distributed in relation to areas of high sea nique for measuring absolute bottom slope, floor relief, while in other species the factor and adapted from Evans’ (1975) Depth affecting distribution may be a low-com- Index (DI) and Hui’s (1979; 1985) Contour plexity level in bottom topography. Index (CI) formulas. These formulas char- acterize sea floor relief as a percentage of maximum depth change for a given section MATERIALS AND METHODS of the study area. Evans’ DI and Hui’s CI Sighting data were obtained from pub- measure this change as a percentage of the lished and unpublished records collected in maximum depth in that section, while the the study area up to 1989. In 1985, and SI developed by Kenney (1984) incorpo- CETACEAN ZOOGEOGRAPHY 175 N 025 British Virgin Islands Nautical Miles Atlantic Ocean Camuy Toa Baja Loíza Jost van Dyke Aguadilla Arecibo Anegada Dorado San Juan Luquillo Isla de Tortola Culebra Fajardo Isla Desecheo Virgin Gorda Ceiba Rincón Puerto Rico St. Thomas Mayagüez St. John Humacao 18 00'N Isla de ° Cabo Rojo Isla de Vieques Mona Arroyo US Virgin Islands La Parguera Ponce Salinas Guánica Caribbean Sea St. Croix Guayanilla Bahía de Jobos 67°30'W 67°00'W 66°30'W 66°00'W65°30'W 65°00'W 64°30'W FIG. 1. Study area and localities referred to in the text. rates into a single number the slope of a chi-square (c2) one-sample test of inde- specific quadrant as a percentage of change pendence (as in Evans, 1975; Hui, 1979; of the bottom topography to the whole Selzer and Payne, 1988). The null hypothe- study area. The SI appears as a dimension- sis (Ho) was: the spatial distribution, repre- less formula defined as: sented by the location of sightings of a given species of cetacean in the study area, æöMm– is random and proportional to the number SI= 100 ---------------- of quadrants in each SI class. The expected èøMsa frequency of sightings in SI class i (Ei) was where M and m is the maximum and mini- calculated following Evans (1975), and mum depth, respectively, within each quad- defined as: rant, and M is the maximum depth in the sa L entire study area (6,373 m). Quadrants which E = O æö-----i i tèø border the shoreline were assigned a mini- Lt mum depth of 1.0 m. Strandings and mortal- where O is the total number of sighting ity records were not included in the spatial t occurrences for a species in the study area, distribution analysis because it is impossible L is the number of quadrants in SI class i, to determine the origin of the animals.
Recommended publications
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • Beaked Whale Strandings and Naval Exercises Angela D’Amico,1 Robert C
    Aquatic Mammals 2009, 35(4), 452-472, DOI 10.1578/AM.35.4.2009.452 Beaked Whale Strandings and Naval Exercises Angela D’Amico,1 Robert C. Gisiner,2 Darlene R. Ketten,3, 4 Jennifer A. Hammock,5 Chip Johnson,1 Peter L. Tyack,3 and James Mead6 1Space and Naval Warfare Systems Center Pacific, 53560 Hull Street, San Diego, CA 92152-5001, USA; E-mail: [email protected] 2Office of Naval Research, P.O. Box 3122, Arlington, VA 22203, USA 3Woods Hole Oceanographic Institution, Biology Department, 266 Woods Hole Road, Woods Hole, MA 02543-1049, USA 4Harvard Medical School, Department of Otology and Laryngology, 243 Charles Street, Boston, MA 02114, USA 5Smithsonian Institution, P.O. Box 37012, MCR 163, Washington, DC 20013-7012, USA 6National Museum of Natural History, 10th and Constitution Avenue, NW, Washington, DC 20560, USA Current Address: Marine Mammal Commission, 430 East-West Highway, Room 700, Bethesda, MD 20814, USA (RCG) Abstract Key Words: stranding event, mass stranding event, mid-frequency active sonar, MFAS, beaked Mass strandings of beaked whales (family whale, Navy sonar, Ziphiidae Ziphiidae) have been reported in the scientific liter- ature since 1874. Several recent mass strandings of Introduction beaked whales have been reported to coincide with naval active sonar exercises. To obtain the broad- Several articles have suggested that naval sur- est assessment of surface ship naval active sonar face ship’s use of mid-frequency active sonar operations coinciding with beaked whale mass (MFAS) cause mass strandings of beaked whales strandings, a list of global naval training and anti- (family Ziphiidae) (Frantzis, 1998, 2004; Evans submarine warfare exercises was compiled from & England, 2001; Martín Martel, 2002; Brownell openly available sources and compared by location et al., 2004; Freitas, 2004; Martín et al., 2004).
    [Show full text]
  • Melville's Copy of Thomas Beale's the Natural History of the Sperm
    Melville’s copy of Thomas Beale’s "The natural history of the sperm whale and the composition of Moby-Dick" The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Olsen-Smith, Steven. 2011. Melville’s copy of Thomas Beale’s "The natural history of the sperm whale and the composition of Moby- Dick". Harvard Library Bulletin 21 (3): 1-78. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37363364 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Melville’s Copy of Tomas Beale’s Te Natural History of the Sperm Whale and the Composition of Moby-Dick Steven Olsen-Smith erman Melville’s copy of Thomas Beale’s Te Natural History of the Sperm Whale, discovered in the 1930s and then owned by successive Hprivate collectors until Houghton Library acquired it in 1960, contains the closest evidence available to the lost manuscript of Moby-Dick and illuminates more fully than any other archival resource Melville’s use of source materials in his writing. Howard P. Vincent frst consulted Melville’s copy for Te Trying-out of Moby-Dick (1949), where he observed that most of Melville’s marginalia had been erased from the book. Judging “not many words were erased,” Vincent expressed hope for “a future examination of the markings under infra-red rays.”1 But in Melville’s Marginalia, Walker Cowen deciphered many of Melville’s erased markings without technical assistance, and although he did not recover many of Melville’s erased words, Cowen showed that the book had once been heavily annotated.2 With fnancial support from the William Reese Company and Boise State University, technical assistance at the Fogg Art Museum, and support from staf at Houghton Library, I worked collaboratively with Dennis C.
    [Show full text]
  • Physeter Macrocephalus – Sperm Whale
    Physeter macrocephalus – Sperm Whale Assessment Rationale Although the population is recovering, commercial whaling in the Antarctic within the last three generations (82 years) reduced the global abundance of species significantly. As commercial whaling has ceased, the species is evaluated under the A1 criterion. Model results revealed a 6% probability for Endangered, a 54% probability of Vulnerable, and a 40% probability of Near Threatened. Thus, the species is listed as Vulnerable A1d based on historical decline in line with the global assessment. Circumpolar surveys estimate around 8,300 mature males, which is extrapolated to around 40,000 Peter Allinson individuals in total. Within the assessment region, the historical depletion may have created a skewed sex ratio, which may make this species more vulnerable to minor Regional Red List status (2016) Vulnerable A1d* threats. For example, systematic surveys from the National Red List status (2004) Vulnerable A2bd Antarctic showed no significant population increase between 1978 and 1992. Recent modelling results Reasons for change No change corroborate the Sperm Whale’s slow recovery rate, where Global Red List status (2008) Vulnerable A1d a small decrease in adult female survivorship could lead to a declining population. Ongoing loss of mature individuals TOPS listing (NEMBA) (2007) None from entanglement in fishing nets and plastic ingestion CITES listing (1981) Appendix I could be hindering population recovery in certain areas. Furthermore, marine noise pollution may be an emerging
    [Show full text]
  • Acarology, the Study of Ticks and Mites
    Acarology, the study of ticks and mites Ecophysiology, the study of the interrelationship between Actinobiology, the study of the effects of radiation upon an organism's physical functioning and its environment living organisms Edaphology, a branch of soil science that studies the Actinology, the study of the effect of light on chemicals influence of soil on life Aerobiology, a branch of biology that studies organic Electrophysiology, the study of the relationship between particles that are transported by the air electric phenomena and bodily processes Aerology, the study of the atmosphere Embryology, the study of embryos Aetiology, the medical study of the causation of disease Entomology, the study of insects Agrobiology, the study of plant nutrition and growth in Enzymology, the study of enzymes relation to soil Epidemiology, the study of the origin and spread of Agrology, the branch of soil science dealing with the diseases production of crops. Ethology, the study of animal behavior Agrostology, the study of grasses Exobiology, the study of life in outer space Algology, the study of algae Exogeology, the study of geology of celestial bodies Allergology, the study of the causes and treatment of Felinology, the study of cats allergies Fetology, the study of the fetus Andrology, the study of male health Formicology, the study of ants Anesthesiology, the study of anesthesia and anesthetics Gastrology or Gastroenterology, the study of the Angiology, the study of the anatomy of blood and lymph stomach and intestines vascular systems Gemology,
    [Show full text]
  • “DOES the WHALE's MAGNITUDE DIMINISH?” MELVILLE's USE of THOMAS BEALE's the NATURAL HISTORY of the SPERM WHALE a Thes
    “DOES THE WHALE’S MAGNITUDE DIMINISH?” MELVILLE’S USE OF THOMAS BEALE’S THE NATURAL HISTORY OF THE SPERM WHALE A Thesis by CHRISTOPHER MORRISON SHORE Submitted to the Graduate School Appalachian State University In partial fulfillment of the requirements for the degree of MASTER OF ARTS May 2012 Department of English ! ! “DOES THE WHALE’S MAGNITUDE DIMINISH?” MELVILLE’S USE OF THOMAS BEALE’S THE NATURAL HISTORY OF THE SPERM WHALE A Thesis by CHRISTOPHER MORRISON SHORE May 2012 APPROVED BY: ____________________________________________ Dr. Grace McEntee Chairperson, Thesis Committee ____________________________________________ Dr. Lynn Searfoss Member, Thesis Committee ____________________________________________ Dr. Tammy Wahpeconiah Member, Thesis Committee ____________________________________________ Dr. James Fogelquist Chairperson, Department of English ____________________________________________ Dr. Edelma Huntley Dean, Research and Graduate Studies ! ! Copyright by Christopher M. Shore 2012 All Rights Reserved ! ! ABSTRACT “DOES THE WHALE’S MAGNITUDE DIMINISH?” MELVILLE’S USE OF THOMAS BEALE’S THE NATURAL HISTORY OF THE SPERM WHALE. (May 2012) Christopher M. Shore, B.A., Wingate University M.A., Appalachian State University Chairperson: Dr. Grace McEntee The cetology, or science of whales, in Herman Melville’s Moby Dick is often an impediment for readers. However, these chapters contribute greatly to the narrative elements of the novel. One source extensively used by Melville for this information was Thomas Beale’s The Natural History of the Sperm Whale. The role of Beale’s work in Melville’s novel appears limited to scientific information, but Beale’s text was used to enhance thematic elements as well. By examining how Melville uses Beale’s information in specific sections, such as Chapter 32, “Cetology,” and in other areas focused on thematic metaphors such as Chapter 80, “The Nut,” it becomes clear Melville relied on Beale for more than scientific research.
    [Show full text]
  • Liberating Primatology
    J Biosci Vol. 43, No. 1, March 2018, pp. 3–8 Ó Indian Academy of Sciences DOI: 10.1007/s12038-017-9724-3 Commentary Liberating primatology Published online: 5 January 2018 The study of nonhuman primates developed separately from that of other organisms. –Alison Richard, 1981 Among the many zoologies that have emerged over the last hundred years or so, primatology is astonishing in its reach and breadth of influence on other sciences and people’s thoughts. It is noteworthy for the cultural imprint it carries and the forceful reactions its practice engenders. Primatology is also a contested site for various disciplines and epistemologies. In addition, the field is remarkably place-specific in ways that are often unnoticed. We argue that a mainstream recognition of primatology’s diversity and the various ways in which culture impacts the practice of this science can help to liberate the field from attempts to impose particular methodologies, outlooks and theoretical frameworks on the discipline, and enable the field to make even greater contributions to human understanding. Primatology, or the study of nonhuman primates, occupies a unique place among the biological sciences. ‘A half-breed discipline’ as Whitten (1988) so aptly put it, it gathers within its fold a number of areas of study (ranging from morphology and molecular biology to behavioural psychology and animal studies) that spill over disciplinary boundaries in the approaches and techniques they employ. For example, studies on primate cognition and social behaviour routinely borrow theoretical paradigms from social psychology, research on monkey epidemiology is largely fuelled by human health con- cerns, and investigations into human–primate conflict interactions wield ethnography as a tool that permits a more in-depth understanding of the interface.
    [Show full text]
  • Sperm Whale Surface Activity from Tracking by Radio and Satellite Tags1 Williama
    MARINE MAMMAL SCIENCE, 15(4):1158-1180 (October 1999) 0 1999 by the Society for Marine Mammalogy SPERM WHALE SURFACE ACTIVITY FROM TRACKING BY RADIO AND SATELLITE TAGS1 WILLIAMA. WATKINS MARYANN DAHER NANCYA. DIMARZIO Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, U.S.A. E-mail: [email protected] AMYSAMUELS Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, U.S.A. and Donald F. and Ada L. Rice Conservation Biology and Research, Chicago Zoological Society, Brookfield, Illinois 605 13, U.S.A. DOUGLASWARTZOK University of Missouri-St. Louis, St. Louis, Missouri 63121, U.S.A. KURTM. FRISTRUP Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, U.S.A. and Bioacoustics, Cornell University, Ithaca, New York 14850, U.S.A. DAMONP. GANNON Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, U.S.A. PAUL w. HOWEY Microwave Telemetry Inc., Columbia, Maryland 21046, U.S.A. ROMAINER. MAIEFSKJ Maiefski, Engineering Consultant, 312 Hollins, Oceanside, California 92056, U.S.A. Kenneth S. Norris recognized the potential of telemetry and tags to provide vastly improved understanding of the way marine mammals make a living. Many hours of discussion with Ken were spent working through details of new technologies that might allow better views of be- havior underwater. He was always searching for improved ways to assess the activities of marine mammals-this concern was evident even in his early writing (e.g., Norris, Evans and Ray 1974). Ken was pleased with the developing tag designs and was insistent rhat sperm whales be the subject of intense study, so that our ideas will no longer “rest upon shaky ground,” he said.
    [Show full text]
  • Artisanal Whaling in the Atlantic: a Comparative Study of Culture, Conflict, and Conservation in St
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2010 Artisanal whaling in the Atlantic: a comparative study of culture, conflict, and conservation in St. Vincent and the Faroe Islands Russell Fielding Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Social and Behavioral Sciences Commons Recommended Citation Fielding, Russell, "Artisanal whaling in the Atlantic: a comparative study of culture, conflict, and conservation in St. Vincent and the Faroe Islands" (2010). LSU Doctoral Dissertations. 368. https://digitalcommons.lsu.edu/gradschool_dissertations/368 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ARTISANAL WHALING IN THE ATLANTIC: A COMPARATIVE STUDY OF CULTURE, CONFLICT, AND CONSERVATION IN ST. VINCENT AND THE FAROE ISLANDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geography and Anthropology Russell Fielding B.S., University of Florida, 2000 M.A., University of Montana, 2005 December, 2010 Dedicated to my mother, who first took me to the sea and taught me to explore. ii ACKNOWLEDGEMENTS This dissertation has benefitted from the assistance, advice, inspiration, and effort of many people. Kent Mathewson, my advisor and major professor, provided the kind of leadership and direction under which I work best, offering guidance when necessary and allowing me to chart my own course when I was able.
    [Show full text]
  • Movements and Dive Behaviour of a Toothfish-Depredating Killer And
    Downloaded from https://academic.oup.com/icesjms/advance-article-abstract/doi/10.1093/icesjms/fsy118/5103434 by Deakin University user on 20 September 2018 ICES Journal of Marine Science (2018), doi:10.1093/icesjms/fsy118 Movements and dive behaviour of a toothfish-depredating killer and sperm whale Jared R. Towers1*,‡, Paul Tixier2, Katherine A. Ross3,‡, John Bennett4, John P. Y. Arnould2, Robert L. Pitman5, and John W. Durban5 1Bay Cetology, Box 554, Alert Bay, BC V0N 1A0, Canada 2School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia 3Falklands Conservation, Stanley, Falkland Islands 4Sanford Seafood, Hall Street, North Mole, Timaru 7910, New Zealand 5Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA *Corresponding author: tel: þ1 250 902 1779; e-mail: [email protected]. Towers, J. R., Tixier, P., Ross, K. A., Bennett, J., Arnould, J. P. Y., Pitman, R. L., and Durban, J. W. Movements and dive behaviour of a toothfish-depredating killer and sperm whale. – ICES Journal of Marine Science, doi:10.1093/icesjms/fsy118. Received 15 May 2018; revised 24 July 2018; accepted 8 August 2018. Depredation of demersal longlines by killer and sperm whales is a widespread behaviour that impacts fisheries and whale populations. To bet- ter understand how depredating whales behave in response to fishing activity, we deployed satellite-linked location and dive-profile tags on a sperm and killer whale that were depredating Patagonian toothfish from commercial longlines off South Georgia. The sperm and killer whale followed one fishing vessel for >180 km and >300 km and repeatedly depredated when longlines were being retrieved over periods of 6 and 7 d, respectively.
    [Show full text]
  • The Role of Cetaceans in the Shelf-Edge Region of the Northeastern United States
    The Role of Cetaceans in the Shelf-Edge Region of the Northeastern United States JAMES H. W. HAIN, MARTIN A. M. HYMAN, ROBERT D. KENNEY, and HOWARD E. WINN Introduction ploration and development added to from Cape Hatteras, N.C., and the present fishing and shipping ac­ from the center of the Northeast Man has been, and continues to tivities, this role may be on the in­ Channel at the eastern tip of be, a part of the ecosystem along the crease. After 3 years of field studies, Georges Bank (Fig. 1). This region outer margin of the outer continen­ the role of another group of apex straddles the shelf break (200 m tal shelf (OCS). With oil and gas ex- predators, marine mammals, can be depth contour), is about 40 km (21.6 characterized. These findings have n.mi.) wide, and includes about application to decisions about 62,100 km 2 (18,100 n.mi. 2). The authors are with the Graduate School of resource utilization, habitat use, This paper summarizes aspects of Oceanography, University of Rhode Island, and the impacts of offshore ac­ the findings from a large and Kingston, RI 02881; the present address of tivities. multifaceted study. Details on J. H. W. Hain is Associated Scientists at Woods Hole, Box 721, Woods Hole, MA 02543. Views In this study, the shelf-edge sampling and data collection not in­ or opinions expressed or implied are those of the region was defined as bounded by cluded here are given in the final authors and do not necessarily reneet the posi­ tion of the National Marine Fisheries Service, the 91 and 2,000 m depth contours, report of the Cetacean and Turtle NOAA.
    [Show full text]
  • Outline of Natural Science
    Outline of natural science The following outline is provided as an overview of and study biological phenomena (organic chemistry, for topical guide to natural science: example). Natural science – a major branch of science that tries to explain, and predict, nature’s phenomena based on 2.1.1 Physics empirical evidence. In natural science, hypothesis must be verified scientifically to be regarded as scientific the- • • Physics – physical science that studies matter ory. Validity, accuracy, and social mechanisms ensur- and its motion through space-time, and related ing quality control, such as peer review and repeatabil- concepts such as energy and force ity of findings, are amongst the criteria and methods used • Acoustics – study of mechanical waves in for this purpose. Natural science can be broken into 2 solids, liquids, and gases (such as vibra- main branches: life science, and physical science. Each tion and sound) of these branches, and all of their sub-branches, are re- • ferred to as natural sciences. Agrophysics – study of physics applied to agroecosystems • Soil physics – study of soil physical 1 What type of thing is natural sci- properties and processes. • Astrophysics – study of the physical as- ence? pects of celestial objects • Astronomy – studies the universe beyond Natural science can be described as all of the following: Earth, including its formation and de- velopment, and the evolution, physics, • Branch of science – systematic enterprise that builds chemistry, meteorology, and motion of and organizes knowledge in the form of testable ex- celestial objects (such as galaxies, plan- planations and predictions about the universe.[1][2][3] ets, etc.) and phenomena that originate outside the atmosphere of Earth (such as • Major category of academic disciplines – an aca- the cosmic background radiation).
    [Show full text]