University of Florida Thesis Or Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation ANT COMMUNITY COMPOSITION AND SEED REMOVAL IN LONGLEAF PINE FORESTS MANAGED WITH FREQUENT FIRE By RACHEL A. ATCHISON A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2020 © 2020 Rachel A. Atchison To Myra Atchison who gave me her love of reading—a necessary precursor to research. ACKNOWLEDGMENTS Thanks to my advisor Dr. Andrea Lucky for advocating for me to me—reminding me of the breadth of my experiences as a scientist, encouraging application to grants that funded my master’s research, and for her flexibility in allowing me to craft the program that would benefit me the most. Thanks to my mentor and committee member Raelene Crandall for the inspiring talks about experimental design and statistics and her overall enthusiasm for my project. This work was supported financially by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138 and and DGE-1842473, and the UF Ordway Swisher Biological Station Jumpstart Award. I am grateful to everyone in the Lucky lab for all their feedback and putting up with (and sometimes even enjoying) my little singing outbursts. Everyone on my field team: Katie, Sara, James, Lexie, and Cassie—thanks for all the dirty, sweaty days in the field and meaningful conversations and singing on the drives to and from the field. Constance and Emily provided much needed sorting assistance. A special thanks goes to Chiappini’s for providing my field team with refreshments and a connection to the Melrose community to share our research with. I thank all the employees at Ordway- Swisher Biological Station for facilitating my research, especially Andy Rappe who helped in site selection, and Lisa Huey who assisted with plot set-up. The Entomology office staff, Nancy, Beth, Laura, Glinda and Linda helped me navigate departmental resources and a mileu of paperwork. I am tremendously appreciative of my kind friends—of which there are too many to list—you have been a great support, offering comradery and solidarity, and reminding me of my strengths when I felt particularly overwhelmed. Finally, I thank my husband Jon for listening to all my complaints and initiating many high-fives. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES .......................................................................................................... 8 LIST OF ABBREVIATIONS ............................................................................................. 9 ABSTRACT ................................................................................................................... 10 CHAPTER 1 MANAGED FIRE FREQUENCY SIGNIFICANTLY INFLUENCES THE LITTER ARTHROPOD COMMUNITY IN LONGLEAF PINE FLATWOODS ........................ 12 Introduction ............................................................................................................. 13 Materials and Methods............................................................................................ 18 Sampling Site ................................................................................................... 19 Treatments ....................................................................................................... 19 Sampling Design .............................................................................................. 21 Statistical Analyses .......................................................................................... 22 Results .................................................................................................................... 23 Burn Frequency Effect on Species Richness ................................................... 24 Burn Frequency Effect on Community Composition ......................................... 25 Native and Exotic Species ................................................................................ 27 Discussion .............................................................................................................. 28 Species Richness and Community Composition .............................................. 29 Exotic Species .................................................................................................. 30 Native Species ................................................................................................. 32 Conclusion ........................................................................................................ 33 2 SEED-REMOVING ANT SPECIES IN LONGLEAF SANDHILL ARE RESILIENT TO FREQUENT FIRE………………………………………………………………….. .. 42 Introduction ............................................................................................................. 43 Materials and Methods............................................................................................ 42 Study Site ......................................................................................................... 46 Experimental Design ........................................................................................ 47 Statistical Analyses .......................................................................................... 51 Results .................................................................................................................... 54 Seed-Removing Species .................................................................................. 54 Community Response to Fire ........................................................................... 56 Seed-Removal Activity ..................................................................................... 57 Discussion .............................................................................................................. 58 5 Seed-Removing Species .................................................................................. 59 Community Response to Fire ........................................................................... 64 Seed-Removal Activity ..................................................................................... 66 Conclusions ...................................................................................................... 67 3 SYNTHESIS ........................................................................................................... 82 APPENDIX A SUPPLEMENTAL TABLES .................................................................................... 83 B SUPPLEMENTAL FIGURES .................................................................................. 84 LIST OF REFERENCES ............................................................................................... 88 BIOGRAPHICAL SKETCH .......................................................................................... 100 6 LIST OF TABLES Table page 1-1 Ant and termite species occurrence in forest plots managed with different burn regimes, out of 30 collections per treatment. .............................................. 36 1-2 Pairwise comparisons of ant species density across fire frequency treatments . 40 2-1 Sampling dates by sampling method .................................................................. 69 2-2 Seed-removers identified in our and other studies ............................................. 70 2-3 Species detection (percent found in out of total sample units) by sampling method ............................................................................................................... 73 2-4 Non-parametric multivariate analysis of variance leaf litter community composition analyses ......................................................................................... 78 2-5 GLM Model Analysis of Deviance: proportion of seed removed ......................... 80 2-6 Non-parametric multivariate analysis of variance analyses of seed-removal trial composition .................................................................................................. 80 A-1 Coarse downed wood (CDW) volume measurements (OSBS study) ................. 83 7 LIST OF FIGURES Figure page 1-1 Sampling site with transect locations. ................................................................. 35 1-2 Sample-based rarefaction across all treatments................................................. 37 1-3 Species rarefaction, richness, and richness estimates by treatment .................. 38 1-4 Fire frequency effect on species density ............................................................ 39 1-5 NMDS of ant community composition ................................................................. 40 1-6 Ten most abundant ant species per treatment ................................................... 41 2-1 Diagram of burn treatment plots at OSBS. ......................................................... 69 2-2 Species accumulation curves by sampling type. ................................................ 72 2-3 Seed-removing ant species: percent seed removed. .......................................... 76 2-4 Species’ contribution to beta diversity ................................................................ 76 2-5 NMDS for litter ant community composition: overall versus seed-removers. ...... 77 2-6 Sampling period effects on species richness and amount of seeds removed .... 79 2-7
Recommended publications
  • Arkansas Academy of Science
    Journal of the CODEN: AKASO ISBN: 0097-4374 ARKANSAS ACADEMY OF SCIENCE VOLUME 61 2007 Library Rate ARKANSAS ACADEMY OF SCIENCE ARKANSAS TECH UNIVERSITY DEPARTMENT OF PHYSICAL SCIENCES 1701 N. BOULDER RUSSELLVILLE. AR 72801-2222 Arkansas Academy ofScience, Dept. of Physical Sciences, Arkansas Tech University PAST PRESIDENTS OF THE ARKANSAS ACADEMY OF SCIENCE Charles Brookover, 1917 C. E. Hoffman, 1959 Paul Sharrah, 1984 Dwight M. Moore, 1932-33, 64 N. D. Buffaloe, 1960 William L. Evans, 1985 Flora Haas, 1934 H. L. Bogan, 1961 Gary Heidt, 1986 H. H. Hyman, 1935 Trumann McEver, 1962 Edmond Bacon, 1987 L. B. Ham, 1936 Robert Shideler, 1963 Gary Tucker, 1988 W. C. Muon, 1937 L. F. Bailey, 1965 David Chittenden, 1989 M. J. McHenry, 1938 James H. Fribourgh, 1966 Richard K. Speairs, Jr. 1990 T. L. Smith, 1939 Howard Moore, 1967 Robert Watson, 1991 P. G. Horton, 1940 John J. Chapman, 1968 Michael W. Rapp, 1992 I. A. Willis, 1941-42 Arthur Fry, 1969 Arthur A. Johnson, 1993 L. B. Roberts, 1943-44 M. L. Lawson, 1970 George Harp, 1994 JeffBanks, 1945 R. T. Kirkwood, 1971 James Peck, 1995 H. L. Winburn, 1946-47 George E. Templeton, 1972 Peggy R. Dorris, 1996 E. A. Provine, 1948 E. B. Wittlake, 1973 Richard Kluender, 1997 G. V. Robinette, 1949 Clark McCarty, 1974 James Daly, 1998 John R. Totter, 1950 Edward Dale, 1975 Rose McConnell, 1999 R. H. Austin, 1951 Joe Guenter, 1976 Mostafa Hemmati, 2000 E. A. Spessard, 1952 Jewel Moore, 1977 Mark Draganjac, 2001 Delbert Swartz, 1953 Joe Nix, 1978 John Rickett, 2002 Z.
    [Show full text]
  • Appendix A. Plant Species Known to Occur at Canaveral National Seashore
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Vegetation Community Monitoring at Canaveral National Seashore, 2009 Natural Resource Data Series NPS/SECN/NRDS—2012/256 ON THE COVER Pitted stripeseed (Piriqueta cistoides ssp. caroliniana) Photograph by Sarah L. Corbett. Vegetation Community Monitoring at Canaveral National Seashore, 2009 Natural Resource Report NPS/SECN/NRDS—2012/256 Michael W. Byrne and Sarah L. Corbett USDI National Park Service Southeast Coast Inventory and Monitoring Network Cumberland Island National Seashore 101 Wheeler Street Saint Marys, Georgia, 31558 and Joseph C. DeVivo USDI National Park Service Southeast Coast Inventory and Monitoring Network University of Georgia 160 Phoenix Road, Phillips Lab Athens, Georgia, 30605 March 2012 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • The Vascular Flora of the Red Hills Forever Wild Tract, Monroe County, Alabama
    The Vascular Flora of the Red Hills Forever Wild Tract, Monroe County, Alabama T. Wayne Barger1* and Brian D. Holt1 1Alabama State Lands Division, Natural Heritage Section, Department of Conservation and Natural Resources, Montgomery, AL 36130 *Correspondence: wayne [email protected] Abstract provides public lands for recreational use along with con- servation of vital habitat. Since its inception, the Forever The Red Hills Forever Wild Tract (RHFWT) is a 1785 ha Wild Program, managed by the Alabama Department of property that was acquired in two purchases by the State of Conservation and Natural Resources (AL-DCNR), has pur- Alabama Forever Wild Program in February and Septem- chased approximately 97 500 ha (241 000 acres) of land for ber 2010. The RHFWT is characterized by undulating general recreation, nature preserves, additions to wildlife terrain with steep slopes, loblolly pine plantations, and management areas and state parks. For each Forever Wild mixed hardwood floodplain forests. The property lies tract purchased, a management plan providing guidelines 125 km southwest of Montgomery, AL and is managed by and recommendations for the tract must be in place within the Alabama Department of Conservation and Natural a year of acquisition. The 1785 ha (4412 acre) Red Hills Resources with an emphasis on recreational use and habi- Forever Wild Tract (RHFWT) was acquired in two sepa- tat management. An intensive floristic study of this area rate purchases in February and September 2010, in part was conducted from January 2011 through June 2015. A to provide protected habitat for the federally listed Red total of 533 taxa (527 species) from 323 genera and 120 Hills Salamander (Phaeognathus hubrichti Highton).
    [Show full text]
  • Floristic Composition of the South-Central Florida Dry Prairie Landscape Steve L
    Floristic Composition of the South-Central Florida Dry Prairie Landscape Steve L. Orzell Avon Park Air Force Range, 29 South Blvd., Avon Park Air Force Range, FL 33825-5700 [email protected] Edwin L. Bridges Botanical and Ecological Consultant, 7752 Holly Tree Place NW, Bremerton, WA 98312-1063 [email protected] ABSTRACT Floristic composition of the Florida dry prairie landscape was compiled from 291 sites in nine south-central peninsular counties. Floristic lists were based upon field inventory and compilation from reliable sources to- taling 11,250 site and community type-specific observations and were analyzed by region (Kissimmee River, Desoto/Glades “Big Prairie,” and Myakka). The known vascular flora consists of 658 vascular plant taxa, rep- resenting 317 genera and 115 families. Families with the highest number of species are Poaceae (103), Asteraceae (78), Cyperaceae (76), Fabaceae (23), Scrophulariaceae (20), and Orchidaceae (18). The most diverse genera are Rhynchospora (29), Dichanthelium (17), Ludwigia (13), Xyris (12), and Andropogon (11). Of this flora 24 taxa are endemic to central or southern peninsular Florida, primarily within the pine savanna- flatwood/dry prairie landscape, and 41 taxa are of Floridian biotic affinity. Although most species are not re- gionally specific, a few (Carphephorus carnosus, Ctenium aromaticum, and Liatris spicata) appear to be ab- sent from the Myakka prairie region, while Marshallia tenuifolia appears to be absent from both the Desoto/ Glades and Myakka prairie regions. Within the dry prairie landscape Hypericum edisonianum is restricted to the Desoto/Glades region. A few other species somewhat differentiate between prairie regions; however, most occur in other habitats in the counties where they are absent or nearly absent from dry prairie.
    [Show full text]
  • Phytochemical and Pharmacological Potential of Crotalaria L. – a Review
    Phytochemical and Pharmacological Potential of Crotalaria L. – A Review By Sumayea Kabir Saba ID: 13146068 A thesis submitted to the Department of Pharmacy in partial fulfillment of the requirements for the degree of Bachelor of Pharmacy (Hons) Department of Pharmacy Brac University May 2019 © 2019.Brac University All rights reserved. ii Declaration It is hereby declared that 1. The thesis submitted is my own original work while completing degree at Brac University. 2. The thesis does not contain material previously published or written by a third party, except where this is appropriately cited through full and accurate referencing. 3. The thesis does not contain material which has been accepted, or submitted, for any other degree or diploma at a university or other institution. 4. I have acknowledged all main sources of help. ______________________ Sumayea Kabir Saba ID: 13146068 ii Approval The thesis/project titled “Phytochemical and Pharmacological Potential of Crotalaria L.- A Review” submitted by Sumayea Kabir Saba (ID-13146068) of Spring, 2019 has been accepted as satisfactory in partial fulfillment of the requirement for the degree of Bachelor of Pharmacy on 29th May 2019 Examining Committee: Supervisor: _______________________________ (Member) Dr. Hasina Yasmin Associate professor, Pharmacy Brac University Program Coordinator: _______________________________ (Member) Dr. Hasina Yasmin Associate professor, Pharmacy Brac University Departmental Head: _______________________________ (Chair) Dr. Eva Rahman Kabir Associate professor, Pharmacy Brac University iii Ethics Statement The study does not involve any kind of animal trial and human trial. iv Abstract Medicinal plants are important source of therapeutic drugs. This review article focused on the Crotalaria genus. The objective of this research was to find out the potential therapeutic activities of some of the important species of Crotalaria genus.
    [Show full text]
  • Body Size, Colony Size, Abundance, and Ecological Impact of Exotic Ants in Florida’S Upland Ecosystems
    Evolutionary Ecology Research, 2007, 9: 757–774 Body size, colony size, abundance, and ecological impact of exotic ants in Florida’s upland ecosystems Joshua R. King1,2* and Sanford D. Porter2 1Entomology and Nematology Department, University of Florida, Gainesville, FL and 2Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL, USA ABSTRACT Questions: Do naturalized exotic ant species have larger colonies and smaller workers relative to co-occurring native species? Do exotic ant species have a negative impact on the co-occurring ant and arthropod fauna in undisturbed native upland ecosystems? Study system: Native and exotic ants sampled from four kinds of native upland ecosystems and one kind of disturbed ecosystem (fields) in north-central Florida. This fauna included a total of 94 species, 13 of which are exotic, from five different ecosystems. Methods: Ants were intensively surveyed using a transect-based sampling design and four sampling methods (pitfalls, litter samples, baits, and hand collecting). We estimated average worker body weight and average colony size for all of the species, together with the relative abundance and species richness of native, exotic, and endemic species within ecosystems. Results: The average body size of exotic ants was not obviously different from that of native species. The average colony size of exotic ants was smaller than that of native species, with the exception of Solenopsis invicta, which had the largest colony size of all species. Introduced ants (including S. invicta) were neither speciose nor abundant in any of the native woodland ecosystems. In contrast, in disturbed sites exotic ants accounted for about 40% of total ant abundance and 25% of species richness.
    [Show full text]
  • Environmental Variables Affecting Ant (Formicidae)
    ENVIRONMENTAL VARIABLES AFFECTING ANT (FORMICIDAE) COMMUNITY COMPOSITION IN MISSISSIPPI’S BLACK BELT AND FLATWOODS REGIONS By JoVonn Grady Hill A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Agricultural Life Sciences with a Concentration in Entomology in the Department of Entomology and Plant Pathology Mississippi State University May 2006 ENVIRONMENTAL VARIABLES AFFECTING ANT (FORMICIDAE) COMMUNITY COMPOSITION IN MISSISSIPPI’S BLACK BELT AND FLATWOODS REGIONS. By JoVonn Grady Hill Approved: Richard L. Brown Keith Summerville Professor of Entomology Assistant Professor of Environmental (Director of Thesis) Science and Policy (Adjunct) Drake University, Des Moines, IA Committee Member ___________________________ C. Evan Peacock Clarence H. Collison Professor of Anthropology Graduate Coordinator (Committee Member) (Committee Member) Vance H. Watson Dean of the College of Agriculture and Life Sciences Name: JoVonn Grady Hill Date of Degree: May 13, 2006 Institution: Mississippi State University Major Field: Entomology Major Professor: Dr. Richard L. Brown Title of Study: ENVIRONMENTAL VARIABLES AFFECTING ANT (FORMICIDAE) COMMUNITY COMPOSITION IN MISSISSIPPI’S BLACK BELT AND FLATWOODS REGIONS Pages in Study: 72 Candidate for Degree of Master of Science The relationship of ant community composition to various habitat characteristics is compared across four habitat types and 12 environmental variables in Mississippi. The four habitat types include pasture, prairie, and oak-hickory forests in the Black Belt and forests in the Flatwoods physiographic region. Ants were sampled using pitfall traps, litter sampling, baiting and hand collecting. A total of 20,916 ants representing 68 species were collected. NMS and ANCOVA both revealed three distinct ant communities (pasture, prairie, and “forests”) based on species composition and mean ant abundance per habitat type between the four habitat types.
    [Show full text]
  • Alan S. Weakley, Derick B. Poindexter, Hannah C. Medford
    STUDIES IN THE VASCULAR FLORA OF THE SOUTHEASTERN UNITED STATES. VII Alan S. Weakley, Derick B. Poindexter, Hannah C. Medford UNC-CH Herbarium (NCU), North Carolina Botanical Garden, University of North Carolina at Chapel Hill Campus Box 3280, Chapel Hill, North Carolina 27599-3280, U.S.A. [email protected], [email protected], [email protected] Alan R. Franck Institute of Environment, Department of Biological Sciences, Florida International University 11200 SW 8th Street, Miami, Florida 33199, U.S.A., [email protected] Keith A. Bradley South Carolina Department of Natural Resources, Heritage Trust Program, 1000 Assembly Street Columbia, South Carolina 29202, U.S.A. and A.C. Moore Herbarium (USCH), University of South Carolina, [email protected] Jimi Sadle Everglades and Dry Tortugas National Parks, 40001 State Road 9336 Homestead, Florida 33034, U.S.A. [email protected] John Michael Kelley 8012 Blanchard Furrh Road, Shreveport, Louisiana 71107, U.S.A. [email protected] ABSTRACT As part of ongoing efforts to understand, document, and conserve the flora of southeastern North America, we propose two new species, the recognition of a usually synonymized variety, the acceptance of two species of Waltheria as being present in peninsular Florida, taxonomic acceptance of a sometimes deprecated species transferred with a new name into a different genus, and we clarify the distribution and ecology of a species. In Carex (Cyperaceae), we re-analyze infrataxa in Carex intumescens and recommend the recognition of two varieties, a taxo- nomic schema first proposed in 1893, but usually not followed in the 128 years since. In Euphorbia (Euphorbiaceae), a careful assessment of south Florida material of Euphorbia subg.
    [Show full text]
  • The Ants of South Carolina Timothy Davis Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 5-2009 The Ants of South Carolina Timothy Davis Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Entomology Commons Recommended Citation Davis, Timothy, "The Ants of South Carolina" (2009). All Dissertations. 331. https://tigerprints.clemson.edu/all_dissertations/331 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE ANTS OF SOUTH CAROLINA A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Entomology by Timothy S. Davis May 2009 Accepted by: Dr. Paul Mackey Horton, Committee Chair Dr. Craig Allen, Co-Committee Chair Dr. Eric Benson Dr. Clyde Gorsuch ABSTRACT The ants of South Carolina were surveyed in the literature, museum, and field collections using pitfall traps. M. R. Smith was the last to survey ants in South Carolina on a statewide basis and published his list in 1934. VanPelt and Gentry conducted a survey of ants at the Savanna River Plant in the 1970’s. This is the first update on the ants of South Carolina since that time. A preliminary list of ants known to occur in South Carolina has been compiled. Ants were recently sampled on a statewide basis using pitfall traps. Two hundred and forty-three (243) transects were placed in 15 different habitat types. A total of 2673 pitfalls traps were examined, 41,414 individual ants were identified.
    [Show full text]
  • Ant Communities of Florida's Upland Ecosystems
    ANT COMMUNITIES OF FLORIDA’S UPLAND ECOSYSTEMS: ECOLOGY AND SAMPLING By JOSHUA R. KING A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2004 Copyright 2004 by Joshua R. King To my wife. Thank you for teaching me what is truly important in life. ACKNOWLEDGMENTS I would like to thank my committee members John Capinera, Mark Deyrup, Robert McSorley, Sanford Porter, and Kenneth Portier for reading the dissertation and providing sound advice on the politics of academia, statistics, publishing, teaching, and the pursuit of biological knowledge. Their contributions have all aided in my development as a scientist, collaborator, and colleague; for that I am grateful. In particular I would like to thank my advisor, Sanford Porter. None of this work could have been accomplished without the support, laboratory space, equipment, and encouragement he provided. I am grateful to Lloyd Davis for teaching me to be a better collector and observer of the natural world. A man who has forgotten more entomology than I will ever know, he has impressed on me that a broad entomological knowledge is the best context within which to build an understanding of ants. I am indebted to Mark Deyrup for showing me that it is possible to know how to identify everything, and that I must not forget that sampling and theory can never replace collecting and natural history. Thanks go to Lloyd Morrison for sharing ideas, insight on being a better scientist, surfing, and Frisbee.
    [Show full text]
  • Journal of the Arkansas Academy of Science
    Journal of the Arkansas Academy of Science Volume 62 Article 1 2008 Journal of the Arkansas Academy of Science - Volume 62 2008 Academy Editors Follow this and additional works at: https://scholarworks.uark.edu/jaas Recommended Citation Editors, Academy (2008) "Journal of the Arkansas Academy of Science - Volume 62 2008," Journal of the Arkansas Academy of Science: Vol. 62 , Article 1. Available at: https://scholarworks.uark.edu/jaas/vol62/iss1/1 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Entire Issue is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 62 [2008], Art. 1 Journal of the CODEN: AKASO ISBN: 0097-4374 ARKANSAS ACADEMY OF SCIENCE VOLUME 62 2008 ARKANSAS ACADEMY OF SCIENCE Library Rate ARKANSAS TECH UNIVERSITY DEPARTMENT OF PHYSICAL SCIENCES 1701 N. BOULDER AVE RUSSELLVILLE, AR 72801-2222 Published by Arkansas Academy of Science, 2008 3 Journal of the Arkansas Academy of Science, Vol. 62 [2008], Art. 1 https://scholarworks.uark.edu/jaas/vol62/iss1/1 4 Journal of the Arkansas Academy of Science, Vol.
    [Show full text]
  • Ant Community Change Across a Ground Vegetation Gradient in North Florida’S Insect Longleaf Pine Flatwoods
    Journal of Lubertazzi D, Tschinkel WR. 2003. Ant community change across a ground vegetation gradient in north Florida’s Insect longleaf pine flatwoods. 17pp. Journal of Insect Science, 3:21, Available online: insectscience.org/3.21 Science insectscience.org Ant community change across a ground vegetation gradient in north Florida’s longleaf pine flatwoods David Lubertazzi1 and Walter R. Tschinkel2 1 Department of Ecology and Evolutionary Biology, The University of Connecticut, Storrs, Connecticut 06269-3043 2 Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4370 [email protected] Received 14 January 2003, Accepted 12 June 2003, Published 24 July 2003 Abstract Ant communities in longleaf pine habitats are poorly known and hence the naturally occurring ant assemblages of a large portion of southeastern North America are not well understood. This study examined the diverse ant community found in the longleaf pine flatwoods of north Florida and tested how ant diversity changes along a herbaceous ground cover gradient. Restoring the ground cover to its original floral composition is an important focus of longleaf pine conservation and hence it is important to understand how native faunal communities vary with ground cover variation. Using 4 sampling methods, we characterized the ant community and analyzed its within- habitat variation among 12 study sites. We found the highest plot species richness (55 species) and within-habitat species richness (72 species) ever recorded for North American ants. The ants formed three distinct communities. The low-diversity arboreal and subterranean assemblages varied little across forest stands while the diversity of the species-rich ground foraging ant community was negatively correlated with percent herbaceous cover.
    [Show full text]