Co-Evolution of Neocortex Size, Group Size and Language in Humans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Memetic Framework for Cooperative Coevolution of Recurrent Neural Networks
Proceedings of International Joint Conference on Neural Networks, San Jose, California, USA, July 31 – August 5, 2011 A Memetic Framework for Cooperative Coevolution of Recurrent Neural Networks Rohitash Chandra, Marcus Frean and Mengjie Zhang Abstract— Memetic algorithms and cooperative coevolution refinement techniques has been a major focus of study in are emerging fields in evolutionary computation which have memetic computation. There is a need to use non-gradient shown to be powerful tools for real-world application problems based local search, especially in problems where gradient- and for training neural networks. Cooperative coevolution decomposes a problem into subcomponents that evolve inde- based approaches fail, as in the case of training recurrent net- pendently. Memetic algorithms provides further enhancement works in problems with long-term dependencies. Crossover- to evolutionary algorithms with local refinement. The use based local search methods are non-gradient based and have of crossover-based local refinement has gained attention in recently gained attention [8], [9]. In crossover based local memetic computing. This paper employs a cooperative coevo- search, efficient crossover operators which have local search lutionary framework that utilises the strength of local refine- ment via crossover. The framework is evaluated by training properties are used for local refinement with a population recurrent neural networks on grammatical inference problems. of a few individuals. They have shown promising results in The results show that the proposed approach can achieve comparison to other evolutionary approaches for problems better performance than the standard cooperative coevolution with high dimensions [9]. framework. Cooperative coevolution (CC) divides a large problem into smaller subcomponents and solves them independently I. -
Biol B242 - Coevolution
BIOL B242 - COEVOLUTION http://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html BIOL B242 - COEVOLUTION So far ... In this course we have mainly discussed evolution within species, and evolution leading to speciation. Evolution by natural selection is caused by the interaction of populations/species with their environments. Today ... However, the environment of a species is always partly biotic. This brings up the possiblity that the "environment" itself may be evolving. Two or more species may in fact coevolve. And coevolution gives rise to some of the most interesting phenomena in nature. What is coevolution? At its most basic, coevolution is defined as evolution in two or more evolutionary entities brought about by reciprocal selective effects between the entities. The term was invented by Paul Ehrlich and Peter Raven in 1964 in a famous article: "Butterflies and plants: a study in coevolution", in which they showed how genera and families of butterflies depended for food on particular phylogenetic groupings of plants. We have already discussed some coevolutionary phenomena: For example, sex and recombination may have evolved because of a coevolutionary arms race between organisms and their parasites; the rate of evolution, and the likelihood of producing resistance to infection (in the hosts) and virulence (in the parasites) is enhanced by sex. We have also discussed sexual selection as a coevolutionary phenomenon between female choice and male secondary sexual traits. In this case, the coevolution is within a single species, but it is a kind of coevolution nonetheless. One of our problem sets involved frequency dependent selection between two types of players in an evolutionary "game". -
Effects of Hierarchical Steepness on Grooming Patterns in Female Tibetan Macaques (Macaca Thibetana)
fevo-09-631417 February 27, 2021 Time: 15:50 # 1 ORIGINAL RESEARCH published: 04 March 2021 doi: 10.3389/fevo.2021.631417 Effects of Hierarchical Steepness on Grooming Patterns in Female Tibetan Macaques (Macaca thibetana) Dong-Po Xia1,2*†, Xi Wang2,3†, Paul A. Garber4,5, Bing-Hua Sun2,3, Lori K. Sheeran6, Lixing Sun7 and Jin-Hua Li2,3* 1 School of Life Sciences, Anhui University, Hefei, China, 2 International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei, China, 3 School of Resources and Environmental Engineering, Anhui University, Hefei, China, 4 Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana–Champaign, Urbana, IL, United States, 5 International Centre of Biodiversity and Primate Conservation, Dali University, Dali, China, 6 Department of Anthropology and Museum Studies, Central Washington Edited by: University, Ellensburg, WA, United States, 7 Department of Biological Sciences, Central Washington University, Ellensburg, Lucja A. Fostowicz-Frelik, WA, United States Institute of Paleobiology (PAN), Poland Hierarchical steepness, defined as status asymmetries among conspecifics living in the Reviewed by: Małgorzata Arlet, same group, is not only used as a main characteristic of animal social relationships, Adam Mickiewicz University, Poland but also represents the degree of discrepancy between supply and demand within Jundong Tian, Zhengzhou University, China the framework of biological market theory. During September and December 2011, *Correspondence: we studied hierarchical steepness by comparing variation in grooming patterns in two Dong-Po Xia groups of Tibetan macaques (Macaca thibetana), a primate species characterized by [email protected] a linear dominance hierarchy. -
Evolutionary Cognitive Neuroscience Cognitive Neuroscience Michael S
MD DALIM #870693 9/24/06 GREEN PURPLE Evolutionary Cognitive Neuroscience Cognitive Neuroscience Michael S. Gazzaniga, editor Gary Lynch, Synapses, Circuits, and the Beginning of Memory Barry E. Stein and M. Alex Meredith, The Merging of the Senses Richard B. Ivry and Lynn C. Robertson, The Two Sides of Perception Steven J. Luck, An Introduction to the Event-Related Potential Technique Roberto Cabeza and Alan Kingstone, eds., Handbook of Functional Neuroimaging of Cognition Carl Senior, Tamara Russell, and Michael S. Gazzaniga, eds., Methods in Mind Steven M. Platek, Julian Paul Keenan, and Todd K. Shackelford, eds., Evolutionary Cognitive Neuroscience Evolutionary Cognitive Neuroscience Edited by Steven M. Platek, Julian Paul Keenan, and Todd K. Shackelford The MIT Press Cambridge, Massachusetts London, England © 2007 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or informa- tion storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email special_sales@mitpress. mit.edu or write to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge, MA 02142. This book printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Evolutionary cognitive neuroscience / edited by Steven M. Platek, Julian Paul Keenan, and Todd K. Shackelford. p. cm.—(Cognitive neuroscience) Includes bibliographical references and index. ISBN 13: 978-0-262-16241-8 ISBN 10: 0-262-16241-5 1. Cognitive neuroscience. 2. -
The Coevolution Theory of Autumn Colours Marco Archetti1* and Sam P
Received 3 December 2003 FirstCite Accepted 25 February 2004 e-publishing Published online The coevolution theory of autumn colours Marco Archetti1* and Sam P. Brown2 1De´partement de Biologie, Section E´ cologie et E´ volution, Universite´ de Fribourg, Chemin du Muse´e 10, 1700 Fribourg, Switzerland 2Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK According to the coevolution theory of autumn colours, the bright colours of leaves in autumn are a warning signal to insects that lay their eggs on the trees in that season. If the colour is linked to the level of defensive commitment of the tree and the insects learn to avoid bright colours, this may lead to a coevolutionary process in which bright trees reduce their parasite load and choosy insects locate the most profitable hosts for the winter. We try to clarify what the theory actually says and to correct some misun- derstandings that have been put forward. We also review current research on autumn colours and discuss what needs to be done to test the theory. Keywords: autumn colours; coevolution; biological signalling; trees; evolution 1. INTRODUCTION that is also variable. Leaf abscission and senescence may be preadaptations to the phenomenon of autumn colours, Why do leaves change their colour in autumn? Bright aut- but they are by no means the same thing. umn colours occur in many deciduous tree species and The second is that bright colours are not just the effect are well known to everybody. However, an evolutionary of the degradation of chlorophyll, but new pigments are explanation to this question has only recently been put actively produced in autumn (Duggelin et al. -
Evolution of Food Sharing Behavior and Social Grooming Networks in Desmodus Rotundus with Agent-Based Models
IN PRESS, UC DAVIS McNAIR SCHOLARS JOURNAL 2019 Evolution of Food Sharing Behavior and Social Grooming Networks in Desmodus rotundus with Agent-Based Models Alery Tenorio† Faculty Mentor: Jeffrey Schank‡ College of Biological Sciences†, College of Letters and Science‡ The common vampire bat, Desmodus rotundus, is an example of a non-primate social animal that shares food. Females live in social groups of 8-12, with their offspring and perform social behaviors, such as food sharing and social grooming. Vampire bats share food with other females in their social group by regurgitating their bloodmeals to certain group members. Vampire bats groom certain group members. While social grooming has been studied, its contribution to fitness is unknown. This behavior often occurs before food sharing, possibly to identify cheats, who accept food sharing but do not share. Excluding mother-daughter interactions, social grooming and food sharing usually occurs within subgroups of social groups. These subgroups within social groups are highly associated group members of 2 to 4 and their offspring. While many studies focus on entire social groups or populations, this paper lays the groundwork for investigating whether social grooming is a mechanism for assessing whether bats will share blood meals. The proposed investigation will be conducted by producing agent-based models of vampire bat social groups. These models represent individuals that behave in essential ways like vampire bats and will allow us to characterize by emergent behavior and population-level impacts of behavior. Our goal is to determine whether blood-meal sharing can evolve given or understand of the physiology, behavior, and population structure of vampire bats. -
Information Systems Theorizing Based on Evolutionary Psychology: an Interdisciplinary Review and Theory Integration Framework1
Kock/IS Theorizing Based on Evolutionary Psychology THEORY AND REVIEW INFORMATION SYSTEMS THEORIZING BASED ON EVOLUTIONARY PSYCHOLOGY: AN INTERDISCIPLINARY REVIEW AND THEORY INTEGRATION FRAMEWORK1 By: Ned Kock on one evolutionary information systems theory—media Division of International Business and Technology naturalness theory—previously developed as an alternative to Studies media richness theory, and one non-evolutionary information Texas A&M International University systems theory, channel expansion theory. 5201 University Boulevard Laredo, TX 78041 Keywords: Information systems, evolutionary psychology, U.S.A. theory development, media richness theory, media naturalness [email protected] theory, channel expansion theory Abstract Introduction Evolutionary psychology holds great promise as one of the possible pillars on which information systems theorizing can While information systems as a distinct area of research has take place. Arguably, evolutionary psychology can provide the potential to be a reference for other disciplines, it is the key to many counterintuitive predictions of behavior reasonable to argue that information systems theorizing can toward technology, because many of the evolved instincts that benefit from fresh new insights from other fields of inquiry, influence our behavior are below our level of conscious which may in turn enhance even more the reference potential awareness; often those instincts lead to behavioral responses of information systems (Baskerville and Myers 2002). After that are not self-evident. This paper provides a discussion of all, to be influential in other disciplines, information systems information systems theorizing based on evolutionary psych- research should address problems that are perceived as rele- ology, centered on key human evolution and evolutionary vant by scholars in those disciplines and in ways that are genetics concepts and notions. -
Anatomy Was Groomed. During a Focal Animal Sample 1974). Combining the Three Sampling Procedures A
3 Patterns and Functions of Grooming Behavior among the Common Indian Langur Monkey James J. McKenna For many primate species grooming is a predomin- These data suggest, particularly with respect to the ant and socially important behavior pattern diverse question of functions, that while grooming no doubt both in the form it can take and the social situations serves both social and hygienic functions, it does so in a within which it is initiated. While not the only behavior context apparently dictated -by social needs. It is con- that often cuts across different age and sex classes to cluded that social grooming among langur monkeys is promote cohesion, the tremendous amount of time highly integrated into almost all aspects of group life and energy invested by some species in this activity and, while not a reliable behavioral index to status suggests that as a bond-building mechanism social differentials between group members, it is important grooming has played an auxiliary if not complemen- in assessing role complexes. tary role in the evolution of primate sociality. Among primates social grooming is thought by in- Materials and Methods vestigators to provide useful information on many dif- The study group was housed in a dome-shaped ferent aspects of group life. Grooming data has been mesh enclosure approximately 35 feet high by 45 feet used to measure developmental processes in the in diameter. Starting from the enclosure floor six dif- mother-infant relationship (Hinde 1974, Kaufman ferent levels ofsitting bars and platforms, interspersed and Rosenblum 1969), to document the growing net- every three to five feet, allowed proper social and work of attachments and subgroup formations within spatial refuge. -
Insufficient Emotion: Soul-Searching by a Former Indicter of Strong
Emotion Review Vol. 2, No. 3 (July 2010) 234–239 © 2010 SAGE Publications and The International Society for Research on Emotion Insufficient Emotion: Soul-searching by a Former ISSN 1754-0739 DOI: 10.1177/1754073910362598 Indicter of Strong Emotions er.sagepub.com George Loewenstein Department of Social & Decision Sciences, Carnegie Mellon University, USA Abstract Contrary to the many accounts of the destructive effects of strong emotions, this article argues that the most serious problems facing the world are caused by a deficiency rather than an excess of emotions. It then shows how an evolutionary account of emotion can explain when and why such deficiencies occur. Keywords decision making, emotion At that moment I was fully aware for the first time how far advanced the researchers have argued that these types of emotions are benefi- process of paralysis already was in me – it was if I were moving through cial, based on the finding that their absence, whether due to brain flowing, bright water without being halted or taking root anywhere, and I damage (Damasio, 1994) or experimental intervention (e.g., knew very well that this chill was something dead and corpse-like, not yet Wilson & Schooler, 1991) tends to degrade the quality of decision surrounded by the foul breath of decomposition but already numbed beyond recover, a grimly cold lack of emotions. making. Representing a similar perspective, there are myriad (Stefan Zweig, 1922 / 2004, p. 19) stories, presented in books such as The Gift of Fear: Survival Signals That Protect Us From Violence (De Becker, 1997), of Do emotions help or hurt decision making? This question has people who report having survived against the odds as a result of been the focus of much implicit and explicit debate. -
Oxytocin Is a Nonapeptide Involved in a Wide Range of Physiologic OXT Activity Depends on Adequate Interaction with Its Unique and Behavioral Functions
Evolutionary pattern in the OXT-OXTR system in primates: Coevolution and positive selection footprints Pedro Vargas-Pinillaa,1, Vanessa Rodrigues Paixão-Côrtesa,1, Pamela Paréa, Luciana Tovo-Rodriguesa, Carlos Meton de Alencar Gadelha Vieiraa, Agatha Xaviera, David Comasb, Alcides Pissinattic, Marialva Sinigagliaa, Maurício Menegatti Rigoa, Gustavo Fioravanti Vieiraa, Aldo B. Luciond, Francisco Mauro Salzanoa,2, and Maria Cátira Bortolinia,2 aDepartamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil; bInstitut de Biologia Evolutiva, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain; cCentro de Primatologia do Rio de Janeiro, 20940-200 Rio de Janeiro, RJ, Brazil; and dDepartamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90050-170 Porto Alegre, RS, Brazil Contributed by Francisco Mauro Salzano, November 26, 2014 (sent for review July 11, 2014; reviewed by Guido Barbujani and Rafal Slusarz) Oxytocin is a nonapeptide involved in a wide range of physiologic OXT activity depends on adequate interaction with its unique and behavioral functions. Until recently, it was believed that an receptor, OXTR, although it can also bind to the vasopressin unmodified oxytocin sequence was present in all placental mam- receptors (AVPR1a, AVPR1b, and AVPR2) with lower affinity mals. This study analyzed oxytocin (OXT) in 29 primate species and (11–13). Similar to other receptors that use G proteins as OXTR the oxytocin receptor ( ) in 21 of these species. We report transducer signals across the cell membranes, OXTR is com- here three novel OXT forms in the New World monkeys, as well posed of seven transmembrane (TM1–TM7), four extracellular as a more extensive distribution of a previously described variant (N-terminal tail-ECL3), and four intracellular (ICL1-C-terminal (Leu8Pro). -
8. Primate Evolution
8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America. -
Biological and Biomedical Implications of the Co-Evolution of Pathogens and Their Hosts
progress Biological and biomedical implications of the co-evolution of pathogens and their hosts Mark E.J. Woolhouse1, Joanne P. Webster2, Esteban Domingo3, Brian Charlesworth4 & Bruce R. Levin5 Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in any meaningful way, even though it can have a major influence on how genetic variation in biomedically important traits is interpreted. Improving our understanding of the biomedical significance of co-evo- lution will require changing the way in which we look for it, complementing the phenomenological approach traditionally favored by evolutionary biologists with the exploitation of the extensive data becoming available on the molecular biology and molecular genetics of host–pathogen interactions. http://www.nature.com/naturegenetics That pathogens and hosts have evolutionary effects on one In this review, we assess the evidence for co-evolution in another and that these effects might be reciprocal—that is, host–pathogen systems. We then explore the complexities of pathogens and hosts co-evolve—are attractive, plausible and studying co-evolution in the ‘real world’, where there are many powerful ideas whose implications for the medical and veteri- different constraints on the potential for pathogen and host to nary sciences are only just beginning to be recognized1. An co-evolve. We proceed to consider the largely untapped oppor- important instance concerns the genetics of susceptibility to and tunity for studying co-evolution at the mechanistic as well as pathogenicity of infectious diseases.