How Mammals Stay Healthy in Nature: the Evolution of Behaviours to Avoid Rstb.Royalsocietypublishing.Org Parasites and Pathogens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Hierarchical Steepness on Grooming Patterns in Female Tibetan Macaques (Macaca Thibetana)
fevo-09-631417 February 27, 2021 Time: 15:50 # 1 ORIGINAL RESEARCH published: 04 March 2021 doi: 10.3389/fevo.2021.631417 Effects of Hierarchical Steepness on Grooming Patterns in Female Tibetan Macaques (Macaca thibetana) Dong-Po Xia1,2*†, Xi Wang2,3†, Paul A. Garber4,5, Bing-Hua Sun2,3, Lori K. Sheeran6, Lixing Sun7 and Jin-Hua Li2,3* 1 School of Life Sciences, Anhui University, Hefei, China, 2 International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei, China, 3 School of Resources and Environmental Engineering, Anhui University, Hefei, China, 4 Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana–Champaign, Urbana, IL, United States, 5 International Centre of Biodiversity and Primate Conservation, Dali University, Dali, China, 6 Department of Anthropology and Museum Studies, Central Washington Edited by: University, Ellensburg, WA, United States, 7 Department of Biological Sciences, Central Washington University, Ellensburg, Lucja A. Fostowicz-Frelik, WA, United States Institute of Paleobiology (PAN), Poland Hierarchical steepness, defined as status asymmetries among conspecifics living in the Reviewed by: Małgorzata Arlet, same group, is not only used as a main characteristic of animal social relationships, Adam Mickiewicz University, Poland but also represents the degree of discrepancy between supply and demand within Jundong Tian, Zhengzhou University, China the framework of biological market theory. During September and December 2011, *Correspondence: we studied hierarchical steepness by comparing variation in grooming patterns in two Dong-Po Xia groups of Tibetan macaques (Macaca thibetana), a primate species characterized by [email protected] a linear dominance hierarchy. -
Evolution of Food Sharing Behavior and Social Grooming Networks in Desmodus Rotundus with Agent-Based Models
IN PRESS, UC DAVIS McNAIR SCHOLARS JOURNAL 2019 Evolution of Food Sharing Behavior and Social Grooming Networks in Desmodus rotundus with Agent-Based Models Alery Tenorio† Faculty Mentor: Jeffrey Schank‡ College of Biological Sciences†, College of Letters and Science‡ The common vampire bat, Desmodus rotundus, is an example of a non-primate social animal that shares food. Females live in social groups of 8-12, with their offspring and perform social behaviors, such as food sharing and social grooming. Vampire bats share food with other females in their social group by regurgitating their bloodmeals to certain group members. Vampire bats groom certain group members. While social grooming has been studied, its contribution to fitness is unknown. This behavior often occurs before food sharing, possibly to identify cheats, who accept food sharing but do not share. Excluding mother-daughter interactions, social grooming and food sharing usually occurs within subgroups of social groups. These subgroups within social groups are highly associated group members of 2 to 4 and their offspring. While many studies focus on entire social groups or populations, this paper lays the groundwork for investigating whether social grooming is a mechanism for assessing whether bats will share blood meals. The proposed investigation will be conducted by producing agent-based models of vampire bat social groups. These models represent individuals that behave in essential ways like vampire bats and will allow us to characterize by emergent behavior and population-level impacts of behavior. Our goal is to determine whether blood-meal sharing can evolve given or understand of the physiology, behavior, and population structure of vampire bats. -
Activating the Biological and Behavioral Immune Systems Julia Christensen Hamline University
Hamline University DigitalCommons@Hamline Departmental Honors Projects College of Liberal Arts Spring 2015 Activating the Biological and Behavioral Immune Systems Julia Christensen Hamline University Follow this and additional works at: https://digitalcommons.hamline.edu/dhp Part of the Biological Psychology Commons, and the Cognitive Psychology Commons Recommended Citation Christensen, Julia, "Activating the Biological and Behavioral Immune Systems" (2015). Departmental Honors Projects. 37. https://digitalcommons.hamline.edu/dhp/37 This Honors Project is brought to you for free and open access by the College of Liberal Arts at DigitalCommons@Hamline. It has been accepted for inclusion in Departmental Honors Projects by an authorized administrator of DigitalCommons@Hamline. For more information, please contact [email protected], [email protected]. Running head: ACTIVATING THE BEHAVIORAL IMMUNE SYSTEM 1 Activating the Biological and Behavioral Immune Systems Julia M. Christensen Hamline University ACTIVATING THE BEHAVIORAL IMMUNE SYSTEM 2 Abstract Psychology recognizes two distinct facets of the immune system: the biological immune system (BIO), covering all processes of the typical immune system, and the behavioral immune system (BEH), a set of cognitive, emotional, and behavioral responses to environmental stimuli. Research on this dual immune system indicates that each is capable of influencing the other (Schaller & Park, 2011). For example, perception of illness in others can activate the sympathetic nervous system ( Schaller, Miller, Gervais, Yager, & Chen, 2010 ). Furthermore, evidence suggests that these two systems are capable of influencing moral judgment (Inbar, Pizarro, & Bloom, 2008). This study aims to further the overall understanding of the BEH and the manner in which it influences the BIO. Participants were recruited from college psychology courses in exchange for extra credit. -
The Human Behavioural Immune System Is a Product of Cultural Evolution
The human behavioural immune system is a product of cultural evolution Authors: Edwin S. Dalmaijer 1*, Thomas Armstrong 2 Affiliations: 1 MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom. 2 Department of Psychology, Whitman College, 345 Boyer Ave, Walla Walla, WA, 99362, USA. *Correspondence to: Dr Edwin Dalmaijer, [email protected] Pre-print note: This manuscript has been submitted to a scientific journal. It has not passed peer review yet. 1 Dalmaijer & Armstrong – Evolution of the behavioural immune system To avoid disease 1, humans show far greater contamination sensitivity and hygienic behaviour compared to our closest living relatives 2,3, likely due to our increased propensity to experience disgust 4. While contemporary theories argue disgust is a genetic adaptation 5,6, there is surprisingly little evidence to support this claim. Here, we simulated 100 000 years of evolution in human hunter-gatherers to test a wide variety of theoretical models. Our results indicate that natural selection for monogenic or polygenic pathogen-avoidance traits is plausible. However, the cultural inter-generational transmission of such traits operated more quickly in realistic scenarios, and continued to work even when artificially constrained. In the absence of reliable empirical data, our computational work supports the hypothesis that cultural evolution outpaced its biological counterpart to select health-improving behaviours that benefited survival. This study serves not only as evidence of cultural evolution of the behavioural immune system, but is also an illustration of emerging theories that paint cognitive mechanisms as socially transmitted rather than biologically hardwired functions 7. -
Open Research Online Oro.Open.Ac.Uk
Open Research Online The Open University’s repository of research publications and other research outputs Evolution of pathogen and parasite avoidance behaviours Journal Item How to cite: Sarabian, Cecile; Curtis, Val and McMullan, Rachel (2018). Evolution of pathogen and parasite avoidance behaviours. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1751), article no. 20170256. For guidance on citations see FAQs. c 2018 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Accepted Manuscript Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1098/rstb.2017.0256 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Phil. Trans. R. Soc. B. article template Phil. Trans. R. Soc. B. doi:10.1098/not yet assigned Evolution of pathogen and parasite avoidance behaviours Cecile Sarabiana, 1, Valerie Curtisb, Rachel McMullanc a Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama 484-8506, Japan, CS, 0000-0002-2225-8702 b Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT UK ORCID ID 0000-0001-8994-2878 c School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, Bucks, MK7 2AA, UK ORCID ID 0000-0003-2677- 8016 Keywords: disease prevention, hygiene, behavioural immune system, disgust, pathogen avoidance, parasite avoidance 1 Abstract 0 1 All free-living animals are subject to intense selection pressure from parasites and 2 pathogens resulting in behavioural adaptations that can help potential hosts to avoid falling 3 prey to parasites. -
Anatomy Was Groomed. During a Focal Animal Sample 1974). Combining the Three Sampling Procedures A
3 Patterns and Functions of Grooming Behavior among the Common Indian Langur Monkey James J. McKenna For many primate species grooming is a predomin- These data suggest, particularly with respect to the ant and socially important behavior pattern diverse question of functions, that while grooming no doubt both in the form it can take and the social situations serves both social and hygienic functions, it does so in a within which it is initiated. While not the only behavior context apparently dictated -by social needs. It is con- that often cuts across different age and sex classes to cluded that social grooming among langur monkeys is promote cohesion, the tremendous amount of time highly integrated into almost all aspects of group life and energy invested by some species in this activity and, while not a reliable behavioral index to status suggests that as a bond-building mechanism social differentials between group members, it is important grooming has played an auxiliary if not complemen- in assessing role complexes. tary role in the evolution of primate sociality. Among primates social grooming is thought by in- Materials and Methods vestigators to provide useful information on many dif- The study group was housed in a dome-shaped ferent aspects of group life. Grooming data has been mesh enclosure approximately 35 feet high by 45 feet used to measure developmental processes in the in diameter. Starting from the enclosure floor six dif- mother-infant relationship (Hinde 1974, Kaufman ferent levels ofsitting bars and platforms, interspersed and Rosenblum 1969), to document the growing net- every three to five feet, allowed proper social and work of attachments and subgroup formations within spatial refuge. -
Human Pathogen Avoidance Adaptations
Available online at www.sciencedirect.com ScienceDirect Human pathogen avoidance adaptations 1 2 Joshua M Tybur and Debra Lieberman Over the past few decades, researchers have become [10,11,12 ], and antipathy toward homosexuals [13], the increasingly interested in the adaptations guiding the obese [14,15], the elderly [16] and the disabled [17]. avoidance of disease-causing organisms. Here we discuss the latest developments in this area, including a recently developed Here we discuss how considerations of the information information-processing model of the adaptations underlying processing mechanisms underlying pathogen avoidance pathogen avoidance. We argue that information-processing adaptations can inform when pathogen-neutralizing models like the one presented here can both increase our behaviors are relaxed versus engaged. Work on the emo- understanding of how individuals trade-off pathogen tion disgust — perhaps the most intuitive aspect of our avoidance against other fitness relevant goals and elucidate the pathogen avoidance psychology — provides an illustra- nature of individual differences in pathogen avoidance. With tive example. respect to pathogen disgust in particular, we show how contact avoidance can be traded-off against other tasks, including food Disgust: function versus mechanism choice, cooperation, and mate choice. Armed with the germ theory of disease, several 20th and Addresses 21st century scientists noted that many objects that elicit 1 Department of Experimental and Applied Psychology, VU University disgust also reliably house pathogens [18–21]. This, in Amsterdam, Amsterdam 1081BT, The Netherlands concert with the behaviors associated with disgust (e.g., 2 Department of Psychology, University of Miami, Coral Gables FL proximal avoidance and rejection), straightforwardly im- 33124, United States plied to many scholars that disgust has a function — to Corresponding author: Tybur, Joshua M ([email protected]) neutralize infectious disease threats. -
Testing the Relation Between Disgust and Approach-Avoidance Behavior
Graduate Theses, Dissertations, and Problem Reports 2015 Testing the Relation between Disgust and Approach-Avoidance Behavior Ronald Thomas Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Thomas, Ronald, "Testing the Relation between Disgust and Approach-Avoidance Behavior" (2015). Graduate Theses, Dissertations, and Problem Reports. 6793. https://researchrepository.wvu.edu/etd/6793 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Testing the Relation between Disgust and Approach-Avoidance Behavior Ronald Thomas, B.A. Thesis submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Psychology Natalie Shook, Ph.D., Chair Amy Gentzler, Ph.D. Julie Patrick, Ph.D. Department of Psychology Morgantown, West Virginia 2015 Keywords: Disgust, Disgust Sensitivity, Approach-Avoidance, Behavioral Immune System Copyright 2015 Ronald Thomas iii DISGUST AND APPROACH-AVOIDANCE Abstract Testing the Relation between Disgust and Approach-Avoidance Behavior Ronald Thomas The Behavioral Immune System (BIS) is a set of psychological processes that evolved to protect individuals from harmful contaminants and pathogens in the environment (Miller & Maner, 2011; Schaller & Duncan, 2007; Tybur, Lieberman, Kurzban, & DeScioli, 2013). -
Biological and Biomedical Implications of the Co-Evolution of Pathogens and Their Hosts
progress Biological and biomedical implications of the co-evolution of pathogens and their hosts Mark E.J. Woolhouse1, Joanne P. Webster2, Esteban Domingo3, Brian Charlesworth4 & Bruce R. Levin5 Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in any meaningful way, even though it can have a major influence on how genetic variation in biomedically important traits is interpreted. Improving our understanding of the biomedical significance of co-evo- lution will require changing the way in which we look for it, complementing the phenomenological approach traditionally favored by evolutionary biologists with the exploitation of the extensive data becoming available on the molecular biology and molecular genetics of host–pathogen interactions. http://www.nature.com/naturegenetics That pathogens and hosts have evolutionary effects on one In this review, we assess the evidence for co-evolution in another and that these effects might be reciprocal—that is, host–pathogen systems. We then explore the complexities of pathogens and hosts co-evolve—are attractive, plausible and studying co-evolution in the ‘real world’, where there are many powerful ideas whose implications for the medical and veteri- different constraints on the potential for pathogen and host to nary sciences are only just beginning to be recognized1. An co-evolve. We proceed to consider the largely untapped oppor- important instance concerns the genetics of susceptibility to and tunity for studying co-evolution at the mechanistic as well as pathogenicity of infectious diseases. -
TRPM Channels Mediate Learned Pathogen Avoidance Following Intestinal Distention Adam Filipowicz, Jonathan Lalsiamthara, Alejandro Aballay*
RESEARCH ARTICLE TRPM channels mediate learned pathogen avoidance following intestinal distention Adam Filipowicz, Jonathan Lalsiamthara, Alejandro Aballay* Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, United States Abstract Upon exposure to harmful microorganisms, hosts engage in protective molecular and behavioral immune responses, both of which are ultimately regulated by the nervous system. Using the nematode Caenorhabditis elegans, we show that ingestion of Enterococcus faecalis leads to a fast pathogen avoidance behavior that results in aversive learning. We have identified multiple sensory mechanisms involved in the regulation of avoidance of E. faecalis. The G-protein coupled receptor NPR-1-dependent oxygen-sensing pathway opposes this avoidance behavior, while an ASE neuron-dependent pathway and an AWB and AWC neuron-dependent pathway are directly required for avoidance. Colonization of the anterior part of the intestine by E. faecalis leads to AWB and AWC mediated olfactory aversive learning. Finally, two transient receptor potential melastatin (TRPM) channels, GON-2 and GTL-2, mediate this newly described rapid pathogen avoidance. These results suggest a mechanism by which TRPM channels may sense the intestinal distension caused by bacterial colonization to elicit pathogen avoidance and aversive learning by detecting changes in host physiology. Introduction In order to survive, animals have evolved mechanisms to detect and avoid harmful organisms, includ- ing pathogenic bacteria (Kavaliers et al., 2019; Medzhitov et al., 2012). Understanding this com- *For correspondence: plex survival mechanism will ultimately take an interdisciplinary approach. Genetically tractable [email protected] organisms such as Caenorhabditis elegans and Drosophila melanogaster have proven to be quite useful in uncovering the molecular and cellular components of pathogen avoidance. -
Pathogen Disgust Sensitivity Protects Against Infection in a High Pathogen Environment
Pathogen disgust sensitivity protects against infection in a high pathogen environment Tara J. Cepon-Robinsa,1, Aaron D. Blackwellb, Theresa E. Gildnerc, Melissa A. Liebertd, Samuel S. Urlachere,f, Felicia C. Madimenosg, Geeta N. Eickh, J. Josh Snodgrassh,i, and Lawrence S. Sugiyamah aDepartment of Anthropology, University of Colorado, Colorado Springs, CO 80918; bDepartment of Anthropology, Washington State University, Pullman, WA 99164; cDepartment of Anthropology, Washington University in St. Louis, St. Louis, MO 63130; dDepartment of Anthropology, Northern Arizona University, Flagstaff, AZ 86011; eDepartment of Anthropology, Baylor University, Waco, TX 76706; fChild and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada; gDepartment of Anthropology, Queens College, City University of New York, Queens, NY 11367; hDepartment of Anthropology, University of Oregon, Eugene, OR 97403; and iCenter for Global Health, University of Oregon, Eugene, OR 97403 Edited by Susan T. Fiske, Princeton University, Princeton, NJ, and approved January 12, 2021 (received for review September 4, 2020) Disgust is hypothesized to be an evolved emotion that functions to (18) and socially transmitted information (19) account for these regulate the avoidance of pathogen-related stimuli and behaviors. differences remains unclear. Individuals with higher pathogen disgust sensitivity (PDS) are pre- Despite general acceptance of the hypothesis that pathogen dicted to be exposed to and thus infected by fewer pathogens, disgust functions to regulate pathogen exposure, evidence has though no studies have tested this directly. Furthermore, PDS is hy- been largely indirect. Research shows that pathogen disgust is pothesized to be locally calibrated to the types of pathogens normally activated in response to hypothesized cues of potential pathogen- encountered and the fitness-related costs and benefits of infection harboring stimuli (2, 5, 7, 20, 21) and seems to function to provide and avoidance. -
Population-Specific Social Dynamics in Chimpanzees COLLOQUIUM
PAPER Population-specific social dynamics in chimpanzees COLLOQUIUM Edwin J. C. van Leeuwena,b,1, Katherine A. Croninc,d, and Daniel B. M. Haune,f,g aSchool of Psychology and Neuroscience, University of St Andrews, KY16 9JP St Andrews, Scotland; bMax Planck Institute for Psycholinguistics, 6500 AH Nijmegen, The Netherlands; cLester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614; dCommittee on Evolutionary Biology, University of Chicago, Chicago, IL 60637; eLeipzig Research Centre for Early Child Development, Faculty of Education, Leipzig University, 04109 Leipzig, Germany; fDepartment for Early Child Development and Culture, Faculty of Education, Leipzig University, 04109 Leipzig, Germany; and gMax Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany Edited by Douglas L. Medin, Northwestern University, Evanston, IL, and approved February 27, 2018 (received for review January 2, 2018) Understanding intraspecific variation in sociality is essential for as a pressing question in the study of psychological and behavioral characterizing the flexibility and evolution of social systems, yet its diversity: Beyond isolated accounts of tradition formation in non- study in nonhuman animals is rare. Here, we investigated whether human animals, is there any indication that nonhuman animals chimpanzees exhibit population-level differences in sociality that exhibit intraspecific population-level variation in their everyday so- cannot be easily explained by differences in genetics or ecology. We cial interactions that might be instigated by cultural processes? compared social proximity and grooming tendencies across four One seminal case demonstrating the plausibility of learned, semiwild populations of chimpanzees living in the same ecological population-level differences in sociality was reported by Sapolsky Papio anubis environment over three consecutive years, using both linear mixed and Share (31) in their study of olive baboons ( ).