Evolutionary Cognitive Neuroscience Cognitive Neuroscience Michael S

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Cognitive Neuroscience Cognitive Neuroscience Michael S MD DALIM #870693 9/24/06 GREEN PURPLE Evolutionary Cognitive Neuroscience Cognitive Neuroscience Michael S. Gazzaniga, editor Gary Lynch, Synapses, Circuits, and the Beginning of Memory Barry E. Stein and M. Alex Meredith, The Merging of the Senses Richard B. Ivry and Lynn C. Robertson, The Two Sides of Perception Steven J. Luck, An Introduction to the Event-Related Potential Technique Roberto Cabeza and Alan Kingstone, eds., Handbook of Functional Neuroimaging of Cognition Carl Senior, Tamara Russell, and Michael S. Gazzaniga, eds., Methods in Mind Steven M. Platek, Julian Paul Keenan, and Todd K. Shackelford, eds., Evolutionary Cognitive Neuroscience Evolutionary Cognitive Neuroscience Edited by Steven M. Platek, Julian Paul Keenan, and Todd K. Shackelford The MIT Press Cambridge, Massachusetts London, England © 2007 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or informa- tion storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email special_sales@mitpress. mit.edu or write to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge, MA 02142. This book printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Evolutionary cognitive neuroscience / edited by Steven M. Platek, Julian Paul Keenan, and Todd K. Shackelford. p. cm.—(Cognitive neuroscience) Includes bibliographical references and index. ISBN 13: 978-0-262-16241-8 ISBN 10: 0-262-16241-5 1. Cognitive neuroscience. 2. Brain–Evolution. 3. Evolutionary psychology. I. Platek, Steven M. II. Keenan, Julian Paul. III. Shackelford, Todd K. IV. Series. QP360.5.E97 2006 612.8′233–dc22 2006048171 10 9 8 7 6 5 4 3 2 1 Contents Contributors ix Preface xiii I Introduction and Overview 1 1 Introduction to Evolutionary Theory and Its Modern Application to Human Behavior and Cognition 5 Aaron T. Goetz and Todd K. Shackelford 2 Brain and Cognition in Evolutionary Perspective 21 Robin I. M. Dunbar 3 Introduction to Evolutionary Cognitive Neuroscience Methods 47 Shilpa Patel, Katie L. Rodak, Euginia Mamikonyan, Kyra Singh, and Steven M. Platek II Neuroanatomy: Ontogeny and Phylogeny 63 4 The Evolution of Ontogeny and Human Cognitive Uniqueness: Selection for Extended Brain Development in the Hominid Line 65 Valerie E. Stone 5 Hemispheric Specialization in Chimpanzees: Evolution of Hand and Brain 95 William D. Hopkins 6 The Evolution of Brain Size and Intelligence 121 J. Philippe Rushton and C. Davison Ankney vi Contents 7 The Evolution of the Brain and Cognition in Cetaceans 163 Lori Marino III Reproduction and Kin Selection 195 8 The Social Control of Reproduction: Physiological, Cellular, and Molecular Consequences of Social Status 197 Russell D. Fernald 9 Neural Correlates of Facial Resemblance 221 Steven M. Platek and Jaime W. Thomson 10 Lust, Romance, Attachment: Do the Side Effects of Serotonin-Enhancing Antidepressants Jeopardize Romantic Love, Marriage, and Fertility? 245 Helen E. Fisher and J. Anderson Thomson, Jr. 11 Self-Perceived Survival and Reproductive Fitness Theory: Substance Use Disorders, Evolutionary Game Theory, and the Brain 285 David B. Newlin IV Spatial Cognition and Language 327 12 Sex Differences in Spatial Ability: Evolution, Hormones, and the Brain 329 David Andrew Puts, Steven J. C. Gaulin, and S. Marc Breedlove 13 The Evolution of Sex Differences in Spatial Cognition 381 Ruben C. Gur, Sarah L. Levin, Farzin Irani, Ivan S. Panyavin, Jaime W. Thomson, and Steven M. Platek 14 The Evolution of Language: From Hand to Mouth 403 Michael C. Corballis V Self-Awareness and Social Cognition 431 15 The Evolution of Human Mindreading: How Nonhuman Primates Can Inform Social Cognitive Neuroscience 433 Laurie R. Santos, Jonathan I. Flombaum, and Webb Phillips vii Contents 16 Social Cognition and the Evolution of Self-Awareness 457 Farah Focquaert and Steven M. Platek 17 The Assortative Mating Theory of Autism 499 Simon Baron-Cohen 18 Deception, Evolution, and the Brain 517 Sean T. Stevens, Kevin Guise, William Christiana, Monisha Kumar, and Julian Paul Keenan 19 On the Evolution of Human Motivation: The Role of Social Prosthetic Systems 541 Stephen M. Kosslyn VI Theoretical, Ethical, and Future Implications for Evolutionary Cognitive Neuroscience 555 20 Philosophical, Ethical, and Social Considerations of Evolutionary Cognitive Neuroscience 559 Michael B. Kimberly and Paul Root Wolpe 21 Evolutionary Cognitive Neuroscience 579 Julian Paul Keenan, Austen L. Krill, Steven M. Platek, and Todd K. Shackelford Index 587 Contributors Editors: Steven M. Platek, PhD, Department of Psychology, Drexel University, Philadelphia, Pennsylvania Julian Paul Keenan, PhD, Associate Professor, Director, Cognitive Neuroimaging Laboratory, Department of Psychology, Montclair State University, Upper Montclair, New Jersey Todd K. Shackelford, PhD, Director, Evolutionary Psychology Lab, Department of Psychology, Florida Atlantic University, Davie, Florida Chapter Contributors: C. Davison Ankney, PhD, Professor Emeritus of Biology, University of Western Ontario, London, Ontario, Canada Simon Baron-Cohen, PhD, Director, Autism Research Centre (ARC), Cambridge University, Cambridge, United Kingdom S. Marc Breedlove, PhD, Neuroscience Program, Michigan State University, East Lansing, Michigan William Christiana, BA, Cognitive Neuroimaging Laboratory, Montclair State University, Upper Montclair, New Jersey Michael C. Corballis, PhD, Professor, Department of Psychology, University of Auckland, Auckland, New Zealand Robin I. M. Dunbar, PhD, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom Russell D. Fernald, PhD, Professor of Biological Sciences, Psychology Department, Program in Human Biology, Neuroscience Program, Stanford University, Stanford, California Helen E. Fisher, PhD, Visiting Research Professor, Department of Anthropology, Rutgers University, New Brunswick, New Jersey Jonathan Flombaum, Department of Psychology, Yale University, New Haven, Connecticut x Contributors Farah Focquaert, Department of Philosophy, Universiteit Gent, Belgium Steven J. C. Gaulin, PhD, Professor, Department of Anthropology, Center for Evolutionary Psychology, University of California–Santa Barbara, Santa Barbara, California Aaron T. Goetz, MA, Department of Psychology, Florida Atlantic University, Davie, Florida Kevin Guise, Department of Psychology, Montclair State University, Upper Montclair, New Jersey Ruben C. Gur, PhD, Professor, Departments of Psychiatry and Neurology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania William D. Hopkins, PhD, Regular Faculty, Living Links Center, Research Associate, Yerkes National Primate Research Center; Associate Professor, Department of Psychology, Berry College, Mount Berry, Georgia Farzin Irani, MA, Department of Psychology, Drexel University, Philadelphia, Pennsylvania Michael B. Kimberly, Department of Bioethics, University of Pennsylvania, Philadelphia, Pennsylvania Stephen M. Kosslyn, PhD, Professor, Department of Psychology, Harvard University, Cambridge, Massachusetts Austen L. Krill, Department of Psychology, Drexel University, Philadelphia, Pennsylvania Monisha Kumar, BA, Cognitive Neuroimaging Laboratory, Montclair State University, Upper Montclair, New Jersey Sarah L. Levin, Department of Psychology, Drexel University, Philadelphia, Pennsylvania Euginia Mamikonyan, Department of Psychology, Drexel University, Philadelphia, Pennsylvania Lori Marino, PhD, Faculty Affiliate, Living Links Center, Yerkes National Primate Research Center; Senior Lecturer in Neuroscience and Behavioral Biology, Department of Psychology, Emory University, Atlanta, Georgia David B. Newlin, PhD, National Institutes of Health–National Institute on Drug Abuse, Baltimore, Maryland Ivan S. Panyavin, MA, Department of Psychology, Drexel University, Philadelphia, Pennsylvania Shilpa Patel, Department of Psychology, Drexel University, Philadelphia, Pennsylvania Webb Phillips, Department of Psychology, Yale University, New Haven, Connecticut xi Contributors David Andrew Puts, PhD, Neuroscience Program, Michigan State University, East Lansing, Michigan Katie Rodak, MS, Department of Psychology, Drexel University, Philadelphia, Pennsylvania J. Philippe Rushton, PhD, Professor, Department of Psychology, University of Western Ontario, London, Ontario, Canada Laurie Santos, PhD, Assistant Professor, Department of Psychology, Yale University, New Haven, Connecticut Kyra Singh, Department of Psychology, Drexel University, Philadelphia, Pennsylvania Sean T. Stevens, Department of Psychology, Montclair State University, Upper Montclair, New Jersey Valerie E. Stone, PhD, Adjunct Professor, Department of Psychology, University of Denver, Denver, Colorado J. Anderson Thomson, Jr., MD, Staff Psychiatrist, Counseling and Psychological Services, University of Virginia Student Health Services; Staff Psychiatrist, Institute of Law, Psychiatry, and Public Policy, University of Virginia, Charlottesville, Virginia Jaime W. Thomson, MS, Adjunct Research Professor, Department of Psychology, Drexel University, Philadelphia, Pennsylvania Paul Root Wolpe, PhD, Assistant Professor of Sociology, Assistant Professor of Psychiatry, Faculty Associate, Center for Bioethics, Chief, Bioethics and Human Subjects Protections, NASA,
Recommended publications
  • Handedness Development: a Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination
    S S symmetry Review Handedness Development: A Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination George F. Michel Psychology Department, University of North Carolina Greensboro, P.O. Box 26170, Greensboro, NC 27402-6170, USA; [email protected] Abstract: The author presents his perspective on the character of science, development, and handed- ness and relates these to his investigations of the early development of handedness. After presenting some ideas on what hemispheric specialization of function might mean for neural processing and how handedness should be assessed, the neuroscience of control of the arms/hands and interhemi- spheric communication and coordination are examined for how developmental processes can affect these mechanisms. The author’s work on the development of early handedness is reviewed and placed within a context of cascading events in which different forms of handedness emerge from earlier forms but not in a deterministic manner. This approach supports a continuous rather than categorical distribution of handedness and accounts for the predominance of right-handedness while maintaining a minority of left-handedness. Finally, the relation of the development of handedness to the development of several language and cognitive skills is examined. Keywords: development; handedness; lateralization; hemispheric specialization; interhemispheric Citation: Michel, G.F. Handedness coordination; embodiment Development: A Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination. 1. Introduction Symmetry 2021, 13, 992. https:// There is a general consensus among neuroscientists that the human left and right doi.org/10.3390/sym13060992 hemispheres of the brain have different perceptual, motor, emotional, and cognitive func- tions with the most distinctive difference of a left-hemisphere predominance in praxis (e.g., Academic Editor: Gillian Forrester gestures and tool use) and language (speech and comprehension) functions [1].
    [Show full text]
  • A Memetic Framework for Cooperative Coevolution of Recurrent Neural Networks
    Proceedings of International Joint Conference on Neural Networks, San Jose, California, USA, July 31 – August 5, 2011 A Memetic Framework for Cooperative Coevolution of Recurrent Neural Networks Rohitash Chandra, Marcus Frean and Mengjie Zhang Abstract— Memetic algorithms and cooperative coevolution refinement techniques has been a major focus of study in are emerging fields in evolutionary computation which have memetic computation. There is a need to use non-gradient shown to be powerful tools for real-world application problems based local search, especially in problems where gradient- and for training neural networks. Cooperative coevolution decomposes a problem into subcomponents that evolve inde- based approaches fail, as in the case of training recurrent net- pendently. Memetic algorithms provides further enhancement works in problems with long-term dependencies. Crossover- to evolutionary algorithms with local refinement. The use based local search methods are non-gradient based and have of crossover-based local refinement has gained attention in recently gained attention [8], [9]. In crossover based local memetic computing. This paper employs a cooperative coevo- search, efficient crossover operators which have local search lutionary framework that utilises the strength of local refine- ment via crossover. The framework is evaluated by training properties are used for local refinement with a population recurrent neural networks on grammatical inference problems. of a few individuals. They have shown promising results in The results show that the proposed approach can achieve comparison to other evolutionary approaches for problems better performance than the standard cooperative coevolution with high dimensions [9]. framework. Cooperative coevolution (CC) divides a large problem into smaller subcomponents and solves them independently I.
    [Show full text]
  • Biol B242 - Coevolution
    BIOL B242 - COEVOLUTION http://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html BIOL B242 - COEVOLUTION So far ... In this course we have mainly discussed evolution within species, and evolution leading to speciation. Evolution by natural selection is caused by the interaction of populations/species with their environments. Today ... However, the environment of a species is always partly biotic. This brings up the possiblity that the "environment" itself may be evolving. Two or more species may in fact coevolve. And coevolution gives rise to some of the most interesting phenomena in nature. What is coevolution? At its most basic, coevolution is defined as evolution in two or more evolutionary entities brought about by reciprocal selective effects between the entities. The term was invented by Paul Ehrlich and Peter Raven in 1964 in a famous article: "Butterflies and plants: a study in coevolution", in which they showed how genera and families of butterflies depended for food on particular phylogenetic groupings of plants. We have already discussed some coevolutionary phenomena: For example, sex and recombination may have evolved because of a coevolutionary arms race between organisms and their parasites; the rate of evolution, and the likelihood of producing resistance to infection (in the hosts) and virulence (in the parasites) is enhanced by sex. We have also discussed sexual selection as a coevolutionary phenomenon between female choice and male secondary sexual traits. In this case, the coevolution is within a single species, but it is a kind of coevolution nonetheless. One of our problem sets involved frequency dependent selection between two types of players in an evolutionary "game".
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • Why Dolphins Are Not Aquatic Apes
    Sciknow Publications Ltd. ABC 2014, 1(1):1-18 Animal Behavior and Cognition DOI: 10.12966/abc.02.01.2014 ©Attribution 3.0 Unported (CC BY 3.0) Why Dolphins are not Aquatic Apes Louise Barrett1* and Bernd Würsig2 1University of Lethbridge 2Texas A&M University at Galveston *Corresponding author (Email: [email protected]) Citation – Barrett, L., Würsig, B. (2014). Why dolphins are not aquatic apes. Animal Behavior and Cognition, 1(1), 1-18. doi: 10.12966/abc.02.01.2014 Abstract - The Social Brain (or Social Intelligence) hypothesis is a very influential theory that ties brain size and, by extension, cognitive ability to the demands of obligate and intense sociality. Initially developed to explain primate brain size evolution, the Social Brain hypothesis has since been applied to a diverse array of other social taxa, both mammalian and avian; its origins as a primate-based hypothesis (especially as articulated by Humphrey, 1976), however, mean that it retains a heavily anthropocentric tinge. This colors the way in which other species are viewed, and their cognitive abilities tested, despite fundamental differences in many aspects of bodily morphology, brain anatomy and behavior. The delphinids are a case in point and, in this review, we demonstrate how the anthropocentric origins of the Social Brain hypothesis have pushed us toward a view of the delphinids as a species of ‗aquatic ape‘. We suggest that a more ecological, embodied/embedded, view of dolphin behavior and psychology undercuts such a view, and will provide a more satisfactory assessment of the natural intelligence the delphinids display. Keywords - Social Brain hypothesis, Delphinids, Primates, Cognition, Behavior, Psychology Tracing the history of ideas, scientific or otherwise, is always interesting, and the social intelligence hypothesis is no exception.
    [Show full text]
  • The Coevolution Theory of Autumn Colours Marco Archetti1* and Sam P
    Received 3 December 2003 FirstCite Accepted 25 February 2004 e-publishing Published online The coevolution theory of autumn colours Marco Archetti1* and Sam P. Brown2 1De´partement de Biologie, Section E´ cologie et E´ volution, Universite´ de Fribourg, Chemin du Muse´e 10, 1700 Fribourg, Switzerland 2Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK According to the coevolution theory of autumn colours, the bright colours of leaves in autumn are a warning signal to insects that lay their eggs on the trees in that season. If the colour is linked to the level of defensive commitment of the tree and the insects learn to avoid bright colours, this may lead to a coevolutionary process in which bright trees reduce their parasite load and choosy insects locate the most profitable hosts for the winter. We try to clarify what the theory actually says and to correct some misun- derstandings that have been put forward. We also review current research on autumn colours and discuss what needs to be done to test the theory. Keywords: autumn colours; coevolution; biological signalling; trees; evolution 1. INTRODUCTION that is also variable. Leaf abscission and senescence may be preadaptations to the phenomenon of autumn colours, Why do leaves change their colour in autumn? Bright aut- but they are by no means the same thing. umn colours occur in many deciduous tree species and The second is that bright colours are not just the effect are well known to everybody. However, an evolutionary of the degradation of chlorophyll, but new pigments are explanation to this question has only recently been put actively produced in autumn (Duggelin et al.
    [Show full text]
  • Personalidad, Bienestar Y Psicopatología En Chimpancés Y Orcas
    PERSONALIDAD, BIENESTAR Y PSICOPATOLOGÍA EN CHIMPANCÉS Y ORCAS. UNA PERSPECTIVA EVOLUTIVA Y COMPARADA Yulán Úbeda Arias Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://hdl.handle.net/10803/671406 http://creativecommons.org/licenses/by/4.0/deed.ca Aqu esta obra està subjecta a una llicència Creative Commons Reconeixement Esta obra está bajo una licencia Creative Commons Reconocimiento This work is licensed under a Creative Commons Attribution licence 7 TESIS DOCTORAL Pe rsonalidad, bienestar y psicopatología en chimpancés y orcas. Una perspectiva evolutiva y comparada Yulán Úbeda Arias 2019 2019 TESIS DOCTORAL Personalidad, bienestar y psicopatología en chimpancés y orcas. Una perspectiva evolutiva y comparada Yulán Úbeda Arias 2019 PROGRAMA DE DOCTORADO PSICOLOGÍA, SALUD Y CALIDAD DE VIDA Dirigida por: Miquel Llorente Espino Codirigida por: Jaume Fatjó Ríos y Carles Rostan Sánchez Tutor/a: Ferran Viñas Poch Memoria presentada para optar al título de doctor/a por la Universitat de Girona Diseño de portada: Yulán Úbeda Dibujos: Chimpancé: Jesús José Úbeda; Orca: Yulán Úbeda Dedicatoria A mis padres A los animales que sufren en manos de humanos Agradecimientos A Jesús y Mari Paz, mis padres. Gracias por enseñarme a amar y a observar la naturaleza y los animales desde que era pequeñita, porque eso, me ha llevado hasta aquí. Gracias también por apoyarme incondicionalmente, respetar mis decisiones, sentiros orgullosos y animarme a perseguir este difícil sueño durante todos estos años. ¡Muchísimas gracias papis! Te quiero Papá, te quiero Mamá. A Álex, mi compañero. Gracias porque tu apoyo, motivación y cariño han sido cruciales durante esta Tesis.
    [Show full text]
  • A Differential–Developmental Model (DDM): Mental Speed, Attention Lapses, and General Intelligence (G)
    Commentary A Differential–Developmental Model (DDM): Mental Speed, Attention Lapses, and General Intelligence (g) Thomas R. Coyle Department of Psychology, University of Texas at San Antonio, San Antonio, TX 78249, USA; [email protected]; Tel.: +1-210-458-7407; Fax: +1-210-458-5728 Academic Editors: Andreas Demetriou and George Spanoudis Received: 23 December 2016; Accepted: 6 June 2017; Published: 12 June 2017 Abstract: The aim of this paper is to provide a parsimonious account of developmental and individual differences in intelligence (measured as g). The paper proposes a Differential– Developmental Model (DDM), which focuses on factors common to intelligence and cognitive development (e.g., mental speed and attention lapses). It also proposes a complementary method based on Jensen’s box, namely a chronometric device. The device systematically varies task complexity, and separates two components of mental speed that differentially predict intelligence and cognitive development (reaction time and movement time). The paper reviews key assumptions of DDM, preliminary findings relevant to DDM, and future research on DDM. Keywords: cognitive development; differential–developmental model (DDM); Jensen’s box; intelligence; mental speed; attention lapses; reaction time; movement time 1. Introduction All models are wrong, but some are useful. ([1], p. 202). The aim of this paper is to provide a parsimonious account of developmental and individual difference in intelligence (measured as g). 1 To this end, the paper proposes a Differential– Developmental Model (DDM), which focuses on factors common to cognitive development and intelligence (e.g., mental speed and attention lapses). The model attempts to bridge the two disciplines at the heart of the Special Issue: differential psychology, which focuses on individual differences in intelligence, and cognitive development, which focuses on age differences in intelligence.
    [Show full text]
  • Information Systems Theorizing Based on Evolutionary Psychology: an Interdisciplinary Review and Theory Integration Framework1
    Kock/IS Theorizing Based on Evolutionary Psychology THEORY AND REVIEW INFORMATION SYSTEMS THEORIZING BASED ON EVOLUTIONARY PSYCHOLOGY: AN INTERDISCIPLINARY REVIEW AND THEORY INTEGRATION FRAMEWORK1 By: Ned Kock on one evolutionary information systems theory—media Division of International Business and Technology naturalness theory—previously developed as an alternative to Studies media richness theory, and one non-evolutionary information Texas A&M International University systems theory, channel expansion theory. 5201 University Boulevard Laredo, TX 78041 Keywords: Information systems, evolutionary psychology, U.S.A. theory development, media richness theory, media naturalness [email protected] theory, channel expansion theory Abstract Introduction Evolutionary psychology holds great promise as one of the possible pillars on which information systems theorizing can While information systems as a distinct area of research has take place. Arguably, evolutionary psychology can provide the potential to be a reference for other disciplines, it is the key to many counterintuitive predictions of behavior reasonable to argue that information systems theorizing can toward technology, because many of the evolved instincts that benefit from fresh new insights from other fields of inquiry, influence our behavior are below our level of conscious which may in turn enhance even more the reference potential awareness; often those instincts lead to behavioral responses of information systems (Baskerville and Myers 2002). After that are not self-evident. This paper provides a discussion of all, to be influential in other disciplines, information systems information systems theorizing based on evolutionary psych- research should address problems that are perceived as rele- ology, centered on key human evolution and evolutionary vant by scholars in those disciplines and in ways that are genetics concepts and notions.
    [Show full text]
  • The Causal Role of Consciousness: a Conceptual Addendum to Human Evolutionary Psychology
    Review of General Psychology Copyright 2004 by the Educational Publishing Foundation 2004, Vol. 8, No. 4, 227–248 1089-2680/04/$12.00 DOI: 10.1037/1089-2680.8.4.227 The Causal Role of Consciousness: A Conceptual Addendum to Human Evolutionary Psychology Jesse M. Bering Todd K. Shackelford University of Arkansas Florida Atlantic University By concentrating on the unconscious processes driving evolutionary mechanisms, evolutionary psychology has neglected the role of consciousness in generating human adaptations. The authors argue that there exist several “Darwinian algorithms” that are grounded in a novel representational system. Among such adaptations are information- retention homicide, the killing of others who are believed to possess information about the self that has the potential to jeopardize inclusive fitness, and those generating suicide, which may necessitate the capacity for self-referential emotions such as shame. The authors offer these examples to support their argument that human psychology is characterized by a representational system in which conscious motives have inserted themselves at the level of the gene and have fundamentally changed the nature of hominid evolution. Evolutionary psychologists frequently reca- However, in certain cases, this approach may pitulate the theme that adaptive behaviors are not accurately capture the complexities of hu- guided by unconscious processes servicing ge- man evolution because it tends to ignore the role netic selection in individual organisms (Buss, of consciousness in the emergence of unique 1995, 1999; Daly & Wilson, 1999; Dawkins, human adaptations. We define consciousness as 1986; Leger, Kamil, & French, 2001; Symons, that naturally occurring cognitive representa- 1992). Among many other examples, such tional capacity permitting explicit and reflective “blind” fitness-enhancing algorithms include accounts of the—mostly causative—contents of those that are devoted to mate selection, child mind, contents harbored by the psychological rearing, and altruism.
    [Show full text]
  • A Mind in the Water: the Dolphin As Our Beast of Burden
    A Mind in the WAter The dolphin as our beast of burden D. Graham Burnett 38 O R I O N m ay | june 2010 m ay | june 2010 O R I O N 39 On the 3rd Of July 1814, a gang of scrappy Devonshire fish- selves. If, as Thoreau wrote a few years after the slaying of the ermen and crabbers working the Duncannon Pool of the Dart Dart River dolphin, “animals . are all beasts of burden, in a River in southwestern England fell upon a huge and disoriented sense, made to carry a portion of our thoughts,” then there are sea creature that had made its way too far up the tidal reach few creatures that have done more hauling for Homo sapiens in and too close to the village of Stoke Gabriel. After four hours of the twentieth century than Tursiops truncatus. bludgeoning it with boathooks in the muddy shallows (aided by How? Why? Answering these questions demands a turn a pair of furious terriers), they heard the twelve-foot fish emit a through the strange history of postwar American science and plaintive, expiring wail, “like the bellowing of a bull.” And that culture, and the unbraiding of a set of unlikely historical threads: was that. Cold War brain science, military bioacoustics, Hollywood mytho- Or that would have been that, except word of the catch reached poesis, and early LSD experimentation. Recovering our strange the ears of Colonel George Montagu, who lived in patrician se- and changing preoccupations with the bottlenose dolphin across clusion on his estate some ten miles down the road.
    [Show full text]
  • Theory of Mind for a Humanoid Robot
    Theory of Mind for a Humanoid Robot Brian Scassellati MIT Artificial Intelligence Lab 545 Technology Square – Room 938 Cambridge, MA 02139 USA [email protected] http://www.ai.mit.edu/people/scaz/ Abstract. If we are to build human-like robots that can interact naturally with people, our robots must know not only about the properties of objects but also the properties of animate agents in the world. One of the fundamental social skills for humans is the attribution of beliefs, goals, and desires to other people. This set of skills has often been called a “theory of mind.” This paper presents the theories of Leslie [27] and Baron-Cohen [2] on the development of theory of mind in human children and discusses the potential application of both of these theories to building robots with similar capabilities. Initial implementation details and basic skills (such as finding faces and eyes and distinguishing animate from inanimate stimuli) are introduced. I further speculate on the usefulness of a robotic implementation in evaluating and comparing these two models. 1 Introduction Human social dynamics rely upon the ability to correctly attribute beliefs, goals, and percepts to other people. This set of metarepresentational abilities, which have been collectively called a “theory of mind” or the ability to “mentalize”, allows us to understand the actions and expressions of others within an intentional or goal-directed framework (what Dennett [15] has called the intentional stance). The recognition that other individuals have knowl- edge, perceptions, and intentions that differ from our own is a critical step in a child’s development and is believed to be instrumental in self-recognition, in providing a perceptual grounding during language learning, and possibly in the development of imaginative and creative play [9].
    [Show full text]