Comparative Studies of Human Cognitive Evolution: the Future of Anthropology? Pp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handedness Development: a Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination
S S symmetry Review Handedness Development: A Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination George F. Michel Psychology Department, University of North Carolina Greensboro, P.O. Box 26170, Greensboro, NC 27402-6170, USA; [email protected] Abstract: The author presents his perspective on the character of science, development, and handed- ness and relates these to his investigations of the early development of handedness. After presenting some ideas on what hemispheric specialization of function might mean for neural processing and how handedness should be assessed, the neuroscience of control of the arms/hands and interhemi- spheric communication and coordination are examined for how developmental processes can affect these mechanisms. The author’s work on the development of early handedness is reviewed and placed within a context of cascading events in which different forms of handedness emerge from earlier forms but not in a deterministic manner. This approach supports a continuous rather than categorical distribution of handedness and accounts for the predominance of right-handedness while maintaining a minority of left-handedness. Finally, the relation of the development of handedness to the development of several language and cognitive skills is examined. Keywords: development; handedness; lateralization; hemispheric specialization; interhemispheric Citation: Michel, G.F. Handedness coordination; embodiment Development: A Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination. 1. Introduction Symmetry 2021, 13, 992. https:// There is a general consensus among neuroscientists that the human left and right doi.org/10.3390/sym13060992 hemispheres of the brain have different perceptual, motor, emotional, and cognitive func- tions with the most distinctive difference of a left-hemisphere predominance in praxis (e.g., Academic Editor: Gillian Forrester gestures and tool use) and language (speech and comprehension) functions [1]. -
En Quête D'indices Dans Les Eaux Du Lagon : La Récolte D'organismes
10 HINA, les femmes et la pêche - Bulletin de la CPS n°20 - Juin 2010 En quête d’indices dans les eaux du lagon : La récolte d’organismes marins serait-il le miroir de notre évolution passée ? Thomas Malm1 Introduction qu’il s’agisse de navigation en pirogues, de pêche ou de plongée. En général, jusqu’à la fin du XXe siècle, peu « Je n’avais jamais vu auparavant des enfants grandir d’auteurs mentionnaient le fait que les femmes partici- libres de toute contrainte imposée par la civilisation et j’ai paient aussi sensiblement à l’exploitation des ressources pleinement profité de cette occasion qui m’était donnée, » marines (voir par exemple Malm 1999 ; Matthews 1995). écrivit James Norman Hall au sujet de son voyage dans l’une des îles de l’archipel des Tuamotu il y a 90 ans. De nos jours, de nombreux chercheurs et la plupart des services des pêches d’Océanie sont bien au fait L’après-midi, nous allions nous baigner dans de l’importance des activités féminines de ramassage les eaux du lagon. C’est là qu’ils m’ont semblé d’organismes marins dans les communautés locales au meilleur d’eux-mêmes et le plus heureux, et de l’intérêt qu’il y a à étudier les savoirs spécialisés dans un élément qui leur était aussi nécessaire que ces activités exigent. Dans ce type d’études, tout et familier qu’il l’était pour leurs parents. C’est comme dans les miennes (Malm 1999, 2007a-b, 2009), toujours un plaisir d’observer des enfants le but déclaré est souvent de remettre en question jouer dans l’eau, mais ces jeunes enfants des l’idée préconçue que la récolte de coquillages ne revêt Tuamotu, par la grâce naturelle de leurs mou- aucun intérêt ni importance culturelle. -
Evolutionary Cognitive Neuroscience Cognitive Neuroscience Michael S
MD DALIM #870693 9/24/06 GREEN PURPLE Evolutionary Cognitive Neuroscience Cognitive Neuroscience Michael S. Gazzaniga, editor Gary Lynch, Synapses, Circuits, and the Beginning of Memory Barry E. Stein and M. Alex Meredith, The Merging of the Senses Richard B. Ivry and Lynn C. Robertson, The Two Sides of Perception Steven J. Luck, An Introduction to the Event-Related Potential Technique Roberto Cabeza and Alan Kingstone, eds., Handbook of Functional Neuroimaging of Cognition Carl Senior, Tamara Russell, and Michael S. Gazzaniga, eds., Methods in Mind Steven M. Platek, Julian Paul Keenan, and Todd K. Shackelford, eds., Evolutionary Cognitive Neuroscience Evolutionary Cognitive Neuroscience Edited by Steven M. Platek, Julian Paul Keenan, and Todd K. Shackelford The MIT Press Cambridge, Massachusetts London, England © 2007 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or informa- tion storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email special_sales@mitpress. mit.edu or write to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge, MA 02142. This book printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Evolutionary cognitive neuroscience / edited by Steven M. Platek, Julian Paul Keenan, and Todd K. Shackelford. p. cm.—(Cognitive neuroscience) Includes bibliographical references and index. ISBN 13: 978-0-262-16241-8 ISBN 10: 0-262-16241-5 1. Cognitive neuroscience. 2. -
A Differential–Developmental Model (DDM): Mental Speed, Attention Lapses, and General Intelligence (G)
Commentary A Differential–Developmental Model (DDM): Mental Speed, Attention Lapses, and General Intelligence (g) Thomas R. Coyle Department of Psychology, University of Texas at San Antonio, San Antonio, TX 78249, USA; [email protected]; Tel.: +1-210-458-7407; Fax: +1-210-458-5728 Academic Editors: Andreas Demetriou and George Spanoudis Received: 23 December 2016; Accepted: 6 June 2017; Published: 12 June 2017 Abstract: The aim of this paper is to provide a parsimonious account of developmental and individual differences in intelligence (measured as g). The paper proposes a Differential– Developmental Model (DDM), which focuses on factors common to intelligence and cognitive development (e.g., mental speed and attention lapses). It also proposes a complementary method based on Jensen’s box, namely a chronometric device. The device systematically varies task complexity, and separates two components of mental speed that differentially predict intelligence and cognitive development (reaction time and movement time). The paper reviews key assumptions of DDM, preliminary findings relevant to DDM, and future research on DDM. Keywords: cognitive development; differential–developmental model (DDM); Jensen’s box; intelligence; mental speed; attention lapses; reaction time; movement time 1. Introduction All models are wrong, but some are useful. ([1], p. 202). The aim of this paper is to provide a parsimonious account of developmental and individual difference in intelligence (measured as g). 1 To this end, the paper proposes a Differential– Developmental Model (DDM), which focuses on factors common to cognitive development and intelligence (e.g., mental speed and attention lapses). The model attempts to bridge the two disciplines at the heart of the Special Issue: differential psychology, which focuses on individual differences in intelligence, and cognitive development, which focuses on age differences in intelligence. -
The Causal Role of Consciousness: a Conceptual Addendum to Human Evolutionary Psychology
Review of General Psychology Copyright 2004 by the Educational Publishing Foundation 2004, Vol. 8, No. 4, 227–248 1089-2680/04/$12.00 DOI: 10.1037/1089-2680.8.4.227 The Causal Role of Consciousness: A Conceptual Addendum to Human Evolutionary Psychology Jesse M. Bering Todd K. Shackelford University of Arkansas Florida Atlantic University By concentrating on the unconscious processes driving evolutionary mechanisms, evolutionary psychology has neglected the role of consciousness in generating human adaptations. The authors argue that there exist several “Darwinian algorithms” that are grounded in a novel representational system. Among such adaptations are information- retention homicide, the killing of others who are believed to possess information about the self that has the potential to jeopardize inclusive fitness, and those generating suicide, which may necessitate the capacity for self-referential emotions such as shame. The authors offer these examples to support their argument that human psychology is characterized by a representational system in which conscious motives have inserted themselves at the level of the gene and have fundamentally changed the nature of hominid evolution. Evolutionary psychologists frequently reca- However, in certain cases, this approach may pitulate the theme that adaptive behaviors are not accurately capture the complexities of hu- guided by unconscious processes servicing ge- man evolution because it tends to ignore the role netic selection in individual organisms (Buss, of consciousness in the emergence of unique 1995, 1999; Daly & Wilson, 1999; Dawkins, human adaptations. We define consciousness as 1986; Leger, Kamil, & French, 2001; Symons, that naturally occurring cognitive representa- 1992). Among many other examples, such tional capacity permitting explicit and reflective “blind” fitness-enhancing algorithms include accounts of the—mostly causative—contents of those that are devoted to mate selection, child mind, contents harbored by the psychological rearing, and altruism. -
Theory of Mind for a Humanoid Robot
Theory of Mind for a Humanoid Robot Brian Scassellati MIT Artificial Intelligence Lab 545 Technology Square – Room 938 Cambridge, MA 02139 USA [email protected] http://www.ai.mit.edu/people/scaz/ Abstract. If we are to build human-like robots that can interact naturally with people, our robots must know not only about the properties of objects but also the properties of animate agents in the world. One of the fundamental social skills for humans is the attribution of beliefs, goals, and desires to other people. This set of skills has often been called a “theory of mind.” This paper presents the theories of Leslie [27] and Baron-Cohen [2] on the development of theory of mind in human children and discusses the potential application of both of these theories to building robots with similar capabilities. Initial implementation details and basic skills (such as finding faces and eyes and distinguishing animate from inanimate stimuli) are introduced. I further speculate on the usefulness of a robotic implementation in evaluating and comparing these two models. 1 Introduction Human social dynamics rely upon the ability to correctly attribute beliefs, goals, and percepts to other people. This set of metarepresentational abilities, which have been collectively called a “theory of mind” or the ability to “mentalize”, allows us to understand the actions and expressions of others within an intentional or goal-directed framework (what Dennett [15] has called the intentional stance). The recognition that other individuals have knowl- edge, perceptions, and intentions that differ from our own is a critical step in a child’s development and is believed to be instrumental in self-recognition, in providing a perceptual grounding during language learning, and possibly in the development of imaginative and creative play [9]. -
Developmental Differentiation of Executive Functions on the NIH Toolbox Cognition Battery
Neuropsychology © 2018 American Psychological Association 2018, Vol. 32, No. 7, 777–783 0894-4105/18/$12.00 http://dx.doi.org/10.1037/neu0000476 Developmental Differentiation of Executive Functions on the NIH Toolbox Cognition Battery Natacha Akshoomoff and Timothy T. Brown Roger Bakeman University of California, San Diego Georgia State University Donald J. Hagler Jr. On Behalf of the University of California, San Diego Pediatric Imaging, Neurocognition, and Genetics Study Objective: The NIH Toolbox Cognition Battery (NTCB) is a brief computerized method for evaluating neuropsychological functions in children, adolescents, and adults. We examined how performance on the 2 executive function measures of cognitive flexibility and inhibitory control was related to performance on the other NTCB measures across development. Method: Participants were 1,020 typically developing individuals between the ages of 3 and 21 from the Pediatric Imaging, Neurocognition, and Genetics Study who were divided into 5 age groups (3–6, 7–9, 10–13, 14–17, and 18–21). Scores were adjusted for sex, level of parental education, and family income. Results: Although the correlations between the 2 executive function measures were moderate and consistent across age groups, their correlations with the other 5 cognitive measures were highest in the youngest age group and decreased across the older age groups. Exploratory factor analysis revealed that all NTCB measures loaded onto a single factor for the 3- to 6-year-olds. Across the older age groups, the executive function and processing speed measures loaded onto one factor, and the vocabulary knowledge, oral reading, and working memory measures loaded onto a second factor. -
Heterochrony in Chimpanzee and Bonobo Spatial Memory Development
Rosati Alexandra (Orcid ID: 0000-0002-6906-7807) Heterochrony in chimpanzee and bonobo spatial memory development Alexandra G. Rosati Correspondence Departments of Psychology and Anthropology University of Michigan 530 Church St Ann Arbor, MI 48109 [email protected] Keywords: Comparative cognition; spatial cognition; life history; ecology; apes Funding information: This work was supported by an L.S.B. Leakey Foundation, and AGR was supported by NIA R01AG04395. Figures and tables: 5 Black-and-white figures, 2 tables This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ajpa.23833 This article is protected by copyright. All rights reserved. Abstract Objectives: The emergence of human-unique cognitive abilities has been linked to our species’ extended juvenile period. Comparisons of cognitive development across species can provide new insights into the evolutionary mechanisms shaping cognition. This study examined the development of different components of spatial memory, cognitive mechanisms that support complex foraging, by comparing two species with similar life history that vary in wild ecology: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). Materials and Methods: Spatial memory development was assessed using a cross- sectional experimental design comparing apes ranging from infancy to adulthood. Study 1 tested 73 sanctuary-living apes on a task examining recall of a single location after a one-week delay, compared to an earlier session. Study 2 tested their ability to recall multiple locations within a complex environment. -
Human Frontal Lobes Are Not Relatively Large
Human frontal lobes are not relatively large Robert A. Bartona,1 and Chris Vendittib aEvolutionary Anthropology Research Group, Department of Anthropology, Durham University, Durham DH1 3LE, United Kingdom; and bSchool of Biological Sciences, University of Reading, Reading RG6 6AS, United Kingdom Edited by Katerina Semendeferi, University of California, San Diego, La Jolla, CA, and accepted by the Editorial Board March 12, 2013 (received for review September 10, 2012) One of the most pervasive assumptions about human brain evolu- logged—volumes) (3–5, 7). These measures suggest that human tion is that it involved relative enlargement of the frontal lobes. We frontal cortices are larger as a proportion of total brain size than show that this assumption is without foundation. Analysis of five in other species. However, proportional size differences conflate independent data sets using correctly scaled measures and phylo- selective enlargement with allometric scaling. Volumes of dif- genetic methods reveals that the size of human frontal lobes, and of ferent brain structures change at different rates as brain and body specific frontal regions, is as expected relative to the size of other size evolve (14, 15), and with different implications for variables brain structures. Recent claims for relative enlargement of human more directly related to information processing than volume, such frontal white matter volume, and for relative enlargement shared by as numbers of neurons and synapses (16). For example, the vol- all great apes, seem to be mistaken. -
South Bay Historical Society Bulletin December 2017 Issue No
South Bay Historical Society Bulletin December 2017 Issue No. 17 First People ocean and from the broad Tijuana River lagoon that existed back then. Also found was Coso Who were the First People? Where did they obsidian from Inyo County over 300 miles away, live? How were they able to survive? At our showing that these people had an extensive meeting on Monday, December 11 at 6 pm in trade network.2 the Chula Vista Library, Dennis Gallegos will answer these questions. His new book, First The First People may have come to the South People: A Revised Chronology for San Diego Bay long before those found at Remington Hills. County, examines the archaeological evidence Scientists from the San Diego Natural History going back to the end of the Ice Age 10,000 Museum have examined mastodon bones years ago. The ancestors of todayʼs Kumeyaay may have come down the coast from the shrinking Bering land bridge. Ancestors who spoke the ancient Hokan language may have come from the east, overland from the receding waters of the Great Basin. These early people (Californiaʼs first migrants) were called the “Scraper-Makers” by the pioneering archaeologist Malcolm Rogers in the 1920s.1 The name came from the stone tools that Rogers discovered at many sites in San Diego County, from the San Dieguito River in the north to the Otay River in the south. Rogers described their culture as the “San Dieguito pattern” based on his research at the Harris site near Lake Hodges on the San Dieguito River. This same cultural pattern and stone tools have been found at the Remington Hills site in western Otay Mesa. -
Functional Independence and Cognitive Architecture
(forthcoming in The British Journal for the Philosophy of Science) Functional independence and cognitive architecture Vincent Bergeron Abstract In cognitive science, the concept of dissociation has been central to the functional individuation and decomposition of cognitive systems. Setting aside debates about the legitimacy of inferring the existence of dissociable systems from behavioral dissociation data, the main idea behind the dissociation approach is that two cognitive systems are dissociable, and therefore viewed as distinct, if each can be damaged, or impaired, without affecting the other system’s functions. In this paper, I propose a notion of functional independence that does not require dissociability, and describe an approach to the functional decomposition and modelling of cognitive systems that complements the dissociation approach. I show that highly integrated cognitive and neurocognitive systems can be decomposed into non-dissociable but functionally independent components, and argue that this approach can provide a general account of cognitive specialization in terms of stable structure-function relationship. 1. Introduction 2. Functional Independence Without Dissociability 3. FI Systems and Cognitive Architecture 4. FI Systems and Cognitive Specialization 1 Introduction In cognitive science, the concept of dissociation has been central to the functional individuation and decomposition of cognitive systems. The main idea behind the dissociation approach is that two cognitive systems are dissociable, and therefore viewed as distinct, if each can be damaged, or impaired, without affecting the other system’s functions. More precisely, consider two cognitive systems A and B. If B can be damaged (or impaired) without affecting A’s functions, and A can be damaged (or impaired) without affecting B’s functions, then A and B are dissociable (and distinct) systems (even if the two might share some of their components). -
Evolutionary Psychology and the Lakatosian Philosophy of Science
Psychological Inquiry Copyright © 2000 by 2000, Vol. 11, No. 1, 1–21 Lawrence Erlbaum Associates, Inc. TARGET ARTICLE Are Evolutionary Explanations Unfalsifiable? Evolutionary Psychology and the Lakatosian Philosophy of Science Timothy Ketelaar Department of Communication Studies University of California, Los Angeles Bruce J. Ellis Department of Psychology University of Canterbury Are the methods and strategies that evolutionary psychologists use to generate and test hypotheses scientifically defensible? This target article addresses this question by reviewing principles of philosophy of science that are used to construct and evaluate metatheoretical research programs and applying these principles to evaluate evolu- tionary psychology. Examples of evolutionary models of family violence, sexual jeal- ousy, and male parental investment are utilized to evaluate whether the procedures for developing and testing evolutionary psychological models are consistent with con- temporary philosophy of science. Special attention is paid to the generation of compet- ing theories and hypotheses within a single evolutionary framework. It is argued that this competition is a function of the multiple levels of scientific explanation employed by evolutionary psychologists, and that this explanatory system adheres to the Lakatosian philosophy of science. The charge that evolutionary theories and hypothe- ses are unfalsifiable is unwarranted and has its roots in a commonly accepted, but mis- taken, Popperian view of how science operates. Modern evolutionary theory meets the Lakatosian criterion of “progressivity,” based on its ability to digest apparent anom- alies and generate novel predictions and explanations. Evolutionary psychology has the hallmarks of a currently progressive research program capable of providing us with new knowledge of how the mind works.