Selection of Morphological Traits to Improve Forage Characteristics of Setaria Sphacelata Grown in Florida L

Total Page:16

File Type:pdf, Size:1020Kb

Selection of Morphological Traits to Improve Forage Characteristics of Setaria Sphacelata Grown in Florida L This article was downloaded by: [200.129.254.1] On: 21 July 2011, At: 07:40 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK New Zealand Journal of Agricultural Research Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tnza20 Selection of morphological traits to improve forage characteristics of Setaria sphacelata grown in Florida L. Jank a , K. H. Quesenberry b , L. E. Sollenberger b , D. S. Wofford b & P. M. Lyrene c a Embrapa Beef Cattle, CxP.154, MS, Campo Grande, CEP 79002–970, Brazil E-mail: [email protected] b Agronomy Department, University of Florida, Gainesville, Florida, USA c Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA Available online: 22 Feb 2010 To cite this article: L. Jank, K. H. Quesenberry, L. E. Sollenberger, D. S. Wofford & P. M. Lyrene (2007): Selection of morphological traits to improve forage characteristics of Setaria sphacelata grown in Florida, New Zealand Journal of Agricultural Research, 50:1, 73-83 To link to this article: http://dx.doi.org/10.1080/00288230709510284 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Downloaded by [200.129.254.1] at 07:40 21 July 2011 New Zealand Journal of Agricultural Research, 2007, Vol. 50: 73-83 73 0028-8233/07/5001-0073 © The Royal Society of New Zealand 2007 Selection of morphological traits to improve forage characteristics of Setaria sphacelata grown in Florida L.JANK suited to Florida with improved yield and quality Embrapa Beef Cattle providing they tolerate winter cold and reliably CxP.154 produce seed. CEP 79002-970 Campo Grande MS, Brazil Keywords breeding; leaf width; inflorescence [email protected] number; forage production; forage quality K. H. QUESENBERRY L. E. SOLLENBERGER INTRODUCTION D. S. WOFFORD Agronomy Department The forage grass Setaria sphacelata (Schumacher) University of Florida Moss (setaria) has been widely used in medium Gainesville, Florida, USA rainfall subtropical regions as a pasture grass for grazing of dairy and beef cattle, as well as for silage P. M. LYRENE and hay. The species has been recommended for use Horticultural Sciences Department in tropical and subtropical countries with a mini- University of Florida mum yearly rainfall of 750 mm, or 580 mm on very Gainesville, Florida, USA fertile soils (Botha 1948). However, it grows better in wetter areas with no prolonged dry season (Rat- tray 1960), as in the wet zone of Sri Lanka (Assefa Abstract A genetically diverse population of & Premaratne 1990), on dairy farms in the humid Setaria sphacelata was developed at Gainesville, tropics of Costa Rica (Sanchez et al. 1998), and in Florida by intercrossing the cultivars 'Narok', 'Ka- Thailand (Hare et al. 1999). Animal performance on zungula' and 'Solander' and a local persistent popu- setaria pastures can be limited by low rainfall (Jones lation. To determine heritability of traits that may & Evans 1989). improve setaria as a forage plant in Florida, progeny Setaria has the desirable forage attributes of high of the intercrossed population underwent two cycles yield (Singh et al. 1995), persistence (Gibson & Downloaded by [200.129.254.1] at 07:40 21 July 2011 of selection for inflorescence number and one cycle Andrews 1985), high crude protein concentration for leaf width. The selected populations, together (Almeida & Flaresso 1991) and good animal per- with cultivars and introductions, were evaluated for formance (Jones & Evans 1989). In southern Brazil, morphological characters, yield and forage quality 'Narok' setaria was superior to Hemarthria altissima in field experiments with close- and wide-spaced for milk production (Martinez 1993), and in Mexico, plants. Increase of inflorescence number was not meat production on 'Kazungula' setaria was higher obtained by selection but resulted in decreased plant than on Brachiaria brizantha pastures (Partida et al. height, inflorescence length, yield, leaf width, and 1983). Recent evaluations have shown that setaria leafiness. Leaf width was increased by selection may have forage potential in Florida particularly if and was associated with increased leafiness and selections can be made to ensure winter survival whole-plant crude protein content. The results sug- (Jank et al. 2002). gest good prospects for selection of setaria cultivars Setaria sphacelata is a polyploid complex rang- ing from diploid to decaploid (Hacker 1968). The basic chromosome number is n = 9. It includes the varieties sphacelata, aurea (A. Br.) Clayton, torta A06037; Online publication date 2 March 2007 (Stapf) Clayton, sericea (Stapf) Clayton, and splen- Received 7 June 2006; accepted 17 November 2006 dida (Stapf) Clayton (Clayton & Renvoize 1982). 74 New Zealand Journal of Agricultural Research, 2007, Vol. 50 There is no clear morphological distinction between The objectives of this research were to produce these varieties and they readily intercross (Hacker advanced populations of S. sphacelata selected for 1968). Of the released cultivars, only 'Nandi' (var. morphological traits of agronomic value and to sericea) is diploid (Hacker 1966). All the others, evaluate the effects of this selection on agronomic 'Kazungula' and 'Narok' (var. sericea) and 'Solan- performance in a common environment. Specific der' and 'Splenda' (crosses between var. sericea and objectives were to increase dry matter yield through var. splendida) are tetraploid (Hacker 1966; Oram selection of wider leafed populations, and increase 1986). seed production through selection of higher inflo- Setaria is largely cross-pollinating and apomixis rescence number populations. has not been reported. Favoured by self-incompat- ibility, random mating of inflorescences from se- lected parents has been successful when combined with multiple recurrent selection cycles to enhance MATERIALS AND METHODS the process of plant improvement (Jank et al. 2002). Early breeding focused on S. sphacelata var. sericea Base population for traits such as forage yield, seed yield and frost A population of S. sphacelata with a wide genetic tolerance (Jank & Hacker 2003). Later, var. splen- base was planted in August 1996 at the Agronomy dida was incorporated into the breeding programmes Forage Research Unit (AFRU) of the University because it is more robust than var. sericea and has a of Florida, near Gainesville, Florida (29°75 N, higher number of culm nodes, greater culm diameter, 82°4 W). Two thousand seedlings were planted on wider leaves and is taller and later flowering. The 90 cm centres. The population was a bulk of seeds only negative aspects of this introduction was its from 'Narok', 'Kazungula', and 'Solander' and from almost complete sterility (Hacker 1985). Since then, roadside plants that had persisted for many years improved seed production was the focus of many at the University of Florida Range Cattle Research breeding programmes (Wijk 1980; Hacker 1991a,b; and Education Center at Ona, Florida. 'Narok' and Hacker &Cuany 1997). 'Solander' were selected in Australia for frost toler- High heritabilities were found for leaf width ance and are recommended for subtropical areas. (Hacker & Bray 1981), inflorescence length, and til- 'Kazungula' was selected in South Africa for graz- ler fertility (Hacker & Cuany 1997), suggesting that ing and hay production and is indicated for more these traits can be easily selected. Wide leaves may tropical areas (Jank & Hacker 2003). This cultivar increase sward density and thus may increase short- is the most widely grown one and the most drought term intake by cattle. Inflorescence length and tiller tolerant. It is very productive in summer, but this fertility may increase seed production. Leaf width is associated to high stem and seed production. was positively correlated with flower inflorescence 'Narok' and 'Solander' are leafier than 'Kazungula' number and with dry weight. Selection for increased and retain green leaf after light frosts. Seed yield of dry matter yield should result in earlier flowering 'Solander' is twice that of'Narok' because of double Downloaded by [200.129.254.1] at 07:40 21 July 2011 plants with shorter inflorescences (Hacker & Bray the tiller fertility and number of heads, but still less 1981). than 'Kazungula' (Jank & Hacker 2003). A breeding programme of S. sphacelata was In autumn of 1996, grid selection for autumn developed in Gainesville, Florida since 1996, to vigour was applied to this population. The two or establish the use of this plant for forage production three most vigorous plants in each 25-plant block in the State. A base population was developed from (five rows of five plants) were selected to provide a bulk of seeds of introduced cultivars and a local 200 plants (Fig. 1). Two inflorescences per selected persistent population, and was evaluated to ensure plant were harvested when they were fully extended persistence in Florida. The key factor, tolerance of and before flowers opened to show stigmas or sta- winter cold, was assessed and proved possible to mens. The inflorescences were cut from the base be improved (Jank et al. 2002). Persistence under of the 200 selected plants with roots attached and grazing in Florida conditions was also ascertained placed together in a bucket of water in a green- (Paul Mislevy pers.
Recommended publications
  • Grasses & Legumes for Tropical Pastures
    GRASSES AND LEGUMES FOR T PC ........ ¥leAR GRASSES 'AND LEGUMES FOR TROPICAL PASTURES B. K. Trivedi 'll1.q.'i'fl.31."fi. IGFRI Indian Grassland and Fodder Research Institute, Jhansi - 284 003, India Supervision & Guidance: Dr. P.S. Pathak Director, IGFRI, Jhansi Edited by: S.A. Faruqui G. Suresh K.C. Pandey Published : October, 2002 Published by : Director Indian Grassland and Fodder Research Institute Jhansi-284 003 India Printed at : Mini Printers Jhansi Ph. :447831,446820 Front Cover (Background) Pasture developed in CPRs Front Cover (Inset) Pasture Legume - Stylo Back Cover 1. Sehima nervosum 2. Iseilema laxum 3. Vetiveria zizanoides 4. Heteropogon contortus CONTENTS Page No. Foreword Preface Introduction........................................................................................................................ 1 Techniques for nursery raising............................................................................................. 3 Package of practices Grasses............................................................................................................................ 5 Legumes ·........................................................................... 31 Appendix Important fodder species suitable fordifferent.. 47 agroclimatic regions of India FOREWORD Grasslands and pastures play an important role in the sustenance and development of animal husbandry, which is an indispensable part of Indian agriculture. But the main reasons for the poor performance of livestock in the country are inadequate supply
    [Show full text]
  • Ecological Role of Dry-Habitat Chimpanzees (Pan Troglodytes Schweinfurthii)
    Ecological Role of Dry-Habitat Chimpanzees (Pan troglodytes schweinfurthii) at Issa, Ugalla, Tanzania by Samantha M. Russak A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2013 by the Graduate Supervisory Committee: Kaye Reed, Chair Gary Schwartz Leanne Nash ARIZONA STATE UNIVERSITY May 2013 ABSTRACT Identifying the ecological role, or niche, that a species occupies within their larger community elucidates environmental adaptability and evolutionary success. This dissertation investigates the occupied niche of chimpanzees (Pan troglodytes schweinfurthii) living in an open, dry savanna-woodland environment by examining patterns of resource use and interspecific interactions. Data were collected October 2010—November 2011 at Issa, in the Ugalla region of western Tanzania, which is one of the driest, most open, and seasonal habitats inhabited by chimpanzees. Unlike most primatological studies which employ methods that include focal follows, this study focused instead on observing ‘resource patches’ for chimpanzees. Patch focals allow for the observation of all animals within a study area; capture resources that are not used by the study species; and are particularly well suited for unhabituated communities. In order to better understand relationships between environment and behavior, data collected at Issa are compared with published data from other chimpanzee populations. Issa chimpanzees were expected to have broader resource use than forest chimpanzees, as well as increased competition with other fauna, due to fewer available resources. However, in contrast to the assumption of food scarcity in dry habitats, dietary resources were available throughout the year. Like other populations, the diet of Issa chimpanzees consisted of mostly fruit, but unlike at other sites, the majority of plants consumed were woodland species.
    [Show full text]
  • Honolulu, Hawaii 96822
    COOPERATNE NATIONAL PARK FEmFas SIUDIES UNIT UNIVERSI'IY OF -1 AT MANQA Departmerrt of Botany 3190 Maile Way Honolulu, Hawaii 96822 (808) 948-8218 --- --- 551-1247 IFIS) - - - - - - Cliffod W. Smith, Unit Director Professor of Botany ~echnicalReport 64 C!HECXLI:ST OF VASaTLAR mANIS OF HAWAII VOLCANOES NATIONAL PARK Paul K. Higashino, Linda W. Cuddihy, Stephen J. Anderson, and Charles P. Stone August 1988 clacmiIST OF VASCULAR PLANrs OF HAWAII VOLCANOES NATIONAL PARK The following checMist is a campilation of all previous lists of plants for Hawaii Volcanoes National Park (HAVO) since that published by Fagerlund and Mitchell (1944). Also included are observations not found in earlier lists. The current checklist contains names from Fagerlund and Mitchell (1944) , Fagerlund (1947), Stone (1959), Doty and Mueller-Dambois (1966), and Fosberg (1975), as well as listings taken fram collections in the Research Herbarium of HAVO and from studies of specific areas in the Park. The current existence in the Park of many of the listed taxa has not been confirmed (particularly ornamentals and ruderals). Plants listed by previous authors were generally accepted and included even if their location in HAVO is unknown to the present authors. Exceptions are a few native species erroneously included on previous HAVO checklists, but now known to be based on collections from elsewhere on the Island. Other omissions on the current list are plant names considered by St. John (1973) to be synonyms of other listed taxa. The most recent comprehensive vascular plant list for HAVO was done in 1966 (Ihty and Mueller-Dombois 1966). In the 22 years since then, changes in the Park boundaries as well as growth in botanical knowledge of the area have necessitated an updated checklist.
    [Show full text]
  • WRA Species Report
    Family: Poaceae Taxon: Setaria sphacelata Synonym: Chaetochloa aurea (Hochst. ex A. Braun) Hitc Common Name: African bristle grass Panicum sphacelatum Schumach. broadleaf setaria Setaria almaspicata de Wit splendida setaria Setaria anceps Stapf Setaria aurea Hochst. ex A. Braun Setaria flabellata Stapf Setaria neglecta de Wit Setaria perennis Hack. Setaria splendida Stapf Setaria trinervia Stapf Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(HPWRA) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 19 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) 304 Environmental weed n=0, y = 2*multiplier
    [Show full text]
  • Cross-Species Transfer of SSR Markers in Setaria Sphacelata and Trichloris Crinita Sp
    Cross-species transfer of SSR markers in Setaria sphacelata and Trichloris crinita sp. Transferencia cruzada de marcadores SSR en Setaria sphacelata y Trichloris crinita sp. Cecilia Paola Randazzo1*, Andrea Matilde Ferri1, Leonela Carabajal Paladino2, Adriana Noemi Andres3, and Lorena Romina Ingala1 ABSTRACT RESUMEN Setaria sphacelata and Trichloris crinita are subtropical Setaria sphacelata y Trichloris crinita son especies forrajeras forage species that are important for livestock breeding in subtropicales, estratégicas para el desarrollo de la actividad ga- Argentina. Genomic information is scarce for these species, nadera argentina. Para estas especies, la información genómica and there are no molecular markers designed for them; this es escasa y no existen marcadores moleculares desarrollados limits the development of genetic improvement programs. en las mismas, por lo cual el desarrollo de programas de mejo- We performed a cross-species transfer of SSR markers from ramiento genético se ve limitado. En este contexto, realizamos several Poaceae species. In S. sphacelata, 8 SSR markers were una transferencia de marcadores SSR de varias especies de transferred from Setaria italica (40% transfer rate), exhibiting poáceas. En S. sphacelata, se transfirieron 8 marcadores de- 83% polymorphism. Kazungula, Splenda and Narok cultivars sarrollados en Setaria italica (tasa de transferencia del 40%), were genetically differentiated and the experimental material mostrando un 83% de polimorfismo. Los cultivares Kazungula, “Selección INTA” was separated from Narok, from which it was Splenda y Narok se diferenciaron genéticamente y el material derived. For T. crinita, 19 microsatellites were transferred from experimental “Selección INTA” se separó de Narok, del cual 5 Poaceae species (7.3% transfer rate), with 69% polymorphism.
    [Show full text]
  • Abundance, Richness and Diversity of Arbuscular Mycorrhizal Fungi Associated with Different Grass Species in Semiarid Region
    Indian Phytopath. 70 (2) : 228-231 (2017) DOI 10.24838/ip.2017.v70.i2.70753 RESEARCH ARTICLE Abundance, richness and diversity of arbuscular mycorrhizal fungi associated with different grass species in semiarid region HARSH VARDHAN SINGH Grassland and Silvipasture Management Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284 003, Uttar Pradesh, India Received: 18 April 2017/ Accepted: 26 May 2017/ Published online: 31 May 2017 © Indian Phytopathological Society 2017 ABSTRACT: Among herbaceous species, grasses play an important role in livestock feeding in the arid and semi-arid region, especially in water-limited conditions. In arid and semi-arid regions, grasses are more dominated in rangelands and highly dependent on mycorrhization. Root and rhizosphere soil of fifteen grass species were collected to study at Jhansi the root colonization and AM fungal spore population structure. The potential of AM fungal root colonization varied between highest 85.5 percent in Cenchrus ciliaris to lowest 16 percent in Paspalum notatum. AM fungal spore abundance (2394.1/ 100 g rhizosphere soil) was observed with grass species C. ciliaris. A total of 9 AM fungal species isolated and identified. Genus Glomus was the most abundant genus in all selected grass species. There is no clear relationship between root colonization potential and AM fungal spore abundance. All the grass species showed higher AM fungal diversity in their rhizosphere soil. It is clear from this study that grass species are dependent on AM fungal association and had species diversity in the natural ecosystem. Diversity and evenness in AM fungi across the grass species rhizosphere had no any significant relation, however, grass species had higher AM fungi species richness showed less evenness.
    [Show full text]
  • C:\My Documents\Sally\Wetlands See CD\Volume II Chaps 1 & 2 Whole
    Zambezi Basin Wetlands Volume II : Chapters 1 & 2 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 1 : VEGETATION ........................................... 1 1.1 Introduction .................................................................. 1 1.2 Wetland vegetation and habitats .................................. 2 1.3 East Caprivi, Namibia .................................................. 5 1.4 Barotse Floodplain, Western Zambia ........................... 8 1.5 Zambezi Delta, Mozambique ........................................ 11 1.6 Overall assessment and conclusions ............................. 15 1.7 References .................................................................... 16 FIGURES 1.2-1.5 Vegetation maps ................................. 19 APPENDICES ............................................................... 27 Appendix 1.1: Zambezi Delta - vegetation type descriptions .................................................... 27 CHAPTER 2 : WETLAND PLANTS .................................. 31 2.1 Introduction ................................................................... 31 2.2. Previous work ............................................................... 32 2.3 Wetland habitat types ................................................... 34 2.4 Wetland species ............................................................ 35 2.5 Aquatic weeds .............................................................. 40 2.6 Sites and species of interest .......................................... 41
    [Show full text]
  • North American Wild Relatives of Grain Crops
    North Central Regional Plant Introduction NCRPIS Publications and Papers Station 2019 North American Wild Relatives of Grain Crops David M. Brenner Iowa State University, [email protected] Harold E. Bockelman U.S. Department of Agriculture Karen A. Williams U.S. Department of Agriculture Follow this and additional works at: https://lib.dr.iastate.edu/ncrpis_pubs Part of the Agricultural Science Commons, Agriculture Commons, and the Plant Breeding and Genetics Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ncrpis_pubs/89. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the North Central Regional Plant Introduction Station at Iowa State University Digital Repository. It has been accepted for inclusion in NCRPIS Publications and Papers by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. North American Wild Relatives of Grain Crops Abstract The wild-growing relatives of the grain crops are useful for long-term worldwide crop improvement research. There are neglected examples that should be accessioned as living seeds in gene banks. Some of the grain crops, amaranth, barnyard millet, proso millet, quinoa, and foxtail millet, have understudied unique and potentially useful crop wild relatives in North America. Other grain crops, barley, buckwheat, and oats, have fewer relatives in North America that are mostly weeds from other continents with more diverse crop wild relatives. The expanding abilities of genomic science are a reason to accession the wild species since there are improved ways to study evolution within genera and make use of wide gene pools.
    [Show full text]
  • High Value Plant (HVPS) Setaria Sphacelata.Pdf
    This report was generated from the SEPASAL database ( www.kew.org/ceb/sepasal ) in August 2007. This database is freely available to members of the public. SEPASAL is a database and enquiry service about useful "wild" and semi-domesticated plants of tropical and subtropical drylands, developed and maintained at the Royal Botanic Gardens, Kew. "Useful" includes plants which humans eat, use as medicine, feed to animals, make things from, use as fuel, and many other uses. Since 2004, there has been a Namibian SEPASAL team, based at the National Botanical Research Institute of the Ministry of Agriculture which has been updating the information on Namibian species from Namibian and southern African literature and unpublished sources. By August 2007, over 700 Namibian species had been updated. Work on updating species information, and adding new species to the database, is ongoing. It may be worth visiting the web site and querying the database to obtain the latest information for this species. Internet SEPASAL New query Edit query View query results Display help In names list include: synonyms vernacular names and display: All names per page Your query found 2 taxa Setaria sphacelata (Schumach.)M.B.Moss [ 1362 ] Family: POACEAE Synonyms None recorded Vernacular names (Mozambique) cununo [ 5480 ], quisumbe [ 5480 ] Afrikaans kanariegras [ 2259 ] (Namibia) Afrikaans (South gewone mannagras [ 5117 ], gewone setaria [ 2259 ], goue mannagras [ 2259 ] [ 5117 ], kanariegras Africa) [2259 ], katstertmannagras [ 2259 ], kruipmannagras [ 5117 ], ou
    [Show full text]
  • Poisonous Plant Research
    International Journal of Poisonous Plant Research A Journal for Research and Investigation of Poisonous Plants ISSN 2154-3216 Tom Vilsack, Secretary U.S. Department of Agriculture Catherine E. Woteki, Under Secretary Research, Education and Economics Edward B. Knipling, Administrator Agricultural Research Service Sandy Miller Hays, Director Information Staff Editors-in-Chief Kip E. Panter James A. Pfister USDA-ARS Poisonous Plant Research Lab Logan, UT Editorial Board Christo Botha Dale Gardner Anthony Knight South Africa USA USA Peter Cheeke Silvana Lima Gorniak Franklin Riet-Correa USA Brazil Brazil Steven Colegate Jeff Hall Bryan Stegelmeier USA USA USA John Edgar Gonzalo Diaz Kevin Welch Australia Colombia USA Editorial Advisory Board Chemistry Pathology Range Science/Botany Stephen Lee Claudio SL Barros Michael Ralphs USA Brazil USA Immunology Pharmacology Toxicology Isis Hueza Benedict Green Eduardo J Gimeno Brazil USA Argentina Molecular Biology/Biochemistry Plant Physiology Veterinary Science Zane Davis Daniel Cook Jeremy Allen USA USA Australia Assistant Editor Terrie Wierenga USDA-ARS Poisonous Plant Research Lab Logan, UT Aim and Scope The International Journal of Poisonous Plant Research publishes original papers on all aspects of poisonous plants including identification, analyses of toxins, case reports, control methods, and ecology. Access and Subscription The International Journal of Poisonous Plant Research is published twice a year (spring and fall) by the U.S. Department of Agriculture. All journal contents are available online without access fee or password control. Visit the Journal at http://www.ars.usda.gov/is/np/PoisonousPlants/PoisonousPlantResearchJournalIntro.htm. Full-text articles in PDF format also are freely available online. Submission Information To obtain submission instructions and contributor information, contact Editors-in-Chief Kip E.
    [Show full text]
  • The Naturalised Vascular Plants of the Pilbara Region, Western Australia
    DOI: 10.18195/issn.0313-122x.78(1).2010.299-311 Records of the Western Australian Museum, Supplement 78: 299–311 (2010). The naturalised vascular plants of the Pilbara region, Western Australia Greg Keighery Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia. Email: [email protected] Abstract – Populations of 103 weeds are currently established in the Pilbara, comprising 6.3% of the region’s fl ora; 19 are here newly recorded since the previous listing in 2004. Most originated in tropical Africa, America or Asia and were introduced intentionally as garden, amenity or fodder plants. Most are annual or perennial herbs with small seeds usually dispersed in soil, machinery, wind and water. Fourteen species affect the region at a landscape scale by altering fi re patterns, modifying soil characteristics or competing directly with native species. Another 15 species signifi cantly modify particular habitats such as wetlands, 6 are major threats to islands and a further 16 have potential threat to Pilbara environments. INTRODUCTION results of fi eld survey work carried out as part of a wider biodiversity survey of the Pilbara Since European settlement, exotic plant species bioregion (McKenzie et al. 2009), and provides a (weeds) have become naturalised in Australia at fuller inventory and appraisal of the conservation the rate of about 7 to 11 species per year (Csurshes implications of naturalised plants in the Pilbara. and Edwards 1998). Currently, 2739 species are naturalised in Australia (Randall 2007), which METHODS is about 19% of the fl ora. Even so, with a short history of European settlement, Australia is still Preparing an inventory of weeds for the Pilbara comparatively free of weeds when compared required survey methods different from those to countries such as Britain with 32% and New used in the elucidation of patterns in the native Zealand with 51% of their fl oras naturalised exotics biota.
    [Show full text]
  • Departamento De Ciencias De La Vida
    DEPARTAMENTO DE CIENCIAS DE LA VIDA MAESTRÍA EN PRODUCCIÓN ANIMAL III PROMOCIÓN TESIS PREVIO A LA OBTENCIÓN DEL TÍTULO DE MAGÍSTER EN PRODUCCIÓN ANIMAL TEMA: COMPORTAMIENTO AGRONÓMICO, COMPOSICIÓN QUÍMICA Y DEGRADABILIDAD RUMINAL in situ DEL PASTO MIEL (Setaria sphacelata), CANTÓN PANGUA PROVINCIA DE COTOPAXI. AUTOR: RIVERA CORREA, GABRIELA FERNANDA DIRECTOR: DR. AVELLANEDA, JUAN SANGOLQUÍ 2015 ii CERTIFICADO En mi calidad de Director del Trabajo de Grado presentado por la MVZ. Gabriela Fernanda Rivera Correa, previo a la obtención del Grado de Magister en Producción Animal, considero que dicho Trabajo reúne los requisitos y disposiciones emitidas por Escuela Politécnica del Ejército, por medio de la Dirección General de Posgrado para ser sometido a la evaluación por parte del examinador que se designe. En la Ciudad de Quevedo, a los 3 días del mes de mayo del 2015. __________________________________ Juan Humberto Avellaneda Cevallos; M.C., Dr. C. C.I: 1202977714 iii CERTIFICACIÓN DE AUTORÍA DE RESPONSABILIDAD Yo Gabriela Fernanda Rivera Correa, declaro bajo juramento que el trabajo aquí descrito es de mi autoría, que no ha sido presentado para ningún grado o calificación profesional. Además; y, que de acuerdo a la Ley de propiedad intelectual, el presente Trabajo de Investigación pertenecen todos los derechos a la Escuela Superior Politécnica del Ejercito- Sangolquí-Quito. ___________________________________ MVZ. Gabriela Fernanda Rivera Correa C.I. 1204395352 iv AUTORIZACIÓN DE PUBLICACIÓN Yo, Gabriela Fernanda Rivera Correa, con cédula
    [Show full text]