WRA Species Report

Total Page:16

File Type:pdf, Size:1020Kb

WRA Species Report Family: Poaceae Taxon: Setaria sphacelata Synonym: Chaetochloa aurea (Hochst. ex A. Braun) Hitc Common Name: African bristle grass Panicum sphacelatum Schumach. broadleaf setaria Setaria almaspicata de Wit splendida setaria Setaria anceps Stapf Setaria aurea Hochst. ex A. Braun Setaria flabellata Stapf Setaria neglecta de Wit Setaria perennis Hack. Setaria splendida Stapf Setaria trinervia Stapf Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(HPWRA) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 19 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see y Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 406 Host for recognized pests and pathogens y=1, n=0 y Print Date: 2/1/2011 Setaria sphacelata (Poaceae) Page 1 of 9 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 y 410 Tolerates a wide range of soil conditions (or limestone conditions if not a volcanic island) y=1, n=0 y 411 Climbing or smothering growth habit y=1, n=0 n 412 Forms dense thickets y=1, n=0 y 501 Aquatic y=5, n=0 n 502 Grass y=1, n=0 y 503 Nitrogen fixing woody plant y=1, n=0 n 504 Geophyte (herbaceous with underground storage organs -- bulbs, corms, or tubers) y=1, n=0 n 601 Evidence of substantial reproductive failure in native habitat y=1, n=0 n 602 Produces viable seed y=1, n=-1 y 603 Hybridizes naturally y=1, n=-1 y 604 Self-compatible or apomictic y=1, n=-1 y 605 Requires specialist pollinators y=-1, n=0 n 606 Reproduction by vegetative fragmentation y=1, n=-1 y 607 Minimum generative time (years) 1 year = 1, 2 or 3 years = 0, 1 4+ years = -1 701 Propagules likely to be dispersed unintentionally (plants growing in heavily trafficked y=1, n=-1 y areas) 702 Propagules dispersed intentionally by people y=1, n=-1 y 703 Propagules likely to disperse as a produce contaminant y=1, n=-1 704 Propagules adapted to wind dispersal y=1, n=-1 y 705 Propagules water dispersed y=1, n=-1 n 706 Propagules bird dispersed y=1, n=-1 n 707 Propagules dispersed by other animals (externally) y=1, n=-1 n 708 Propagules survive passage through the gut y=1, n=-1 y 801 Prolific seed production (>1000/m2) y=1, n=-1 802 Evidence that a persistent propagule bank is formed (>1 yr) y=1, n=-1 n 803 Well controlled by herbicides y=-1, n=1 y 804 Tolerates, or benefits from, mutilation, cultivation, or fire y=1, n=-1 y 805 Effective natural enemies present locally (e.g. introduced biocontrol agents) y=-1, n=1 Designation: H(HPWRA) WRA Score 19 Print Date: 2/1/2011 Setaria sphacelata (Poaceae) Page 2 of 9 Supporting Data: 101 1979. Clayton, W.D.. Notes on Setaria "Morphological relationships are here re examined using a sample of tropical (Gramineae). Kew Bulletin. 33(3): 501-509. African specimens assignable to the four commonest traditional species...When plotted (Fig. 2) it is evident that S. sphacelata S. anceps and S. splendida represent segments of a continuous gradient of plant size...It is evident that, both in the cytogenetic and morphological sense, these entities form a continuum, and that there is no case for recognizing more than one species." 101 2001. Sotomayor-Ríos, A./Pitman, W.D.. Tropical Several cultivars & varieties, but no indication that any are highly domesticated to forage plants: development and use. CRC Press, the point in which there ability to naturalize or invade would be minimized Boca Raton, FL 102 2011. WRA Specialist. Personal Communication. NA 103 2011. WRA Specialist. Personal Communication. NA 201 2006. Quattrocchi, U.. CRC World Dictionary of "Tropical and South Africa, Yemen, Arabia." Grasses: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology. Volume I. CRC Press, Boca Raton, FL 202 2006. Quattrocchi, U.. CRC World Dictionary of [Species highly suited to tropical and subtropical climates] Grasses: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology. Volume I. CRC Press, Boca Raton, FL 203 1993. Boonman, J.G.. East Africa's grasses and "…widespread in East Africa, mainly in the humid Zone II (3.4.2), independent of fodders: their ecology and husbandry. Kluwer altitude (from sea level to 3000 m), and the wetter parts of Zone III. Setaria Academic Publishers, Dordrecht, The occurs in Kikuyu- and Stargrass zone but also in the humid lowlands in central Netherlands Zaire (Blouard & Behaeghe, 1961)…Its natural occurrence at altitudes above 2500 m, occasionally to about 3000 m, makes it not surprising that Setaria tolerates light frosts well." [broad elevational range within the tropics] 203 2005. Cook, B.G./Pengelly, B.C./Brown, "Best suited to non-equatorial conditions. Found in its native environment from S.D./Donnelly, J.L./Eagles, D.A./Franco, sea level to 3,300 m, most commonly between 600 and 2,700 m asl. Grows best M.A./Hanson, J./Mullen, B.F./Partridge, at about 18 22°C. Moderate early season growth in the subtropics and upland I.J./Peters, M/Schultze-Kraft, R.. Tropical tropics, with 'Narok' and 'Solander' producing up to four times the cool season Forages: an interactive selection tool., [CD- yield of the other cultivars. Frost tolerance varies with provenance/cultivar, with ROM],. SIRO, DPI&F(Qld), CIAT and ILRI, http: 'Narok' and 'Solander' the most frost tolerant, sustaining little leaf damage at grass temperatures down to -3°C (similar to Paspalum dilatatum ). 'Kazungula' is more cold tolerant than 'Nandi' in which plants are killed at -4°C." 204 2006. Quattrocchi, U.. CRC World Dictionary of "Tropical and South Africa, Yemen, Arabia." [Native or naturalized in regions with Grasses: Common Names, Scientific Names, tropical or subtropical climates] Eponyms, Synonyms, and Etymology. Volume I. CRC Press, Boca Raton, FL 205 2005. Cook, B.G./Pengelly, B.C./Brown, "Commonly planted in Africa, Asia, and Australia, becoming naturalised beyond S.D./Donnelly, J.L./Eagles, D.A./Franco, the planted areas." [refers to Setaria sphacelata var. anceps] M.A./Hanson, J./Mullen, B.F./Partridge, I.J./Peters, M/Schultze-Kraft, R.. Tropical Forages: an interactive selection tool., [CD- ROM],. SIRO, DPI&F(Qld), CIAT and ILRI, http: 301 2002. Starr, F./Martz, K./Loope, L.L.. New plant "Setaria sphacelata Stapf & Hubb. Ex M.B. Moss New naturalized record Native records from the Hawaiian archipelago. Bishop to Africa, S. sphacelata is cultivated in experiment stations and escaped along Museum Occasional Papers. 69: 16-27. irrigation ditches in California (Hitchcock, 1971: 720). In Hawai‘i, it has recently been found in mesic pastures in Kokomo, Maui. R. Hobdy recalls collecting this species near the Pi‘iholo experimental station in the 1980s, about one mile from the Kokomo site. This collection documents the naturalized status on Maui and represents a new state record. Tufted perennial, glabrous or nearly so, often with stout rhizomes; culms 0.5–1.5 m tall, flattened; blades flat, rather lax, 4–10 mm wide; panicle dense, cylindric, 8–15 cm long, usually orange to purple, bristles mostly 5 or more, 3–6 mm long; spikelets 2.5–3 mm long; fruit finely rugose (Hitchcock, 1971: 720). Material examined. MAUI: E. Maui, Kokomo, pastures on Kaupakulua Rd, 1500 ft [457 m], 4 Aug 1999, Starr & Martz 990804-1." 301 2003. Laegaard, S./Garcia, P.P.. Invasive "Setaria sphacelata is also of African origin. Only in a couple of places in grasses in the Galapagos Islands. Lyonia. 6: 171- Galápagos it has been observed as cultivated for grazing. In the mainland of 175. Ecuador it can become invasive but mainly at higher altitudes and in rather moist climate." Print Date: 2/1/2011 Setaria sphacelata (Poaceae) Page 3 of 9 301 2004. Herbst, D.R./Staples, G.W./Imada, C.T.. "First reported from the island of Maui as a naturalized species in Hawai‘i (Starr New Hawaiian plant records for 2002-2003. et al., 2002: 23), Setaria sphacelata has now been documented from three Bishop Museum Occasional Papers. 78: 3-12. additional islands: Kaua‘i, O‘ahu, and Hawai‘i.
Recommended publications
  • Selection of Morphological Traits to Improve Forage Characteristics of Setaria Sphacelata Grown in Florida L
    This article was downloaded by: [200.129.254.1] On: 21 July 2011, At: 07:40 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK New Zealand Journal of Agricultural Research Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tnza20 Selection of morphological traits to improve forage characteristics of Setaria sphacelata grown in Florida L. Jank a , K. H. Quesenberry b , L. E. Sollenberger b , D. S. Wofford b & P. M. Lyrene c a Embrapa Beef Cattle, CxP.154, MS, Campo Grande, CEP 79002–970, Brazil E-mail: [email protected] b Agronomy Department, University of Florida, Gainesville, Florida, USA c Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA Available online: 22 Feb 2010 To cite this article: L. Jank, K. H. Quesenberry, L. E. Sollenberger, D. S. Wofford & P. M. Lyrene (2007): Selection of morphological traits to improve forage characteristics of Setaria sphacelata grown in Florida, New Zealand Journal of Agricultural Research, 50:1, 73-83 To link to this article: http://dx.doi.org/10.1080/00288230709510284 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date.
    [Show full text]
  • Grasses & Legumes for Tropical Pastures
    GRASSES AND LEGUMES FOR T PC ........ ¥leAR GRASSES 'AND LEGUMES FOR TROPICAL PASTURES B. K. Trivedi 'll1.q.'i'fl.31."fi. IGFRI Indian Grassland and Fodder Research Institute, Jhansi - 284 003, India Supervision & Guidance: Dr. P.S. Pathak Director, IGFRI, Jhansi Edited by: S.A. Faruqui G. Suresh K.C. Pandey Published : October, 2002 Published by : Director Indian Grassland and Fodder Research Institute Jhansi-284 003 India Printed at : Mini Printers Jhansi Ph. :447831,446820 Front Cover (Background) Pasture developed in CPRs Front Cover (Inset) Pasture Legume - Stylo Back Cover 1. Sehima nervosum 2. Iseilema laxum 3. Vetiveria zizanoides 4. Heteropogon contortus CONTENTS Page No. Foreword Preface Introduction........................................................................................................................ 1 Techniques for nursery raising............................................................................................. 3 Package of practices Grasses............................................................................................................................ 5 Legumes ·........................................................................... 31 Appendix Important fodder species suitable fordifferent.. 47 agroclimatic regions of India FOREWORD Grasslands and pastures play an important role in the sustenance and development of animal husbandry, which is an indispensable part of Indian agriculture. But the main reasons for the poor performance of livestock in the country are inadequate supply
    [Show full text]
  • Ecological Role of Dry-Habitat Chimpanzees (Pan Troglodytes Schweinfurthii)
    Ecological Role of Dry-Habitat Chimpanzees (Pan troglodytes schweinfurthii) at Issa, Ugalla, Tanzania by Samantha M. Russak A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2013 by the Graduate Supervisory Committee: Kaye Reed, Chair Gary Schwartz Leanne Nash ARIZONA STATE UNIVERSITY May 2013 ABSTRACT Identifying the ecological role, or niche, that a species occupies within their larger community elucidates environmental adaptability and evolutionary success. This dissertation investigates the occupied niche of chimpanzees (Pan troglodytes schweinfurthii) living in an open, dry savanna-woodland environment by examining patterns of resource use and interspecific interactions. Data were collected October 2010—November 2011 at Issa, in the Ugalla region of western Tanzania, which is one of the driest, most open, and seasonal habitats inhabited by chimpanzees. Unlike most primatological studies which employ methods that include focal follows, this study focused instead on observing ‘resource patches’ for chimpanzees. Patch focals allow for the observation of all animals within a study area; capture resources that are not used by the study species; and are particularly well suited for unhabituated communities. In order to better understand relationships between environment and behavior, data collected at Issa are compared with published data from other chimpanzee populations. Issa chimpanzees were expected to have broader resource use than forest chimpanzees, as well as increased competition with other fauna, due to fewer available resources. However, in contrast to the assumption of food scarcity in dry habitats, dietary resources were available throughout the year. Like other populations, the diet of Issa chimpanzees consisted of mostly fruit, but unlike at other sites, the majority of plants consumed were woodland species.
    [Show full text]
  • Honolulu, Hawaii 96822
    COOPERATNE NATIONAL PARK FEmFas SIUDIES UNIT UNIVERSI'IY OF -1 AT MANQA Departmerrt of Botany 3190 Maile Way Honolulu, Hawaii 96822 (808) 948-8218 --- --- 551-1247 IFIS) - - - - - - Cliffod W. Smith, Unit Director Professor of Botany ~echnicalReport 64 C!HECXLI:ST OF VASaTLAR mANIS OF HAWAII VOLCANOES NATIONAL PARK Paul K. Higashino, Linda W. Cuddihy, Stephen J. Anderson, and Charles P. Stone August 1988 clacmiIST OF VASCULAR PLANrs OF HAWAII VOLCANOES NATIONAL PARK The following checMist is a campilation of all previous lists of plants for Hawaii Volcanoes National Park (HAVO) since that published by Fagerlund and Mitchell (1944). Also included are observations not found in earlier lists. The current checklist contains names from Fagerlund and Mitchell (1944) , Fagerlund (1947), Stone (1959), Doty and Mueller-Dambois (1966), and Fosberg (1975), as well as listings taken fram collections in the Research Herbarium of HAVO and from studies of specific areas in the Park. The current existence in the Park of many of the listed taxa has not been confirmed (particularly ornamentals and ruderals). Plants listed by previous authors were generally accepted and included even if their location in HAVO is unknown to the present authors. Exceptions are a few native species erroneously included on previous HAVO checklists, but now known to be based on collections from elsewhere on the Island. Other omissions on the current list are plant names considered by St. John (1973) to be synonyms of other listed taxa. The most recent comprehensive vascular plant list for HAVO was done in 1966 (Ihty and Mueller-Dombois 1966). In the 22 years since then, changes in the Park boundaries as well as growth in botanical knowledge of the area have necessitated an updated checklist.
    [Show full text]
  • Cross-Species Transfer of SSR Markers in Setaria Sphacelata and Trichloris Crinita Sp
    Cross-species transfer of SSR markers in Setaria sphacelata and Trichloris crinita sp. Transferencia cruzada de marcadores SSR en Setaria sphacelata y Trichloris crinita sp. Cecilia Paola Randazzo1*, Andrea Matilde Ferri1, Leonela Carabajal Paladino2, Adriana Noemi Andres3, and Lorena Romina Ingala1 ABSTRACT RESUMEN Setaria sphacelata and Trichloris crinita are subtropical Setaria sphacelata y Trichloris crinita son especies forrajeras forage species that are important for livestock breeding in subtropicales, estratégicas para el desarrollo de la actividad ga- Argentina. Genomic information is scarce for these species, nadera argentina. Para estas especies, la información genómica and there are no molecular markers designed for them; this es escasa y no existen marcadores moleculares desarrollados limits the development of genetic improvement programs. en las mismas, por lo cual el desarrollo de programas de mejo- We performed a cross-species transfer of SSR markers from ramiento genético se ve limitado. En este contexto, realizamos several Poaceae species. In S. sphacelata, 8 SSR markers were una transferencia de marcadores SSR de varias especies de transferred from Setaria italica (40% transfer rate), exhibiting poáceas. En S. sphacelata, se transfirieron 8 marcadores de- 83% polymorphism. Kazungula, Splenda and Narok cultivars sarrollados en Setaria italica (tasa de transferencia del 40%), were genetically differentiated and the experimental material mostrando un 83% de polimorfismo. Los cultivares Kazungula, “Selección INTA” was separated from Narok, from which it was Splenda y Narok se diferenciaron genéticamente y el material derived. For T. crinita, 19 microsatellites were transferred from experimental “Selección INTA” se separó de Narok, del cual 5 Poaceae species (7.3% transfer rate), with 69% polymorphism.
    [Show full text]
  • Abundance, Richness and Diversity of Arbuscular Mycorrhizal Fungi Associated with Different Grass Species in Semiarid Region
    Indian Phytopath. 70 (2) : 228-231 (2017) DOI 10.24838/ip.2017.v70.i2.70753 RESEARCH ARTICLE Abundance, richness and diversity of arbuscular mycorrhizal fungi associated with different grass species in semiarid region HARSH VARDHAN SINGH Grassland and Silvipasture Management Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284 003, Uttar Pradesh, India Received: 18 April 2017/ Accepted: 26 May 2017/ Published online: 31 May 2017 © Indian Phytopathological Society 2017 ABSTRACT: Among herbaceous species, grasses play an important role in livestock feeding in the arid and semi-arid region, especially in water-limited conditions. In arid and semi-arid regions, grasses are more dominated in rangelands and highly dependent on mycorrhization. Root and rhizosphere soil of fifteen grass species were collected to study at Jhansi the root colonization and AM fungal spore population structure. The potential of AM fungal root colonization varied between highest 85.5 percent in Cenchrus ciliaris to lowest 16 percent in Paspalum notatum. AM fungal spore abundance (2394.1/ 100 g rhizosphere soil) was observed with grass species C. ciliaris. A total of 9 AM fungal species isolated and identified. Genus Glomus was the most abundant genus in all selected grass species. There is no clear relationship between root colonization potential and AM fungal spore abundance. All the grass species showed higher AM fungal diversity in their rhizosphere soil. It is clear from this study that grass species are dependent on AM fungal association and had species diversity in the natural ecosystem. Diversity and evenness in AM fungi across the grass species rhizosphere had no any significant relation, however, grass species had higher AM fungi species richness showed less evenness.
    [Show full text]
  • C:\My Documents\Sally\Wetlands See CD\Volume II Chaps 1 & 2 Whole
    Zambezi Basin Wetlands Volume II : Chapters 1 & 2 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 1 : VEGETATION ........................................... 1 1.1 Introduction .................................................................. 1 1.2 Wetland vegetation and habitats .................................. 2 1.3 East Caprivi, Namibia .................................................. 5 1.4 Barotse Floodplain, Western Zambia ........................... 8 1.5 Zambezi Delta, Mozambique ........................................ 11 1.6 Overall assessment and conclusions ............................. 15 1.7 References .................................................................... 16 FIGURES 1.2-1.5 Vegetation maps ................................. 19 APPENDICES ............................................................... 27 Appendix 1.1: Zambezi Delta - vegetation type descriptions .................................................... 27 CHAPTER 2 : WETLAND PLANTS .................................. 31 2.1 Introduction ................................................................... 31 2.2. Previous work ............................................................... 32 2.3 Wetland habitat types ................................................... 34 2.4 Wetland species ............................................................ 35 2.5 Aquatic weeds .............................................................. 40 2.6 Sites and species of interest .......................................... 41
    [Show full text]
  • North American Wild Relatives of Grain Crops
    North Central Regional Plant Introduction NCRPIS Publications and Papers Station 2019 North American Wild Relatives of Grain Crops David M. Brenner Iowa State University, [email protected] Harold E. Bockelman U.S. Department of Agriculture Karen A. Williams U.S. Department of Agriculture Follow this and additional works at: https://lib.dr.iastate.edu/ncrpis_pubs Part of the Agricultural Science Commons, Agriculture Commons, and the Plant Breeding and Genetics Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ncrpis_pubs/89. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the North Central Regional Plant Introduction Station at Iowa State University Digital Repository. It has been accepted for inclusion in NCRPIS Publications and Papers by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. North American Wild Relatives of Grain Crops Abstract The wild-growing relatives of the grain crops are useful for long-term worldwide crop improvement research. There are neglected examples that should be accessioned as living seeds in gene banks. Some of the grain crops, amaranth, barnyard millet, proso millet, quinoa, and foxtail millet, have understudied unique and potentially useful crop wild relatives in North America. Other grain crops, barley, buckwheat, and oats, have fewer relatives in North America that are mostly weeds from other continents with more diverse crop wild relatives. The expanding abilities of genomic science are a reason to accession the wild species since there are improved ways to study evolution within genera and make use of wide gene pools.
    [Show full text]
  • High Value Plant (HVPS) Setaria Sphacelata.Pdf
    This report was generated from the SEPASAL database ( www.kew.org/ceb/sepasal ) in August 2007. This database is freely available to members of the public. SEPASAL is a database and enquiry service about useful "wild" and semi-domesticated plants of tropical and subtropical drylands, developed and maintained at the Royal Botanic Gardens, Kew. "Useful" includes plants which humans eat, use as medicine, feed to animals, make things from, use as fuel, and many other uses. Since 2004, there has been a Namibian SEPASAL team, based at the National Botanical Research Institute of the Ministry of Agriculture which has been updating the information on Namibian species from Namibian and southern African literature and unpublished sources. By August 2007, over 700 Namibian species had been updated. Work on updating species information, and adding new species to the database, is ongoing. It may be worth visiting the web site and querying the database to obtain the latest information for this species. Internet SEPASAL New query Edit query View query results Display help In names list include: synonyms vernacular names and display: All names per page Your query found 2 taxa Setaria sphacelata (Schumach.)M.B.Moss [ 1362 ] Family: POACEAE Synonyms None recorded Vernacular names (Mozambique) cununo [ 5480 ], quisumbe [ 5480 ] Afrikaans kanariegras [ 2259 ] (Namibia) Afrikaans (South gewone mannagras [ 5117 ], gewone setaria [ 2259 ], goue mannagras [ 2259 ] [ 5117 ], kanariegras Africa) [2259 ], katstertmannagras [ 2259 ], kruipmannagras [ 5117 ], ou
    [Show full text]
  • Poisonous Plant Research
    International Journal of Poisonous Plant Research A Journal for Research and Investigation of Poisonous Plants ISSN 2154-3216 Tom Vilsack, Secretary U.S. Department of Agriculture Catherine E. Woteki, Under Secretary Research, Education and Economics Edward B. Knipling, Administrator Agricultural Research Service Sandy Miller Hays, Director Information Staff Editors-in-Chief Kip E. Panter James A. Pfister USDA-ARS Poisonous Plant Research Lab Logan, UT Editorial Board Christo Botha Dale Gardner Anthony Knight South Africa USA USA Peter Cheeke Silvana Lima Gorniak Franklin Riet-Correa USA Brazil Brazil Steven Colegate Jeff Hall Bryan Stegelmeier USA USA USA John Edgar Gonzalo Diaz Kevin Welch Australia Colombia USA Editorial Advisory Board Chemistry Pathology Range Science/Botany Stephen Lee Claudio SL Barros Michael Ralphs USA Brazil USA Immunology Pharmacology Toxicology Isis Hueza Benedict Green Eduardo J Gimeno Brazil USA Argentina Molecular Biology/Biochemistry Plant Physiology Veterinary Science Zane Davis Daniel Cook Jeremy Allen USA USA Australia Assistant Editor Terrie Wierenga USDA-ARS Poisonous Plant Research Lab Logan, UT Aim and Scope The International Journal of Poisonous Plant Research publishes original papers on all aspects of poisonous plants including identification, analyses of toxins, case reports, control methods, and ecology. Access and Subscription The International Journal of Poisonous Plant Research is published twice a year (spring and fall) by the U.S. Department of Agriculture. All journal contents are available online without access fee or password control. Visit the Journal at http://www.ars.usda.gov/is/np/PoisonousPlants/PoisonousPlantResearchJournalIntro.htm. Full-text articles in PDF format also are freely available online. Submission Information To obtain submission instructions and contributor information, contact Editors-in-Chief Kip E.
    [Show full text]
  • The Naturalised Vascular Plants of the Pilbara Region, Western Australia
    DOI: 10.18195/issn.0313-122x.78(1).2010.299-311 Records of the Western Australian Museum, Supplement 78: 299–311 (2010). The naturalised vascular plants of the Pilbara region, Western Australia Greg Keighery Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia. Email: [email protected] Abstract – Populations of 103 weeds are currently established in the Pilbara, comprising 6.3% of the region’s fl ora; 19 are here newly recorded since the previous listing in 2004. Most originated in tropical Africa, America or Asia and were introduced intentionally as garden, amenity or fodder plants. Most are annual or perennial herbs with small seeds usually dispersed in soil, machinery, wind and water. Fourteen species affect the region at a landscape scale by altering fi re patterns, modifying soil characteristics or competing directly with native species. Another 15 species signifi cantly modify particular habitats such as wetlands, 6 are major threats to islands and a further 16 have potential threat to Pilbara environments. INTRODUCTION results of fi eld survey work carried out as part of a wider biodiversity survey of the Pilbara Since European settlement, exotic plant species bioregion (McKenzie et al. 2009), and provides a (weeds) have become naturalised in Australia at fuller inventory and appraisal of the conservation the rate of about 7 to 11 species per year (Csurshes implications of naturalised plants in the Pilbara. and Edwards 1998). Currently, 2739 species are naturalised in Australia (Randall 2007), which METHODS is about 19% of the fl ora. Even so, with a short history of European settlement, Australia is still Preparing an inventory of weeds for the Pilbara comparatively free of weeds when compared required survey methods different from those to countries such as Britain with 32% and New used in the elucidation of patterns in the native Zealand with 51% of their fl oras naturalised exotics biota.
    [Show full text]
  • Departamento De Ciencias De La Vida
    DEPARTAMENTO DE CIENCIAS DE LA VIDA MAESTRÍA EN PRODUCCIÓN ANIMAL III PROMOCIÓN TESIS PREVIO A LA OBTENCIÓN DEL TÍTULO DE MAGÍSTER EN PRODUCCIÓN ANIMAL TEMA: COMPORTAMIENTO AGRONÓMICO, COMPOSICIÓN QUÍMICA Y DEGRADABILIDAD RUMINAL in situ DEL PASTO MIEL (Setaria sphacelata), CANTÓN PANGUA PROVINCIA DE COTOPAXI. AUTOR: RIVERA CORREA, GABRIELA FERNANDA DIRECTOR: DR. AVELLANEDA, JUAN SANGOLQUÍ 2015 ii CERTIFICADO En mi calidad de Director del Trabajo de Grado presentado por la MVZ. Gabriela Fernanda Rivera Correa, previo a la obtención del Grado de Magister en Producción Animal, considero que dicho Trabajo reúne los requisitos y disposiciones emitidas por Escuela Politécnica del Ejército, por medio de la Dirección General de Posgrado para ser sometido a la evaluación por parte del examinador que se designe. En la Ciudad de Quevedo, a los 3 días del mes de mayo del 2015. __________________________________ Juan Humberto Avellaneda Cevallos; M.C., Dr. C. C.I: 1202977714 iii CERTIFICACIÓN DE AUTORÍA DE RESPONSABILIDAD Yo Gabriela Fernanda Rivera Correa, declaro bajo juramento que el trabajo aquí descrito es de mi autoría, que no ha sido presentado para ningún grado o calificación profesional. Además; y, que de acuerdo a la Ley de propiedad intelectual, el presente Trabajo de Investigación pertenecen todos los derechos a la Escuela Superior Politécnica del Ejercito- Sangolquí-Quito. ___________________________________ MVZ. Gabriela Fernanda Rivera Correa C.I. 1204395352 iv AUTORIZACIÓN DE PUBLICACIÓN Yo, Gabriela Fernanda Rivera Correa, con cédula
    [Show full text]