Determinação De Gasto Energético Por Actigrafia Em Contexto Ocupacional

Total Page:16

File Type:pdf, Size:1020Kb

Determinação De Gasto Energético Por Actigrafia Em Contexto Ocupacional Determinação de gasto energético por actigrafia em contexto ocupacional Tese apresentada como parte dos requisitos para obtenção do título de Doutor em Segurança e Saúde Ocupacionais André Duarte Lucena Orientadora: Joana Cristina Cardoso Guedes Faculdade de Engenharia da Universidade do Porto - FEUP Coorientadores: Mário Augusto Pires Vaz Faculdade de Engenharia da Universidade do Porto - FEUP Luiz Bueno da Silva Departamento de Engenharia de Produção da Universidade Federal da Paraíba – DEP/UFPB 2019 Faculdade de Engenharia da Universidade do Porto Rua Dr. Roberto Frias, s/n 4200-465 Porto PORTUGAL VoIP/SIP: [email protected] ISN: 3599*654 Telefone: +351 22 508 14 00 Fax: +351 22 508 14 40 URL:www.fe.up.pt Correio Electrónico:feup@ fe.up.pt iii Presidente do Juri Doutora Olivia Maria de Castro Pinho. Professora Catedrática da Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto. Vogais Doutor Nelson Bruno Martins Marques Costa, Professor Auxiliar da Escola de Engenharia da Universidade do Minho (Arguente) Doutor Manuel Rubim Silva Santos, Professor Coordenador da Escola Superior de Saúde do Instituto Politécnico do Porto (Arguente) Doutor João Manuel Abreu dos Santos Baptista, Professor Associado com Agregação da Faculdade de Engenharia da Universidade do Porto Doutora Joana Cristina Cardoso Guedes, Professora Auxiliar Convidada da Faculdade de Engenharia da Universidade do Porto (Orientadora) v “O trabalho é humano, mas o humano não é só trabalho. Mede- se o trabalho, mas o trabalho não mede o homem.” André Duarte Lucena vii Agradecimentos A Deus, por entender e crer que dEle, por Ele e para Ele são todas as coisas. A Hadassa, minha amada esposa, companheira de todas as horas, parceira acadêmica, principal incentivadora e inspiração para viver e prosseguir. A meus pais Walter e Fátima, primeiros mestres, exemplos de professores, incentivadores e patrocinadores dessa vivência. A meu irmão e também professor Adri, minha cunhada Larissa e meu sobrinho Pedro a quem amo, por quem sou amado e que torcem por mim. Aos demais familiares que toleraram a ausência, incentivaram e torceram pelo sucesso. Aos amigos de perto e de longe, por tantas vezes essenciais. À professora Doutora Joana Guedes pelo privilégio dessa parceria. Aos professores e colaboradores da FEUP, em especial aos professores Doutor João dos Santos Baptista, Doutor Mario Vaz e a Mestre Raquel Martins que contribuíram mais efetivamente nessa vivência. Ao professor Doutor Luiz Bueno, por aceitar a coorientação deste trabalho pelo que muito me honra; ao Mestre Erivaldo Lopes que além de colega de curso e profissão é excelente pesquisador; a Mestre Denisse Bustos, aos Engenheiros Weslley Cunha e Ittalo Santos pela parceria e suporte técnico-científico. Ao Labiomep por concessão de equipamentos para a componente experimental. A todos os que direta ou indiretamente contribuíram de alguma forma para a concretização deste ciclo, declaro minha gratidão. ix RESUMO Existem vários métodos de estimativa de gasto energético humano, sendo os mais comuns e mais precisos baseados na quantidade de calor perdido. O uso de actigrafia para o cálculo de gasto energético, é uma alternativa que tem apontado vantagens práticas em relação a outros métodos. Todavia, também apresenta oportunidades de melhoria. O objetivo principal deste trabalho é o desenvolvimento de um sistema de determinação de gasto energético por integração de actigrafia com outros parâmetros para aplicação em situações ocupacionais. Para tal, desenvolveu-se uma componente teórica com revisões de literatura para identificar as principais características das práticas de determinação de gasto energético por actigrafia; um experimento laboratorial com medições com 50 pessoas durante a execução de 15 atividades diversas, variando as posturas e o nível de atividade; e desenvolveu-se a modelação do gasto energético por dois métodos diferentes cujos resultados foram comparados com os resultados da replicação de outros métodos e de um método padrão recomendado em norma. Assim, foi possível propor um sistema de determinação do gasto energético para situações ocupacionais. O sistema considerou a integração de duas componentes: a medição das variáveis escolhidas com base no que aponta a literatura; e o algoritmo para converter essas variáveis em valores de gasto energético. Como resultado principal apresenta-se um sistema com variáveis relacionadas às pessoas e variáveis relacionadas ao movimento. Os instrumentos necessários são actígrafos, medidor de frequência cardíaca, analisador de composição corporal e questionários. O tratamento dos dados no sistema se dá por um modelo desenvolvido por um algoritmo de floresta aleatória. O erro médio dos dados do modelo em relação aos dados medidos foi de -0,0003409, o coeficiente de determinação R² = 0,9918, desvio padrão = 0,201179. Portanto, é possível e viável o desenvolvimento de um sistema para determinação do gasto energético para situações ocupacionais com erro comparável aos métodos da norma. Palavras-chave: Gasto energético, actigrafia, contexto ocupacional. xi ABSTRACT There are several methods to estimate human energy expenditure, being the most common and accurate based in the amount of heat lost. The use of actigraphy to calculate energy expenditure is an alternative that has shown practical advantages compared to other methods. Nevertheless, it also presents opportunities for improvement. The main goal of the work is the development of a system to measure energy expenditure by integrating actigraphy with other parameters to be used in occupational context. To this propose, was developed a theoretical component composed by reviews to identify the main practical features of energy expenditure determination by actigraphy; a laboratory experiment measuring 50 people while doing a 15 activities protocol, varying postures and activities intensity, two different methods to estimate energy expenditure in occupational situations were developed and the results were compared with other methods and a standard. The proposed system considers the integration of two components: the choosen variables measure based on the literature; and the algorithm to convert those variables in energy expenditure. As results is presented a system with variables related to people and variables related to movement. The necessary instruments are actigraphers, heart rate monitor, body composition analyzer and questionnaires. The treatment of the data in the system is given by a model developed by a random forest algorithm. The mean error of the model data refered to the measured data is -0.0003409, determination coefficient R² = 0.9918 and a standard deviation of 0.201179. Therefore, was possible and feasible to develop a system to determine the energy expenditure for occupational situations with comparable error to standard methods. Keywords: Energy expenditure, actigraphy, occupational context. xiii ÍNDICE INTRODUÇÃO GERAL ................................................................................................................ 1 PARTE 1. FUNDAMENTAÇÃO TEÓRICA E CONTEXTUALIZAÇÃO DO TEMA ............ 5 A. ASPETOS HISTÓRICOS SOBRE ENERGIA HUMANA, MÉTODOS DE ESTIMATIVA E ESTUDOS DO TRABALHO............................................................................ 7 i) Uma perspetiva da evolução histórica do conceito de energia humana ................................... 7 ii) Evolução dos conceitos modernos de energia humana e dos métodos de mensuração ............ 9 iii) Evolução de dispositivos de mensuração de atividade humana ............................................. 10 iv) Energia humana e a evolução dos estudos do trabalho .......................................................... 12 B. TRANSFORMAÇÃO DE ENERGIA NO CORPO HUMANO ......................................... 17 C. METODOLOGIAS DE DETERMINAÇÃO DE GASTO ENERGÉTICO ...................... 23 D. NORMATIZAÇÃO E DETERMINAÇÃO DE GASTO ENERGÉTICO ......................... 27 PARTE 2. COMPONENTE TEÓRICA ...................................................................................... 31 1 INTRODUÇÃO ...................................................................................................................... 33 1.1 OBJETIVOS E HIPÓTESE DA COMPONENTE TEÓRICA .............................................. 34 Objetivo geral da componente teórica .......................................................................................... 34 Objetivos específicos da componente teórica ............................................................................... 34 Hipótese da componente Teórica ................................................................................................. 34 1.2 ASPECTOS METODOLÓGICOS ........................................................................................ 34 2 UM PANORAMA SOBRE GASTO ENERGÉTICO E ACTIGRAFIA ............................ 37 2.1 INTRODUÇÃO .................................................................................................................... 37 2.2 CARACTERIZAÇÃO DO PROCESSO DE SELEÇÃO DOS ARTIGOS ........................... 37 2.3 RESULTADOS .................................................................................................................... 39 2.4 DISCUSSÃO ........................................................................................................................ 42 2.5 CONCLUSÕES .................................................................................................................... 45 3 EQUAÇÕES
Recommended publications
  • Network Map of Knowledge And
    Humphry Davy George Grosz Patrick Galvin August Wilhelm von Hofmann Mervyn Gotsman Peter Blake Willa Cather Norman Vincent Peale Hans Holbein the Elder David Bomberg Hans Lewy Mark Ryden Juan Gris Ian Stevenson Charles Coleman (English painter) Mauritz de Haas David Drake Donald E. Westlake John Morton Blum Yehuda Amichai Stephen Smale Bernd and Hilla Becher Vitsentzos Kornaros Maxfield Parrish L. Sprague de Camp Derek Jarman Baron Carl von Rokitansky John LaFarge Richard Francis Burton Jamie Hewlett George Sterling Sergei Winogradsky Federico Halbherr Jean-Léon Gérôme William M. Bass Roy Lichtenstein Jacob Isaakszoon van Ruisdael Tony Cliff Julia Margaret Cameron Arnold Sommerfeld Adrian Willaert Olga Arsenievna Oleinik LeMoine Fitzgerald Christian Krohg Wilfred Thesiger Jean-Joseph Benjamin-Constant Eva Hesse `Abd Allah ibn `Abbas Him Mark Lai Clark Ashton Smith Clint Eastwood Therkel Mathiassen Bettie Page Frank DuMond Peter Whittle Salvador Espriu Gaetano Fichera William Cubley Jean Tinguely Amado Nervo Sarat Chandra Chattopadhyay Ferdinand Hodler Françoise Sagan Dave Meltzer Anton Julius Carlson Bela Cikoš Sesija John Cleese Kan Nyunt Charlotte Lamb Benjamin Silliman Howard Hendricks Jim Russell (cartoonist) Kate Chopin Gary Becker Harvey Kurtzman Michel Tapié John C. Maxwell Stan Pitt Henry Lawson Gustave Boulanger Wayne Shorter Irshad Kamil Joseph Greenberg Dungeons & Dragons Serbian epic poetry Adrian Ludwig Richter Eliseu Visconti Albert Maignan Syed Nazeer Husain Hakushu Kitahara Lim Cheng Hoe David Brin Bernard Ogilvie Dodge Star Wars Karel Capek Hudson River School Alfred Hitchcock Vladimir Colin Robert Kroetsch Shah Abdul Latif Bhittai Stephen Sondheim Robert Ludlum Frank Frazetta Walter Tevis Sax Rohmer Rafael Sabatini Ralph Nader Manon Gropius Aristide Maillol Ed Roth Jonathan Dordick Abdur Razzaq (Professor) John W.
    [Show full text]
  • A Brief History of Nuclear Astrophysics
    A BRIEF HISTORY OF NUCLEAR ASTROPHYSICS PART I THE ENERGY OF THE SUN AND STARS Nikos Prantzos Institut d’Astrophysique de Paris Stellar Origin of Energy the Elements Nuclear Astrophysics Astronomy Nuclear Physics Thermodynamics: the energy of the Sun and the age of the Earth 1847 : Robert Julius von Mayer Sun heated by fall of meteors 1854 : Hermann von Helmholtz Gravitational energy of Kant’s contracting protosolar nebula of gas and dust turns into kinetic energy Timescale ~ EGrav/LSun ~ 30 My 1850s : William Thompson (Lord Kelvin) Sun heated at formation from meteorite fall, now « an incadescent liquid mass » cooling Age 10 – 100 My 1859: Charles Darwin Origin of species : Rate of erosion of the Weald valley is 1 inch/century or 22 miles wild (X 1100 feet high) in 300 My Such large Earth ages also required by geologists, like Charles Lyell A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J.
    [Show full text]
  • The Legacy of Henri Victor Regnault in the Arts and Sciences
    International Journal of Arts & Sciences, CD-ROM. ISSN: 1944-6934 :: 4(13):377–400 (2011) Copyright c 2011 by InternationalJournal.org THE LEGACY OF HENRI VICTOR REGNAULT IN THE ARTS AND SCIENCES Sébastien Poncet Laboratoire M2P2, France Laurie Dahlberg Bard College Annandale, USA The 21 st of July 2010 marked the bicentennial of the birth of Henri Victor Regnault, a famous French chemist and physicist and a pioneer of paper photography. During his lifetime, he received many honours and distinctions for his invaluable scientific contributions, especially to experimental thermodynamics. Colleague of the celebrated chemist Louis-Joseph Gay- Lussac (1778-1850) at the École des Mines and mentor of William Thomson (1824-1907) at the École Polytechnique, he is nowadays conspicuously absent from all the textbooks and reviews (Hertz, 2004) dealing with thermodynamics. This paper is thus the opportunity to recall his major contributions to the field of experimental thermodynamics but also to the nascent field, in those days, of organic chemistry. Avid amateur of photography, he devoted more than twenty years of his life to his second passion. Having initially taken up photography in the 1840s as a potential tool for scientific research, he ultimately made many more photographs for artistic and self-expressive purposes than scientific ones. He was a founding member of the Société Héliographique in 1851 and of the Société Française de Photographie in 1854. Like his scientific work, his photography was quickly forgotten upon his death, but has begun to attract new respect and recognition. Keywords: Henri Victor Regnault, Organic chemistry, Thermodynamics, Paper photography. INTRODUCTION Henri Victor Regnault (1810–1878) (see Figures 1a & 1b) was undoubtedly one of the great figures of thermodynamics of all time.
    [Show full text]
  • A Chronology of Significant Events in the History of Science and Technology
    A Chronology of Significant Events in the History of Science and Technology c. 2725 B.C. - Imhotep in Egypt considered the first medical doctor c. 2540 B.C. - Pyramids of Egypt constructed c. 2000 B.C. - Chinese discovered magnetic attraction c. 700 B.C. - Greeks discovered electric attraction produced by rubbing amber c. 600 B.C. - Anaximander discovered the ecliptic (the angle between the plane of the earth's rotation and the plane of the solar system) c. 600 B.C. - Thales proposed that nature should be understood by replacing myth with logic; that all matter is made of water c. 585 B.C. - Thales correctly predicted solar eclipse c. 530 B.C. - Pythagoras developed mathematical theory c. 500 B.C. - Anaximenes introduced the ideas of condensation and rarefaction c. 450 B.C. - Anaxagoras proposed the first clearly materialist philosophy - the universe is made entirely of matter in motion c. 370 B.C. - Leucippus and Democritus proposed that matter is made of small, indestructible particles 335 B.C. - Aristotle established the Lyceum; studied philosophy, logic c. 300 B.C. - Euclid wrote "Elements", a treatise on geometry c. 300 B.C. - Aristarchus proposed that the earth revolves around the sun; calculated diameter of the earth c. 300 B.C. - The number of volumes in the Library of Alexandria reached 500,000 c. 220 B.C. - Archimedes made discoveries in mathematics and mechanics c. 150 A.D. - Ptolemy studied mathematics, science, geography; proposed that the earth is the center of the solar system 190 - Chinese mathematicians calculated pi
    [Show full text]
  • Submission from Pat Naughtin
    Inquiry into Australia's future oil supply and alternative transport fuels Submission from Pat Naughtin Dear Committee members, My submission will be short and simple, and it applies to all four terms of reference. Here is my submission: When you are writing your report on this inquiry, could you please confine yourself to using the International System Of Units (SI) especially when you are referring to amounts of energy. SI has only one unit for energy — joule — with these multiples to measure larger amounts of energy — kilojoules, megajoules, gigajoules, terajoules, petajoules, exajoules, zettajoules, and yottajoules. This is the end of my submission. Supporting material You probably need to know a few things about this submission. What is the legal situation? See 1 Legal issues. Why is this submission needed? See 2 Deliberate confusion. Is the joule the right unit to use? See 3 Chronology of the joule. Why am I making a submission to your inquiry? See: 4 Why do I care about energy issues and the joule? Who is Pat Naughtin and does he know what he's talking about? See below signature. Cheers and best wishes with your inquiry, Pat Naughtin ASM (NSAA), LCAMS (USMA)* PO Box 305, Belmont, Geelong, Australia Phone 61 3 5241 2008 Pat Naughtin is the editor of the 'Numbers and measurement' chapter of the Australian Government Publishing Service 'Style manual – for writers, editors and printers'; he is a Member of the National Speakers Association of Australia and the International Association of Professional Speakers. He is a Lifetime Certified Advanced Metrication Specialist (LCAMS) with the United States Metric Association.
    [Show full text]
  • 1. Lecture 1 Opening Remarks
    1. LECTURE 1 OPENING REMARKS 1.1 Nature of Heat and Work Thermodynamics deals with heat and work - two processes by which a system transacts energy with its surroundings or with another system. Heat. By touching we can tell a hot body from a hotter body; we can tell a biting cold metal knob from the warm comfort of a wooden door1 on a winter morning. When a hot body comes into contact with a cold body, we often observe, it is the hot body which cools down and the cold body which warms up. Energy flows, naturally and spontaneously, from hot to cold and not and never the other way around2. Heat 3 is a process by which energy flows. Once the two bodies become equally warm, the flow stops. Thermal equilibrium obtains. Thus, an empirical notion of thermal equilibrium should have been known to man a long time ago. Work. Coming to the notion of work, we observe that when an object moves against an opposing force, work is done. • When you pull water up, from a well, against gravity, you do work. • If you want to push a car against the opposing friction, you must do work. • When you stretch a rubber band against the opposing entropic tension you do work. • When a fat man climbs up the stairs against gravity, he does work; • A fat man does more work when he climbs up the stairs than a not-so-fat man. Of course in a free fall, you do no work - you are not opposing gravity - though you will get hurt, for sure, when you hit the ground! 1 Incidentally, the door knob, the wooden door, and the cold surrounding atmosphere have been in contact with each other for so long they should have come into thermal equilibrium with each other.
    [Show full text]
  • The Short History of Science
    PHYSICS FOUNDATIONS SOCIETY THE FINNISH SOCIETY FOR NATURAL PHILOSOPHY PHYSICS FOUNDATIONS SOCIETY THE FINNISH SOCIETY FOR www.physicsfoundations.org NATURAL PHILOSOPHY www.lfs.fi Dr. Suntola’s “The Short History of Science” shows fascinating competence in its constructively critical in-depth exploration of the long path that the pioneers of metaphysics and empirical science have followed in building up our present understanding of physical reality. The book is made unique by the author’s perspective. He reflects the historical path to his Dynamic Universe theory that opens an unparalleled perspective to a deeper understanding of the harmony in nature – to click the pieces of the puzzle into their places. The book opens a unique possibility for the reader to make his own evaluation of the postulates behind our present understanding of reality. – Tarja Kallio-Tamminen, PhD, theoretical philosophy, MSc, high energy physics The book gives an exceptionally interesting perspective on the history of science and the development paths that have led to our scientific picture of physical reality. As a philosophical question, the reader may conclude how much the development has been directed by coincidences, and whether the picture of reality would have been different if another path had been chosen. – Heikki Sipilä, PhD, nuclear physics Would other routes have been chosen, if all modern experiments had been available to the early scientists? This is an excellent book for a guided scientific tour challenging the reader to an in-depth consideration of the choices made. – Ari Lehto, PhD, physics Tuomo Suntola, PhD in Electron Physics at Helsinki University of Technology (1971).
    [Show full text]
  • Fysikaalisen Maailmankuvan Kehitys
    Fysikaalisen maailmankuvan kehitys Reijo Rasinkangas 20. kesÄakuuta 2005 ii Kirjoittaja varaa tekijÄanoikeudet tekstiin ja kuviin itselleen; muuten tyÄo on kenen tahansa vapaasti kÄaytettÄavissÄa sekÄa opiskelussa ettÄa opetuksessa. Oulun yliopiston Fysikaalisten tieteiden laitoksen kÄayttÄoÄon teksti on tÄaysin vapaata. Esipuhe Fysikaalinen maailmankuva pitÄaÄa sisÄallÄaÄan kÄasityksemme ympÄarÄoivÄastÄa maa- ilmasta, maailmankaikkeuden olemuksesta aineen pienimpiin rakenneosiin ja niiden vuorovaikutuksiin. Kun vielÄa kurkotamme maailmankaikkeuden al- kuun, nÄaitÄa ÄaÄaripÄaitÄa, kosmologiaa ja kvanttimekaniikkaa, ei enÄaÄa voi erottaa toisistaan; tÄassÄa syy miksi fyysikot tavoittelevat | hieman mahtipontisesti mutta eivÄat aivan syyttÄa | 'kaiken teoriaa'. TÄamÄa johdanto fysikaaliseen maailmankuvaan etenee lÄahes kronologisessa jÄarjestyksessÄa. Aluksi tutustumme lyhyesti kehitykseen ennen antiikin aikaa. Sen jÄalkeen antiikille ja keskiajalle (johon renessanssikin kuuluu) on omat lu- kunsa. Uudelta ajalta alkaen materiaali on jaettu aikakausien pÄaÄatutkimusai- heiden mukaan lukuihin, jotka ovat osittain ajallisesti pÄaÄallekkÄaisiÄa. LiitteissÄa esitellÄaÄan mm. muutamia tieteen¯loso¯sia kÄasitteitÄa. Fysiikka tutkii luonnon perusvoimia eli -vuorovaikutuksia, niitÄa hallitse- via lakeja sekÄa niiden vÄalittÄomiÄa seurauksia. 'Puhtaan' fysiikan lisÄaksi tÄassÄa kÄasitellÄaÄan lyhyesti myÄos muita tieteenaloja. TÄahtitiede on melko hyvin edus- tettuna, koska sen kehitys on liittynyt lÄaheisesti fysiikan kehitykseen (toi- saalta jo
    [Show full text]
  • Statistical Physics University of Cambridge Part II Mathematical Tripos
    Preprint typeset in JHEP style - HYPER VERSION Statistical Physics University of Cambridge Part II Mathematical Tripos David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/statphys.html [email protected] { 1 { Recommended Books and Resources • Reif, Fundamentals of Statistical and Thermal Physics A comprehensive and detailed account of the subject. It's solid. It's good. It isn't quirky. • Kardar, Statistical Physics of Particles A modern view on the subject which offers many insights. It's superbly written, if a little brief in places. A companion volume, \The Statistical Physics of Fields" covers aspects of critical phenomena. Both are available to download as lecture notes. Links are given on the course webpage • Landau and Lifshitz, Statistical Physics Russian style: terse, encyclopedic, magnificent. Much of this book comes across as remarkably modern given that it was first published in 1958. • Mandl, Statistical Physics This is an easy going book with very clear explanations but doesn't go into as much detail as we will need for this course. If you're struggling to understand the basics, this is an excellent place to look. If you're after a detailed account of more advanced aspects, you should probably turn to one of the books above. • Pippard, The Elements of Classical Thermodynamics This beautiful little book walks you through the rather subtle logic of classical ther- modynamics. It's very well done. If Arnold Sommerfeld had read this book, he would have understood thermodynamics the first time round.
    [Show full text]
  • Download (5MB)
    UNA APROXIMACIÓN AL DEVENIR HISTÓRICO DEL PENSAMIENTO FÍSICO-MATEMÁTICO EN LA UNIVERSIDAD DE NARIÑO, 1905-1992 LUIS APHRANIO PORTILLA SALAZAR UNIVERSIDAD DE NARIÑO DOCTORADO EN CIENCIAS DE LA EDUCACIÓN LÍNEA EN HISTORIA DE LA EDUCACIÓN LATINOAMERICANA CONVENIO MULTILATERAL – RUDECOLOMBIA SAN JUAN DE PASTO 2016 UNA APROXIMACIÓN AL DEVENIR HISTÓRICO DEL PENSAMIENTO FÍSICO-MATEMÁTICO EN LA UNIVERSIDAD DE NARIÑO, 1905-1992 LUIS APHRANIO PORTILLA SALAZAR Tesis Doctoral Dr. JOSÉ EDMUNDO CALVACHE LÓPEZ Presidente de Tesis UNIVERSIDAD DE NARIÑO DOCTORADO EN CIENCIAS DE LA EDUCACIÓN LÍNEA EN HISTORIA DE LA EDUCACIÓN LATINOAMERICANA CONVENIO MULTILATERAL – RUDECOLOMBIA SAN JUAN DE PASTO 2016 NOTA DE RESPONSABILIDAD ―Las ideas y conclusiones aportadas en el Trabajo de Grado son responsabilidad exclusiva del autor‖. Artículo 1° del Acuerdo No 324 de octubre 11 de 1966, emanado del Honorable Consejo Directivo de la Universidad de Nariño. Nota de Aprobación _________________________________________________ _________________________________________________ _________________________________________________ _________________________________________________ _________________________________________________ _________________________________________________ ____________________________________________ Firma del Presidente de Tesis ____________________________________________ Firma del Jurado ____________________________________________ Firma del Jurado Dedico este trabajo a aquellos que les interesa conocer las raíces de nuestro pensamiento científico, para ahondar en los recovecos de la epistemología propia de la Ciencia Física versus las creencias de nuestros pueblos inteligentes, pero arraigados en el pasado. AGRADECIMIENTOS El autor expresa sus agradecimientos A aquellos que tendieron su mano firme y cálida hacia la tímida mía y me enseñaron a caminar. A aquellos que me enseñaron a leer y escribir. A aquellos que me enseñaron a querer las ciencias desde niño, desde joven. A aquellos que me enseñaron a dudar de lo que creía eran mis convicciones.
    [Show full text]
  • The Legacy of Henri Victor Regnault in the Arts and Sciences Sébastien Poncet, Laurie Dahlberg
    The legacy of Henri Victor Regnault in the arts and sciences Sébastien Poncet, Laurie Dahlberg To cite this version: Sébastien Poncet, Laurie Dahlberg. The legacy of Henri Victor Regnault in the arts and sciences. International Journal of Arts and Sciences, 2011, 4 (13), pp.377-400. hal-00678894 HAL Id: hal-00678894 https://hal.archives-ouvertes.fr/hal-00678894 Submitted on 14 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Legacy of Henri Victor Regnault in the Arts and Sciences Sébastien Poncet , Laboratoire M2P2, France Laurie Dahlberg , Bard College Annandale, USA Abstract: The 21 st of July 2010 marked the bicentennial of the birth of Henri Victor Regnault, a famous French chemist and physicist and a pioneer of paper photography. During his lifetime, he received many honours and distinctions for his invaluable scientific contributions, especially to experimental thermodynamics. Colleague of the celebrated chemist Louis-Joseph Gay-Lussac (1778-1850) at the École des Mines and mentor of William Thomson (1824-1907) at the École Polytechnique, he is nowadays conspicuously absent from all the textbooks and reviews (Hertz, 2004) dealing with thermodynamics. This paper is thus the opportunity to recall his major contributions to the field of experimental thermodynamics but also to the nascent field, in those days, of organic chemistry.
    [Show full text]
  • Scottish Thermogeological Heroes: 1
    Banks, D. (2016) Scottish pioneers of tools for low temperature geothermal applications: William Cullen, the Stirling brothers and William Rankine. International Journal for the History of Engineering and Technology, 86(2), pp. 147-160. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/128855/ Deposited on: 6 October 2016 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Banks 2016: Cullen, Stirling brothers, Rankine INT. J. FOR THE HISTORY OF ENG. & TECH. doi: 10.1080/17581206.2016.1223936 Scottish pioneers of tools for low temperature geothermal applications: William Cullen, the Stirling brothers and William Rankine David Banks School of Engineering, James Watt Building (South), University of Glasgow, Glasgow, G12 8QQ, UK Abstract The heat pump is a tool for extracting low temperature heat from the environment (e.g., from the shallow geosphere) and supplying it for space heating at a higher temperature. It is noteworthy that so much of the pioneering work that allowed the development of this tool was associated with Scottish scientists and engineers. William Cullen’s experimentation led to an understanding of the transfer of latent heat (which takes place at the evaporator of the heat pump). William Rankine and the Stirling brothers worked on the thermodynamic cycles that lie at the heart of many heat pumps and low temperature heat engines. William Thomson (Lord Kelvin) first proposed the use of the heat pump for space heating and, with James David Forbes, worked on an understanding of the behaviour of heat in the ground.
    [Show full text]