Institut Fiir Zoologie, Karl-Franzens-Universitat,Universitatsplatz 2, A-8010 Graz, Austria

Total Page:16

File Type:pdf, Size:1020Kb

Institut Fiir Zoologie, Karl-Franzens-Universitat,Universitatsplatz 2, A-8010 Graz, Austria NEUROPTERA INTERNATIONAL 6 (1) - 1990 p. 51-56 THE PLANIPENNIA EYE USING MANTISPA STYRIAC4 (PODA, 1761) (MANTISPIDAE) AS AN EXAMPLE Karl KRAL Institut fiir Zoologie, Karl-Franzens-Universitat,Universitatsplatz 2, A-8010 Graz, Austria La revue presentbe ici porte sur la structure de l'oeil compost de Mantispa sfyriaca (Poda, 1761), prise comme exemple pour les Planipennia. La signification fonctionnelle en est discutke. Owing to their form and their powerful claws with which they capture insects as does the praying mantis, mantispids are spectacular representatives of the neuropteran family. Very few studies of these insects of prey are available and most of them are field studies (e.g. BRAUER, 1869 ; SCHREMMER,1959 ; NEW & HADDOW, 1973). We recently began systematic laboratory experiments to study the ontogenesis, anatomy, physiology and functional significance of the optical system of Mantispa styriaca (KRAL, 1989 ;EGGENREICH & KRAL, 1990 ;KRAL et al., 1990). The purpose of this review is to make available to entomologists preliminary interesting aspects of these works. Nocturnal insects have superposition eyes, which means that they have high sensitivity to light but less capacity for spatial resolution. The superposition eyes have an unpigmented space, the clear zone, between the lens apparatus and the retina (Fig. 1). The clear zone permits light to cross between ommatidia, so that the visual cells of one ommatidium receive light from a number of neighboring ommatidia. Planipennia also have superposition eyes (Chrysopa : HORRJDGE& @ 1990 Association Mondiale des N6vr~pt6ristes U.S. Copyright Clearance Center Code Statement : 0223-5137/90/010051-06 - $2.00/0. HENDERSON,1976 ;Ascalaphus : SCMNEIDERet al. 1978 ; Mantispa : EGGENREICH &, KRAL, 1990 ;KRAL et al., 1990 ; see also Am, 1920). As these insects are usually not just active in the twilight and night but also during day - RFcalaphus is only active by day - they require good spatial resolution for their usually predatory life style. And so these superposition eyes have become highly specialized in the course of evolution. A so-ded "functional double eye" developed. The eye of Mantispa styriaca works round the clock and is to be used here as an example of the principle of duplicity. The large, emerald-green, hemispherical eyes of Mantispa sfyn'aca are made up of some 3500 ommatidia whose dimensions and structure are uniform over the entire eye. A longitudinal section through the eye shows from outside to inside three distinctly different layers : dioptric apparatus, clear zone and retina (Fig. 1). The dioptric apparatus consists of a biconvex corneal lens whose surface is covered with nipples, as has been described for other lacewings (e.g. Ascalaphus : SCHNEIDERet al. 1978). In Mantispa styriaca, these nipples probably serve as an antireflection system for long-wave light. Below the dioptric apparatus there is a cone-shaped crystalline cone. The proximal part of the crystalline cone is surrounded by two principal pigment cells (iris cells). These serve as a pupil ;the higher the light intensity, the smaller the pupil. Between the dioptric apparatus and the retina there is a relatively wide dear zone. Fig. 1 : Rough schematic reproduction of a light-microscopic longitudinal section through the compound eye of Mantispa styriaca. CC = crystalline cone ;CL = corneal lens ;CZ = clear zone ; DA = dioptric apparatus ; RE = retina ;RH = rhabdom ;0 = ommatidium. species retina scotoplc photopic Chrysopa crepuscular 3 tiers RC1-6 RC7,E RC7=motion detector nocturnal Ascalaphus diurnal 3 tiers RC1-6 RC7,E RC7,8=detectors for polarized llght (3) Mantlspa dlurnal- 3 tlers RC1-6 RC7,E RC7=mot~ondetector nocturnal RCB=detector for polar~zed lrght (?I RC=retlnula cell. Table I The retina has one retinula per ommatidium. Each retinula has 8 retinula cells (visual cells), the photosensitive cells, which are arranged in three tiers, as in the common green lacewing Chrysopa (HORRIDGE& HENDERSON,1976) and Ascalaphus (SCHNEIDERet al., 1978) (Table 1). The retinula cells form a central fused rhabdom, which is the photosensitive structure (Figs 2 & 3). In the proximal part of the clear zone the small retinula cell 7 begins to form the rhabdom, which is surrounded by the distal processes of the retinula cells 1 to 6 (Fig. 2). This relatively short rhabdom goes on in the direction of the dioptric apparatus and joins the optically dense process of retinula cell 7. Owing to its ~ig~cantlyhigher refractive index as compared to that of the cytoplasm of the surrounding processes of retinula cells 1-6, this process probably has the task of serving as a light guide for the rhabdom of retinula cell 7. The rhabdom of retinula cell 7 is short and is pushed aside by the rhabdom of retinula cell 8 at the boundary between the clear zone and the retina. Finally, the large retinula cells 1-6 form a large central rhabdom ;cell 8 is pushed to the edge but its rhabdomere remains in the rhabdom unit (Fig. 3). There is a tapetal layer on the base of the retina, a sort of mirror made up of tracheoles, as is also found in other lacewings (e.g. Chrysopa : HORRIDGE& HENDERSON,1976) ; this makes the eyes reflect light. Superficial consideration of the optical and structural organization of the eyes of Mantispa styriaca shows that, as mentioned above, they are basically superposition eyes according to their anatomy. But the organization of the retina shows that this is an oversimplification of the case. Only the retinula cells 1-6 belong de facto to the superposition eye (skotopic system, light sensitive in the long-wave range) ; the small retinula cell 7 and possibly cell 8 as well apparently belong to the "apposition eye" (photopic system, light sensitive in the short-wave or ultraviolet (UV) range). The parallel rays from a number of adjacent ommatidia leaving their crystalline cones meet at the relatively large rhabdom of the retinula cells 1-6 of an ommatidium. The size of the superposition pupil is varied by possible longitudinal pigment movement in the accessory pigment cells, as has been seen in Ascalaphus (DRASLAR,pers. comm.). Every ommatidum is surrounded by 12 accessory pigment cells (see Fig. 2). The lesser the light intensity, the greater the superposition. However, the corneal anti- reflection system (corneal nipples) and the total reflection of light on the tapetal Figs 2 & 3. - Electron-microscopic cross section throu an ommatidium of the compound eye of Mantispa stytiaca in the rhabdom region (RH) op the retinula cells (RC). PG=pigment anules of accessory pigment cells. 2, retinula cell 7 ; 3, retinula cells 1-6 and 8. Scale bar Kg. 2 : 2.0 pm, Fig. 3 : 1.5 pm. layer at the base of the retina along with the voluminous rhabdom of retinula cells 1- 6 can provide an economical light yield and thus limit the superposition ; this would mean that the capacity for spatial resolution is retained in twilight or moonlight. On the one hand, this is important for binocularly controlled prey capture at twilight or on a clear night, and on the other hand, for seeking a mate or finding a place to lay eggs. Mantispa styriaca must often fly considerable distances to perform these activities. The optically dense distal process of retinula cell 7 directly contacts the crystalline cone. This lightguiding structure crosses the clear zone and so only axially incident light on the corresponding dioptric apparatus can fall onto retinula cell 7 ; a superposition of light beams of adjacent ommatidia is therefore not possible. In addition, the 3500 ommatidia with their relatively small diameters and the resultant relatively small interommatidial angles give the "apposition eye" excellent spatial resolution capacity. This system, however, can only function under sunlight. Retinula cell 8 may be a candidate for perception of the plane of vibration of linear polarized light from the sky ; this could be indicated by the orientation pattern of the rhabdomeres of cells No. 8. In summary, we may say that in Mantispa styriaca there is quasi an "apposition eye" within the superposition eye. The amient light determines which of the systems will be active at a given time. Further comparative studies on the eyes of representatives of Hemerobiidae (brown lacewings), Sisyridae, Osmylidae, Nemopteridae and Myrmeleonidae would be interesting in this context, whereby Coniopterygidae should also not be forgotten. ACKNOWLEDGMENTS The research on Mantispa styriaca was supported by Grant P6766 from the Austrian Science Foundation. Many thanks to DuSan DEVETAKof the University of Maribor for help with collecting mantispids in Premantura, Yugoslavia. Accepted : April 1990 Asr, F., 1920. aer den feineren Bau der Facettenaugen bei Neuropteren. Zoologische Jahrbiicher, Abt. Anat. 41 : 411-458. BRAUER,I?., 1869. Beschreibung der Verwandlungsgeschichte der Mantispa stynaca Poda und Betrachtungen iiber die sogenannte Hypermetamorphose Fabre's. Verhandlungen der kaisedich-koni lichen zoolo 'schen und botanischen Gesellschaft in Wen 19 : 831-840. EGGENREICH,U. & & IC, 198External design and field of view of the compound eyes in a raptorial neuropteran insect, Mantispa stytiaca. The Joumal of openmental Biology 148 : 353-365. HORRII~GE,GA. & HENDERSON,I., 1976. The ornmatidium of the lacewing Chrysopa (Neuroptera). Proceedings of the Royal Society of London B 192 : 259-271. KRAL, K, 1989. Fine structure of the larval eyes of Mantispa sp. (Neuroptera : Planipennia, Mantispidae). International Joumal of Insect Morphology & Embryology 18 : 135-143. KRAL, K., HERBST,K. & Pmsr, MA., 1990. The compound eye of Mantispa styriaca (Neuroptera : Planipennia). Zmlogische Jahrbiicher, Abt. Physiol. (in press). NEW,T.R. & HADDOW,A.J., 1973. Nocturnal flight activity of some African Mantispidae (Neuroptera).Joumal of Entomology (A)47 : 161-168. SCHNEIDER,L., GOGALA,M., DRASLAR,K, LANGER,H. & SCHLECHT,P., 1978. Feinstruktur und Schirmpigrnent-Eigenschaften der Omrnatidien des Doppelauges von Ascalaphus (Insecta : Neuroptera). Cytobiology 16 : 274307. SCHREMMER, F., 1959. Freilandbeobachtungen zur Eiablage von Mantispa pagana F.
Recommended publications
  • Die Steppe Lebt
    Buchrücken 1200 Stück:Layout 1 04.04.2008 14:39 Seite 1 Die Steppe lebt Felssteppen und Trockenrasen in Niederösterreich Heinz Wiesbauer (Hrsg.) Die Steppe lebt ISBN 3-901542-28-0 Die Steppe lebt Felssteppen und Trockenrasen in Niederösterreich Heinz Wiesbauer (Hrsg.) Mit Beiträgen von Roland Albert, Horst Aspöck, Ulrike Aspöck, Hans-Martin Berg, Peter Buchner, Erhard Christian, Margret Bunzel-Drüke, Manuel Denner, Joachim Drüke, Michael Duda, Rudolf Eis, Karin Enzinger, Ursula Göhlich, Mathias Harzhauser, Johannes Hill, Werner Holzinger, Franz Humer, Rudolf Klepsch, Brigitte Komposch, Christian Komposch, Ernst Lauermann, Erwin Neumeister, Mathias Pacher, Wolfgang Rabitsch, Birgit C. Schlick-Steiner, Luise Schratt-Ehrendorfer, Florian M. Steiner, Otto H. Urban, Henning Vierhaus, Wolfgang Waitzbauer, Heinz Wiesbauer und Herbert Zettel St. Pölten 2008 Die Steppe lebt – Felssteppen und Trockenrasen in Niederösterreich Begleitband zur gleichnamigen Ausstellung in Hainburg an der Donau Bibliografische Information der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. ISBN 3-901542-28-0 Die Erstellung des Buches wurde aus Mitteln von LIFE-Natur gefördert. LIFE-Natur-Projekt „Pannonische Steppen und Trockenrasen“ Gestaltung: Manuel Denner und Heinz Wiesbauer Lektorat: caout:chouc Umschlagbilder: Heinz Wiesbauer Druck: Gugler Druck, Melk Medieninhaber: Amt der NÖ Landesregierung, Abteilung Naturschutz Landhausplatz 1 A-3109 St. Pölten Bestellung: Tel.: +43/(0)2742/9005-15238 oder [email protected] © 2008 Autoren der jeweiligen Beiträge, Bilder: Bildautoren Sämtliche Rechte vorbehalten Inhalt 1. Einleitung 5 2. Eiszeitliche Steppen und Großsäuger 9 2.1 Was ist Eiszeit? 11 2.2 Die Tierwelt der Eiszeit 14 2.3 Der Einfluss von Großherbivoren auf die Naturlandschaft Mitteleuropas 17 3.
    [Show full text]
  • From Chewing to Sucking Via Phylogeny—From Sucking to Chewing Via Ontogeny: Mouthparts of Neuroptera
    Chapter 11 From Chewing to Sucking via Phylogeny—From Sucking to Chewing via Ontogeny: Mouthparts of Neuroptera Dominique Zimmermann, Susanne Randolf, and Ulrike Aspöck Abstract The Neuroptera are highly heterogeneous endopterygote insects. While their relatives Megaloptera and Raphidioptera have biting mouthparts also in their larval stage, the larvae of Neuroptera are characterized by conspicuous sucking jaws that are used to imbibe fluids, mostly the haemolymph of prey. They comprise a mandibular and a maxillary part and can be curved or straight, long or short. In the pupal stages, a transformation from the larval sucking to adult biting and chewing mouthparts takes place. The development during metamorphosis indicates that the larval maxillary stylet contains the Anlagen of different parts of the adult maxilla and that the larval mandibular stylet is a lateral outgrowth of the mandible. The mouth- parts of extant adult Neuroptera are of the biting and chewing functional type, whereas from the Mesozoic era forms with siphonate mouthparts are also known. Various food sources are used in larvae and in particular in adult Neuroptera. Morphological adaptations of the mouthparts of adult Neuroptera to the feeding on honeydew, pollen and arthropods are described in several examples. New hypoth- eses on the diet of adult Nevrorthidae and Dilaridae are presented. 11.1 Introduction The order Neuroptera, comprising about 5820 species (Oswald and Machado 2018), constitutes together with its sister group, the order Megaloptera (about 370 species), and their joint sister group Raphidioptera (about 250 species) the superorder Neuropterida. Neuroptera, formerly called Planipennia, are distributed worldwide and comprise 16 families of extremely heterogeneous insects.
    [Show full text]
  • Functional Morphology of the Raptorial Forelegs in Mantispa Styriaca (Insecta: Neuroptera)
    Zoomorphology https://doi.org/10.1007/s00435-021-00524-6 ORIGINAL PAPER Functional morphology of the raptorial forelegs in Mantispa styriaca (Insecta: Neuroptera) Sebastian Büsse1 · Fabian Bäumler1 · Stanislav N. Gorb1 Received: 14 September 2020 / Revised: 26 March 2021 / Accepted: 30 March 2021 © The Author(s) 2021 Abstract The insect leg is a multifunctional device, varying tremendously in form and function within Insecta: from a common walking leg, to burrowing, swimming or jumping devices, up to spinning apparatuses or tools for prey capturing. Raptorial forelegs, as predatory striking and grasping devices, represent a prominent example for convergent evolution within insects showing strong morphological and behavioural adaptations for a lifestyle as an ambush predator. However, apart from praying mantises (Mantodea)—the most prominent example of this lifestyle—the knowledge on morphology, anatomy, and the functionality of insect raptorial forelegs, in general, is scarce. Here, we show a detailed morphological description of raptorial forelegs of Mantispa styriaca (Neuroptera), including musculature and the material composition in their cuticle; further, we will discuss the mechanism of the predatory strike. We could confrm all 15 muscles previously described for mantis lacewings, regarding extrinsic and intrinsic musculature, expanding it for one important new muscle—M24c. Combining the information from all of our results, we were able to identify a possible catapult mechanism (latch-mediated spring actuation system) as a driving force of the predatory strike, never proposed for mantis lacewings before. Our results lead to a better understand- ing of the biomechanical aspects of the predatory strike in Mantispidae. This study further represents a starting point for a comprehensive biomechanical investigation of the convergently evolved raptorial forelegs in insects.
    [Show full text]
  • Ultraviolet Vision in European Owlflies (Neuroptera: Ascalaphidae): a Critical Review
    REVIEW Eur. J. Entomol. 99: 1-4, 2002 ISSN 1210-5759 Ultraviolet vision in European owlflies (Neuroptera: Ascalaphidae): a critical review Ka r l KRAL Institut fur Zoologie, Karl-Franzens-Universitat Graz, A-8010 Graz, Austria; e-mail: [email protected] Key words.Owlfly, Ascalaphus, Neuroptera, insect vision, ultraviolet sensitivity, visual acuity, visual behaviour, visual pigment Abstract. This review critically examines the ecological costs and benefits of ultraviolet vision in European owlflies. On the one hand it permits the accurate pursuit of flying prey, but on the other, it limits hunting to sunny periods. First the physics of detecting short wave radiation are presented. Then the advantages and disadvantages of the optical specializations necessary for UV vision are discussed. Finally the question of why several visual pigments are involved in UV vision is addressed. UV vision in predatory European owlflies of R7 means that the former receives only the longer The European owlflies, like Ascalaphus macaronius, wavelengths, since the short wavelengths are absorbed by A. libelluloides, A. longicornis and Libelloides coccajus the latter. However, intracellular electrophysiological are rapidly-flying neuropteran insects, which hunt in open recordings or microspectrophotometry on these tiny pho­ country for flying insects. These owlflies are only adapted toreceptors have not been done so their spectral sensi­ for daytime activity. They have large double eyes, which tivity is unknown (P. Stušek, personal communication). structurally correspond to optical refracting superposition Advantages of UV vision eyes (Ast, 1920; Gogala & Michieli, 1965; Schneider et What are the advantages of using UV light for locating al., 1978; forreview, seeNilsson, 1989).
    [Show full text]
  • Dgaae Nachrichten
    DGaaE Nachrichten Deutsche Gesellschaft für allgemeine und angewandte Entomologie e.V. 28. Jahrgang, Heft 2 ISSN 0931 – 4873 Dezember 2014 Entomologentagung vom 2. bis 5. März 2015 in Frankfurt / Main Inhalt Vorwort des Präsidenten . 75. Bericht aus dem Vorstand 2013 – 2014 . 76. Einladung zur Mitgliederversammlung der DGaaE . 79. Einladung zur Entomologentagung 2015 . 80. Nässig, W .A .: Kurzer Abriss zur Geschichte der Entomologie in Frankfurt am Main . 82. Hochkirch, A .: Der Schutz von Insekten in der IUCN . 92. Aus den Arbeitskreisen . 95. Bericht zur 14 . Tagung des Arbeitskreises „Neuropteren“ . 95. Bericht zur Tagung des Arbeitskreises „Medizinische Arachno- Entomologie“ . 104 Aus Mitgliederkreisen . 115. Neue Mitglieder . 115. Verstorbene Mitglieder . 115. In memoriam Hildegard Strübing (1922 – 2013) . 116. In memoriam Jörg Grunewald (1937 – 2014) . 122. DVDs von Mitgliedern . 125. Veranstaltungshinweise . 126. Impressum, Anschriften, Gesellschaftskonten . 128 Titelfoto: Johann Wolfgang Goethe-Universität, Frankfurt am Main, Campus Bockenheim, Hauptgebäude; Veranstaltungsort der Entomologentagung 2015 . Foto: Elke Födisch, Goethe-Universität Frankfurt / Main 74 DGaaE-Nachrichten 28 (2), 2014 Vorwort des Präsidenten Liebe Mitglieder, liebe Kolleginnen und Kollegen, das heutige Vorwort kann recht kurz gehalten werden, denn manches aus dem Vereinsgeschehen ist dem Bericht aus dem Vorstand zu entnehmen – so die Vorbereitungen auf die kommende Tagung in Frankfurt, zu der Sie nun auch in diesem Heft die Einladungen finden. Es wäre rückblickend auf das Jahr 2014 allerdings zu berichten, dass in Stolberg, dem langjährigen Wirkungsort Johann Wilhelm Meigens, anlässlich seines 250 . Geburtstages dieses herausragenden Naturkundlers gedacht wurde . Mit der nach ihm benannten Meigen-Medaille verleihen wir ja eine der höchsten Auszeichnungen, die die DGaaE vergibt . Die Festveranstaltung fand im Rittersaal der Burg statt .
    [Show full text]
  • Strasbourg, 19 April 2013
    Strasbourg, 25 October 2013 T-PVS (2013) 17 [tpvs17e_2013.doc] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Group of Experts on the Conservation of Invertebrates Tirana, Albania 23-24 September 2013 ---ooOoo--- REPORT Document prepared by the Directorate of Democratic Governance This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS (2013) 17 - 2 - CONTENTS 1. Meeting report ................................................................................................................................... 3 2. Appendix 1: Agenda .......................................................................................................................... 6 3. Appendix 2: List of participants ........................................................................................................ 9 4. Appendix 3: Compilation of National Reports .................................................................................. 10 5. Appendix 4: Draft Recommendation on threats by neurotoxic insecticides to pollinators ................ 75 * * * The Standing Committee is invited to: 1. Take note of the report of the meeting; 2. Thank the Albanian government for the efficient preparation of the meeting and the excellent hospitality; 3. Continue with Bern Convention engagement with invertebrate conservation issues by further encouraging and monitoring national implementation of European Strategy for the Conservation
    [Show full text]
  • Für Jahresbericht 1997; Titelblätter,Inhaltsverzeichn
    Jahresbericht 2000/2001 Deutsches Entomologisches Institut Verein der Freunde und Förderer e. V. Eberswalde 2003 Herausgeber Verein der Freunde und Förderer des Deutschen Entomologischen Instituts (DEI) im Zentrum für Agrarlandschafts- und Landnutzungsforschung (ZALF) e.V. Prof. Dr. Holger H. Dathe Schicklerstraße 5 16225 Eberswalde Bearbeiter Prof. Dr. Holger H. Dathe Dr. Stephan M. Blank Dr. Reinhard Gaedike Dr. Eckhard Groll Dr. Frank Menzel Dr. Andreas Taeger Dr. Magdalene Westendorff Dr. Lothar Zerche Dr. Joachim Ziegler Lutz Behne Cornelia Grunow Christian Kutzscher Mathias Sommer Jutta Valentin-Dockendorf Redaktion: Dr. Lothar Zerche, Cornelia Grunow Fotos: Dr. Frank Menzel Eberswalde: Selbstverlag, 2003. - 80 S. Inhaltsverzeichnis Vorwort ...........................................................................4 1. Organisation des DEI .............................................................9 1.1. Mitarbeiter und Funktionen ....................................................9 1.2. Finanzierung ................................................................11 2. Wissenschaftliche Ergebnisse ......................................................13 2.1. Ausgewählte Projekte ........................................................13 Datenbank „Biographien der Entomologen der Welt“..............................13 2.2. Kurzberichte zur wissenschaftlichen Arbeit ......................................19 2.3. Wissenschaftliche Veröffentlichungen ...........................................35 2.4. Wissenschaftliche Kontakte ...................................................42
    [Show full text]
  • The Function and Phylogenetic Implications of the Tentorium in Adult Neuroptera (Insecta)
    Arthropod Structure & Development 40 (2011) 571e582 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd The function and phylogenetic implications of the tentorium in adult Neuroptera (Insecta) Dominique Zimmermann a,*, Susanne Randolf a, Brian D. Metscher b, Ulrike Aspöck a a Natural History Museum, 2nd Zoological Department, Burgring 7, 1010 Vienna, Austria b Department of Theoretical Biology, University of Vienna, Althanstrasse 14, 1090 Wien, Austria article info abstract Article history: Despite several recent analyses on the phylogeny of Neuroptera some questions still remain to be Received 11 April 2011 answered. In the present analysis we address these questions by exploring a hitherto unexplored Accepted 12 June 2011 character complex: the tentorium, the internal cuticular support structure of the insect head. We described in detail the tentoria of representatives of all extant neuropteran families and the muscles Keywords: originating on the tentorium using 3D microCT images and analyzed differences in combination with Neuroptera a large published matrix based on larval characters. We find that the tentorium and associated Tentorium musculature are a source of phylogenetically informative characters. The addition of the tentorial Musculature Phylogeny characters to the larval matrix causes a basad shift of the Sisyridae and clearly supports a clade of all Function Neuroptera except Sisyridae and Nevrorthidae. A sister group relationship of Coniopterygidae and the Laminatentorium dilarid clade is further corroborated. A general trend toward a reduction of the dorsal tentorial arms and the development of laminatentoria is observed. In addition to the phylogenetic analysis, a correlation among the feeding habits, the development of the maxillary muscles, and the laminatentoria is demonstrated.
    [Show full text]
  • Further Studies on the Daily Activity Pattern of Neuroptera with Some Remarks on the Diurnal Activities
    Acta PhylOPallwlogica et EntoJn%gica /lullgarica 41 (3-4). pp. 275---286 (2006) 001: 1O.1556/APhyI.41.2006.:1-4.1O Further Studies on the Daily Activity Pattern of Neuroptera with some Remarks on the Diurnal Activities L. ABRAHAMl and Z. MESzAROS2 I Natural History Department, Somogy County Museum, H-7400 Kaposvar, P.O. Box 70, Hungary; E-mail: [email protected] 2Plant Protection Institute, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 102, Hungary; E-mail: [email protected] (Received: 28 June 2005; accepted: II February 20(6) Using lahoratory experiments, the daily activity patterns of 16 Nellroplera speeics (6 Chrysopidae, 2 Conioptcrygidac,:1 Hemerobiidae,:1 Mynncleonlidae. I Mantispidae, I Ascalaphidae) were studied by the authors. The results of the experiments were described by activity diagrams and were categorized into Duelli-type flight activity pattern. During the study, 14 species showed carnea type of nocturnal activity. Mafltispa styriaca proved to belong to hypochrY.I'ode,\· type which is active at daytime. Thc daily activity pattern of Libelloides m(lcarol1ius ditTers from the hypochr\'sodes type due to its strong preferencc of UV radiation; thcrefore it is described as a separate libelloides type. Keywords: Neuroptera, daily activity pallern. The species and abundance composition of the lacewing samples collected at dif­ ferent parts of the day threw light on the difference in the daily activity patterns of the lacewings (Banks, 1952, New, 1967). Abraham et al. (1998); Vas et al. (1996, 1997, ] 999) analyzed the diurnal and noctur­ nal activity pattern of the specics based on samples collected by widely used traps (light traps, Malaise traps, sucking trap or sticky plates).
    [Show full text]
  • Neuropterida: Neuroptera: Mantispidae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stapfia Jahr/Year: 1999 Band/Volume: 0060 Autor(en)/Author(s): Aspöck Horst Artikel/Article: Beschreibungen und Abbildungen von Mantispiden in der frühen entomolgischen Literatur und Österreichs. Beitrag zur Erforschung der Fanghafte (Neuropterida. Neuroptera: Mantispidae) 209-244 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Beschreibungen und Abbildungen von Mantispiden in der frühen entomologischen Literatur und Österreichs Beitrag zur Erforschung der Fanghafte (Neuropterida: Neuroptera: Mantispidae) Horst ASPÖCK Abstract LINNAEUS), however, assigned them to the genus Raphidia. A clear assessment of the Descriptions and illustrations of Man- systematic position was only possible tispidae in the early entomological litera- when, in 1852, the first instar larva and, ture, and Austria's contribution to man- later during the course of the following 17 tidfly research (Neuropterida: Neuro- years, all early stages as well as the deve- ptera: Mantispidae). lopment and biology of a mantispid, name- The first record in the scientific litera- ly Mantispa styriaca, was clarified. This ture of one of the insects that now form was to the credit of two Austrians: Frie- the Mantispidae, a family of the order drich Moritz BRAUER (1832-1904) and Neuroptera, is the description of Raphidia Alois ROGENHOFER (1831-1897). F.M. styriaca, the Styrian mantidfly, by the BRAUER contributed to Mantispidae rese- Austrian Jesuit and naturalist Nikolaus arch with a few further studies and, in the PODA VON NEUHAUS (1723-1798). He 20th century, Austrian entomologists aug- published a booklet on the insects of Graz mented the knowledge of these insects museum (Styria, Austria) in 1761.
    [Show full text]
  • Insecta Musei Graecensis
    Progress io World9sNeumpterologv. Gepp J., H. Aspöck & H. Höizel ed., 265 pp., 1984, Graz Österreichs Beitrag zur Neuropterologie* Von ~orstASPÖCK (Wien) Abstract Austria's Contribution to Neuropterology A review is given on research on Neuropteroidea carried out in Austria in the 18th, 19th, and 20th century. Basic publications and short biographies of the rnost outstanding deceased Austrian neuroptero- logists - particularly of FRIEDRICH BRAUER, FRANZ LOW, JOSEF REDTENBACHER, FRANTISEKKLAPALEK, ANTON HANDLIRSCH - are outlined. Appendix I presents a list of all Austrian authors of publications on Neuropteroidea, supplemented by short biographical data with indications of rnain topics of their neuropterological Papers. Appendix I1 is - as far as possible - a complete list of all publications on Neuropteroidea by Aus- tnan authors until 1983. Vorbemerkung bsterrerch umfaßte bekanntlich brs zum Jahre 1918 ein wesentlich grbßeres Gebaet als heute und verei- ntgte mehrere Natronalitäten in einem Staat, dessen Hauptstadt auch damals Wzen war. Die vorliegende Darstellung berucksrchtigt selbstverstandlrch alle innerhalb der Grenzen des alten Österrerch lebenden und als österreichische Staatsburger vor 1918 neuropterologisch tutigen Entomologen. Muttersprache, Nationa- lität und Wirkungsstatte dieser Personen sind jedoch durchwegs aus dem Text oder aui Anhang l ersicht- lich. Anhang 1 gibt ein Verzeichnis aller osterreichischer Autoren, die uber Neuropteren publrziert haben. Anhann 2 stellt eine, soweit monlich,V vollständineV Liste der Publikationen osterreichischer Autoren über ~euroiterenbis 1983 dar. Im Text werden im wesentlichen nur jene nlcht mehr lebenden Autoren durch Kurzbiographien her- vorgehoben, deren wissenschaftliches Opus auf die Neuropteren-Forschung von entscheidendem Einfluß war. Die ältesten Namen von Österreichern, denen man in der neuropterologischen Literatur begegnet, sind NICOLAUS PODA von NEUHAUS (1723 - 1798), JOHANN ANTON SCOPOLI (1723 - 17881, MICHAEL DENIS (1729- 1800) und IGNAZ SCHIFFERMÜL- LER (1727-1809).
    [Show full text]
  • On Afromantispa and Mantispa (Insecta
    A peer-reviewed open-access journal ZooKeys 523: 89–97On (2015) Afromantispa and Mantispa (Insecta, Neuroptera, Mantispidae)... 89 doi: 10.3897/zookeys.523.6068 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research On Afromantispa and Mantispa (Insecta, Neuroptera, Mantispidae): elucidating generic boundaries Louwtjie P. Snyman1, Catherine L. Sole1, Michael Ohl2 1 Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa 2 Museum für Naturkunde Berlin, Invalidenstr. 43, 10115 Berlin, Germany Corresponding author: Louwtjie P. Snyman ([email protected]) Academic editor: S. Winterton | Received 29 May 2015 | Accepted 31 August 2015 | Published 28 September 2015 http://zoobank.org/E51B6B90-D249-41BA-AFD7-38DC51A619B5 Citation: Snyman LP, Sole CL, Ohl M (2015) On Afromantispa and Mantispa (Insecta, Neuroptera, Mantispidae): elucidating generic boundaries. ZooKeys 523: 89–97. doi: 10.3897/zookeys.523.6068 Abstract The genus Afromantispa Snyman & Ohl, 2012 was recently synonymised with Mantispa Illiger, 1798 by Monserrat (2014). Here morphological evidence is presented in support of restoring the genus Afromantispa stat. rev. to its previous status as a valid and morphologically distinct genus. Twelve new combinations (comb. n.) are proposed as species of Afromantispa including three new synonyms. Keywords Mantispidae, Afromantispa, Mantispa, Afrotropics, Palearctic Introduction Mantispidae (Leach, 1815) is a small cosmopolitan family in the very diverse order Neuroptera. The former is characterised by an elongated prothorax, elongated procoxa protruding from the anterior pronotal margin and conspicuous raptorial forelegs. Re- cently, one of the genera, Mantispa Illiger, 1798 has been the focus of taxonomic studies (Snyman et al. 2012; Monserrat 2014). Mantispa was originally described by Illiger (1978) and quickly became the most speciose genus with a cosmopolitan distribution.
    [Show full text]