The System Approach to Successful Space Mission Development

Total Page:16

File Type:pdf, Size:1020Kb

The System Approach to Successful Space Mission Development E. J. HOFFMAN AND G. H. FOUNTAIN The System Approach to Successful Space Mission Development Eric J. Hoffman and Glen H. Fountain Conceptualizing and executing space missions calls for creative thinking coupled with careful and conservative implementation. The engineers and scientists who design such missions must master a “wide dynamic range” of techniques, from brainstorming to design reviews. Operating in space has never been easy, and the “better, faster, cheaper” mandate imposed by today’s overconstrained budgets has created new complications. This article presents the Laboratory’s philosophy for meeting these challenges. (Keywords: Space history, Space mission design, Spacecraft design, System engineering.) INTRODUCTION The APL Space Department has designed, built, and Navigation System (Transit). Several important sys- launched 58 spacecraft.1 Another is in the final stages tems have been transferred to industry for production of integration and test, approaching launch, and three after being conceived and developed at APL, includ- more are in early development. Three of our space- ing Transit, the Global Positioning System Package craft—the Delta series—were developed jointly with (GPSPAC), and Geosat. More recently, APL has ex- another organization (McDonnell-Douglas), and one tended its “better, faster, cheaper” methodologies to was integrated on a standard bus purchased from Or- low-cost interplanetary missions such as the Near Earth bital Sciences (the Far Ultraviolet Spectroscopic Ex- Asteroid Rendezvous (NEAR), Advanced Composi- plorer [FUSE]). APL spacecraft have ranged from the tion Explorer (ACE), Comet Nucleus Tour (CON- 53-kg environmental research satellite 5E-3 to the TOUR), and MESSENGER. 2720-kg Midcourse Space Experiment (MSX), a 14- In the course of all this activity, APL acquired a instrument “observatory class” spacecraft comparable reputation for pragmatic and effective system engineer- in the scope of its instrumentation to the Hubble Space ing. Visitors often mention that all Space Department Telescope. APL helped pioneer quick-reaction space- engineers seem to think like system engineers, whether craft (a record possibly being the 75-days-to-launch or not they have that title. Perhaps less well known is Transit Research and Attitude Control [TRAAC]), APL’s record of innovative, yet practical, advanced invented many widely used spacecraft techniques, and technology developments. Many of the standard tech- developed entire space systems, such as the Navy niques used on today’s satellites were developed here.2 482 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (1999) SYSTEM APPROACH TO SPACE MISSION DEVELOPMENT A small but prolific advanced technology development to Earth.” It is important to remember that at the time program continues that tradition today. Kennedy set out this bold objective, the United States This article provides a top-level view of APL’s mis- had not yet orbited a single astronaut—John Glenn’s sion development process, from mission objective to first orbital flight was still 9 months away. Kennedy’s launch. Postlaunch operations and certain other as- single sentence not only stated the objective of what pects of mission development require the more detailed became the Apollo Program, it set forth the schedule as treatment given by the subsequent articles in this sec- well!) tion. A strength of the APL Space Department has The objective isolates and pinpoints what is truly been our “end-to-end” approach to mission design and important; the value of a well-crafted objective cannot execution (Fig. 1). The close working relationship be overstated. It establishes the criteria by which mis- between space scientists and engineers fosters a symbi- sion success or failure will be judged, possibly many osis that is the hallmark of APL missions. Such close- years down the road. It serves to periodically refocus the ness in a single organization is surprisingly unusual in attentions of the team on the essential purpose of the the space industry; the fact that these two groups mission, which might otherwise be forgotten in the understand and empathize with each other—not just forest of design details that accrue as time passes and tolerate each other—is even more rare. The resulting as staff and subcontractors join and leave the program. ability to provide “one-stop shopping” for government Most importantly, it helps guard against “requirements space customers has contributed greatly to APL’s record creep,” that deadly malady that has threatened more of success with better, faster, cheaper space missions.3 than one program. The objective also isolates and emphasizes the essen- tial kernel of why the mission is being done. Where does UNDERSTANDING THE PROBLEM the objective come from? It can arise from a committee The article by Bostrom in this issue (“Defining the such as a science working group, user working group, Problem and Designing the Mission”) addressed the or study team. But some of the most impressive break- early concept and mission formulation phase. Every throughs have come from objectives set by a proverbial successful program must be able to state its objective, “wild-eyed sponsor,” one champion obsessed with solv- preferably in one concise sentence. (Possibly the best ing a particularly tough problem or performing a par- example of a concisely stated objective was President ticular mission. Kennedy’s 25 May 1961 statement to a joint session of Once the top-level objective is established, a con- Congress: “I believe that this nation should commit cept for meeting the objective is synthesized. That great itself to achieving the goal, before this decade is out, system engineer Julius Ceasar provided the key to solv- of landing a man on the moon, and returning him safely ing the really difficult, large problems: divide and con- quer. The problem is broken down into smaller pieces, and subsidiary functional requirements are estab- lished, a process known as “require- Mission concepts ments flowdown” (Fig. 2). This Fundamental process of synthesis and analysis science and Hardware technology drivers implementation represents a very creative part of Technology the mission design, with frequent synergy iterations back and forth between alternative conceptual approaches, Technology Results and transfer Launch while keeping in mind the avail- publications operations able capabilities and the numerous Education and outreach constraints (mass, schedule, cost, and a host of others). Deciding how Data to partition the system and where acquisition Mission and processing operations to establish the interfaces is almost an art form. Interface decisions made at this time can haunt (or bless) a program for its duration. Figure 1. The APL Space Department provides complete end-to-end mission design and execution capability, fostered by the symbiosis between our scientists and engineers. A “Brainstorming” is one of the basic mission concept can be taken completely through development, launch, on-orbit techniques used in this early stage of operations, and analysis of the scientific data within a single organization, at substantial searching for conceptual solutions benefit to our government customers. At the same time, we are alert for opportunities to cross-fertilize technologies to other missions or transfer them to industry, and for education (see the section on The Design and outreach opportunities. Process). Numerous books teach JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (1999) 483 E. J. HOFFMAN AND G. H. FOUNTAIN flow diagrams, specifications, interface control docu- Mission objective ments, and test plans. The Delta 180 mission provides a good example of focusing on the true objective and meeting it through “out-of-the-box thinking.” Soon after President Reagan challenged the military to develop a missile defense, the Capabilities Functional requirements Constraints newly established Strategic Defense Initiative Organi- zation (SDIO) wanted a quick and convincing demon- stration of space intercept of a thrusting target. Various aerospace organizations proposed mission concepts, but they were all too long (3–5 years) and too expensive Mission Mission ($300–500M). One reason for the high costs was design analysis that all of these concepts envisioned separate launch vehicles for the target and the interceptor. APL system engineer Michael Griffin and program manager John Dassoulas considered the essence of the problem and came up with the novel idea of carrying both target and Launch Mission interceptor on a single, low-cost Delta launch. Further- vehicle Spacecraft requirements operations more, both spacecraft could be assembled from sub- requirements requirements systems scrounged from various existing missile and launcher systems. SDIO accepted the concept, and the Delta 180 intercept was successfully carried out only 13 months from funded start, at a total program cost of Block, power-flow, Specs, interface $150M. Delta 180 received a presidential citation, two and signal-flow control documents diagrams Orbital configuration DoD distinguished public service medals, and awards (interior, exterior) from the American Institute of Aeronautics and Astro- Launch configuration (and vehicle adapter) nautics (AIAA), the American Defense Preparedness Association, and Aviation Week & Space Technology Figure 2. Starting with the all-important mission objective, top magazine. It was even popularized in Reader’s Digest.6 functional requirements are established, taking into
Recommended publications
  • Issues Paper on Exploring Space Technologies for Sustainable Development and the Benefits of International Research Collaboration in This Context
    United Nations Commission on Science and Technology for Development Inter-sessional Panel 2019-2020 7-8 November 2019 Geneva, Switzerland Issues Paper on Exploring space technologies for sustainable development and the benefits of international research collaboration in this context Draft Not to be cited Prepared by UNCTAD Secretariat1 18 October 2019 1 Contributions from the Governments of Austria, Belgium, Botswana, Brazil, Canada, Japan, Mexico, South Africa, Turkey, the United Kingdom, United States of America, as well as from the Economic and Social Commission for Asia and the Pacific, the Food and Agriculture Organization, the International Telecommunication Union, the United Nations Office for Disaster Risk Reduction and the World Food Programme are gratefully acknowledged. Contents Table of figures ....................................................................................................................................... 3 Table of boxes ......................................................................................................................................... 3 I. Introduction .................................................................................................................................... 4 II. Space technologies for the Sustainable Development Goals ......................................................... 5 1. Food security and agriculture ..................................................................................................... 5 2. Health applications ....................................................................................................................
    [Show full text]
  • A Quantitative Human Spacecraft Design Evaluation Model For
    A QUANTITATIVE HUMAN SPACECRAFT DESIGN EVALUATION MODEL FOR ASSESSING CREW ACCOMMODATION AND UTILIZATION by CHRISTINE FANCHIANG B.S., Massachusetts Institute of Technology, 2007 M.S., University of Colorado Boulder, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2017 i This thesis entitled: A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization written by Christine Fanchiang has been approved for the Department of Aerospace Engineering Sciences Dr. David M. Klaus Dr. Jessica J. Marquez Dr. Nisar R. Ahmed Dr. Daniel J. Szafir Dr. Jennifer A. Mindock Dr. James A. Nabity Date: 13 March 2017 The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Fanchiang, Christine (Ph.D., Aerospace Engineering Sciences) A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization Thesis directed by Professor David M. Klaus Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps.
    [Show full text]
  • James Albert Michener (1907-97): Educator, Textbook Editor, Journalist, Novelist, and Educational Philanthropist--An Imaginary Conversation
    DOCUMENT RESUME ED 474 132 SO 033 912 AUTHOR Parker, Franklin; Parker, Betty TITLE James Albert Michener (1907-97): Educator, Textbook Editor, Journalist, Novelist, and Educational Philanthropist--An Imaginary Conversation. PUB DATE 2002-00-00 NOTE 18p.; Paper presented at Uplands Retirement Community (Pleasant Hill, TN, June 17, 2002). PUB TYPE Opinion Papers (120) EDRS PRICE EDRS Price MF01/PC01 Plus Postage. DESCRIPTORS *Authors; *Biographies; *Educational Background; Popular Culture; Primary Sources; Social Studies IDENTIFIERS *Conversation; Educators; Historical Research; *Michener (James A); Pennsylvania (Doylestown); Philanthropists ABSTRACT This paper presents an imaginary conversation between an interviewer and the novelist, James Michener (1907-1997). Starting with Michener's early life experiences in Doylestown (Pennsylvania), the conversation includes his family's poverty, his wanderings across the United States, and his reading at the local public library. The dialogue includes his education at Swarthmore College (Pennsylvania), St. Andrews University (Scotland), Colorado State University (Fort Collins, Colorado) where he became a social studies teacher, and Harvard (Cambridge, Massachusetts) where he pursued, but did not complete, a Ph.D. in education. Michener's experiences as a textbook editor at Macmillan Publishers and in the U.S. Navy during World War II are part of the discourse. The exchange elaborates on how Michener began to write fiction, focuses on his great success as a writer, and notes that he and his wife donated over $100 million to educational institutions over the years. Lists five selected works about James Michener and provides a year-by-year Internet search on the author.(BT) Reproductions supplied by EDRS are the best that can be made from the original document.
    [Show full text]
  • Key and Driving Requirements for the Juno Payload Suite of Instruments
    Key and Driving Requirements for the Juno Payload Suite of Instruments Randy Dodge1 and Mark A. Boyles2 Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, 91109-8099 Chuck E. Rasbach3 Lockheed Martin-Space System Company, Denver, CO, 80201 [Abstract] The Juno Mission was selected in the summer of 2005 via NASA’s New Frontiers competitive AO process (refer to http://www.nasa.gov/home/hqnews/2005/jun/HQ_05138_New_Frontiers_2.html). The Juno project is led by a Principle Investigator based at Southwest Research Institute [SwRI] in San Antonio, Texas, with project management based at the Jet Propulsion Laboratory [JPL] in Pasadena, California, while the Spacecraft design and Flight System integration are under contract to Lockheed Martin Space Systems Company [LM-SSC] in Denver, Colorado. The payload suite consists of a large number of instruments covering a wide spectrum of experimentation. The science team includes a lead Co-Investigator for each one of the following experiments: A Magnetometer experiment (consisting of both a FluxGate Magnetometer (FGM) built at Goddard Space Flight Center [GSFC] and a Scalar Helium Magnetometer (SHM) built at JPL, a MicroWave Radiometer (MWR) also built at JPL, a Gravity Science experiment (GS) implemented via the telecom subsystem, two complementary particle instruments (Jovian Auroral Distribution Experiment, JADE developed by SwRI and Juno Energetic-particle Detector Instrument, JEDI from the Applied Physics Lab [APL]--JEDI and JADE both measure electrons and ions), an Ultraviolet Spectrometer (UVS) also developed at SwRI, and a radio and plasma (Waves) experiment (from the University of Iowa). In addition, a visible camera (JunoCam) is included in the payload to facilitate education and public outreach (designed & fabricated by Malin Space Science Systems [MSSS]).
    [Show full text]
  • Chandrayaan-2 Completes a Year Around the Moon
    One-year completion of Chandrayaan-2 Lunar orbit insertion (August 20, 2019) Chandrayaan-2 completes a year around the Moon The Moon provides the best linkage to understand Earth’s early history and offers an undisturbed record of the inner Solar system environment. It could also be a base for future human space exploration of the solar system and a unique laboratory, unlike any on Earth, for fundamental physics investigations. In spite of several missions to the Moon, there remains several unanswered questions. Continued high resolution studies of its surface, sub-surface/interior and its low-density exosphere, are essential to address diversities in lunar surface composition and to trace back the origin and evolution of the Moon. The clear evidence from India’s first mission to the Moon, Chandrayaan-1, on the extensive presence of surface water and the indication for sub- surface polar water-ice deposits, argues for more focused studies on the extent of water on the surface, below the surface and in the tenuous lunar exosphere, to address the true origin and availability of water on Moon. With the goal of expanding the lunar scientific knowledge through detailed studies of topography, mineralogy, surface chemical composition, thermo-physical characteristics and the lunar exosphere, Chandrayaan-2 was launched on 22nd July 2019 and inserted into the lunar orbit on 20th August 2019, exactly one year ago. Though the soft-landing attempt was not successful, the orbiter, which was equipped with eight scientific instruments, was successfully placed in the lunar orbit. The orbiter completed more than 4400 orbits around the Moon and all the instruments are currently performing well.
    [Show full text]
  • Design of Low-Altitude Martian Orbits Using Frequency Analysis A
    Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noullez, K. Tsiganis To cite this version: A. Noullez, K. Tsiganis. Design of Low-Altitude Martian Orbits using Frequency Analysis. Advances in Space Research, Elsevier, 2021, 67, pp.477-495. 10.1016/j.asr.2020.10.032. hal-03007909 HAL Id: hal-03007909 https://hal.archives-ouvertes.fr/hal-03007909 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noulleza,∗, K. Tsiganisb aUniversit´eC^oted'Azur, Observatoire de la C^oted'Azur, CNRS, Laboratoire Lagrange, bd. de l'Observatoire, C.S. 34229, 06304 Nice Cedex 4, France bSection of Astrophysics Astronomy & Mechanics, Department of Physics, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece Abstract Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies | or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies | are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony's Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors.
    [Show full text]
  • First Stop on the Interstellar Journey: the Solar Gravity Lens Focus
    1 DRAFT 16 May 2017 First Stop on the Interstellar Journey: The Solar Gravity Lens Focus Louis Friedman *1, Slava G. Turyshev2 1 Executive Director Emeritus, The Planetary Society 2 Jet Propulsion Laboratory, California Institute of Technology Abstract Whether or not Starshoti proves practical, it has focused attention on the technologies required for practical interstellar flight. They are: external energy (not in-space propulsion), sails (to be propelled by the external energy) and ultra-light spacecraft (so that the propulsion energy provides the largest possible increase in velocity). Much development is required in all three of these areas. The spacecraft technologies, nano- spacecraft and sails, can be developed through increasingly capable spacecraft that will be able of going further and faster through the interstellar medium. The external energy source (laser power in the Starshot concept) necessary for any flight beyond the solar system (>~100,000 AU) will be developed independently of the spacecraft. The solar gravity lens focus is a line beginning at approximately 547 AU from the Sun along the line defined by the identified exo-planet and the Sunii. An image of the exo-planet requires a coronagraph and telescope on the spacecraft, and an ability for the spacecraft to move around the focal line as it flies along it. The image is created in the “Einstein Ring” and extends several kilometers around the focal line – the spacecraft will have to collect pixels by maneuvering in the imageiii. This can be done over many years as the spacecraft flies along the focal line. The magnification by the solar gravity lens is a factor of 100 billion, permitting kilometer scale resolution of an exo-planet that might be even tens of light-years distant.
    [Show full text]
  • Book of Abstracts Ii Contents
    2014 CAP Congress / Congrès de l’ACP 2014 Sunday, 15 June 2014 - Friday, 20 June 2014 Laurentian University / Université Laurentienne Book of Abstracts ii Contents An Analytic Mathematical Model to Explain the Spiral Structure and Rotation Curve of NGC 3198. .......................................... 1 Belle-II: searching for new physics in the heavy flavor sector ................ 1 The high cost of science disengagement of Canadian Youth: Reimagining Physics Teacher Education for 21st Century ................................. 1 What your advisor never told you: Education for the ’Real World’ ............. 2 Back to the Ionosphere 50 Years Later: the CASSIOPE Enhanced Polar Outflow Probe (e- POP) ............................................. 2 Changing students’ approach to learning physics in undergraduate gateway courses . 3 Possible Astrophysical Observables of Quantum Gravity Effects near Black Holes . 3 Supersymmetry after the LHC data .............................. 4 The unintentional irradiation of a live human fetus: assessing the likelihood of a radiation- induced abortion ...................................... 4 Using Conceptual Multiple Choice Questions ........................ 5 Search for Supersymmetry at ATLAS ............................. 5 **WITHDRAWN** Monte Carlo Field-Theoretic Simulations for Melts of Diblock Copoly- mer .............................................. 6 Surface tension effects in soft composites ........................... 6 Correlated electron physics in quantum materials ...................... 6 The
    [Show full text]
  • Reading the Novel of Migrancy
    Reading the Novel of Migrancy Sheri-Marie Harrison Abstract This essay argues that novels like Marlon James’s A Brief History of Seven Killings, Viet Thanh Nguyen’s The Sympathizer, Colson Whitehead’s The Underground Railroad, and Mohsin Hamid’s Exit West exemplify a new form of the novel that does not depend on national identification, but is instead organized around the transnational circulation of people and things in a manner that parallels the de- regulated flow of neoliberal capital. In their literal depiction of the movement of people across borders, these four very different novels collectively address the circulation of codes, tropes, and strategies of representation for particular ethnic and racial groups. Moreover, they also address, at the level of critique, the rela- tionship of such representational strategies to processes of literary canonization. The metafictional and self-reflexive qualities of James’s and Nguyen’s novels con- tinually draw the reader’s attention to the politics of reading and writing, and in the process they thwart any easy conclusions about what it means to write about conflicts like the Vietnam war or the late 1970s in Jamaica. Likewise, despite their different settings Hamid’s Exit West and Whitehead’s Underground Railroad are alike in that they are both about the movement of stateless people across borders and both push the boundaries of realism itself by employing non-realistic devices as a way of not representing travel across borders. In pointing to, if not quite il- luminating, the “dark places of the earth,” the novel of migrancy thus calls into existence, without really representing, conditions for a global framework that does not yet exist.
    [Show full text]
  • JAMES A. MICHENER Has Published More Than 30 Books
    Bowdoin College Commencement 1992 One of America’s leading writers of historical fiction, JAMES A. MICHENER has published more than 30 books. His writing career began with the publication in 1947 of a book of interrelated stories titled Tales of the South Pacific, based upon his experiences in the U.S. Navy where he served on 49 different Pacific islands. The work won the 1947 Pulitzer Prize, and inspired one of the most popular Broadway musicals of all time, Rodgers and Hammerstein’s South Pacific, which won its own Pulitzer Prize. Michener’s first book set the course for his career, which would feature works about many cultures with emphasis on the relationships between different peoples and the need to overcome ignorance and prejudice. Random House has published Michener’s works on Japan (Sayonara), Hawaii (Hawaii), Spain (Iberia), Southeast Asia (The Voice of Asia), South Africa (The Covenant) and Poland (Poland), among others. Michener has also written a number of works about the United States, including Centennial, which became a television series, Chesapeake, and Texas. Since 1987, the prolific Michener has written five books, including Alaska and his most recent work, The Novel. His books have been issued in virtually every language in the world. Michener has also been involved in public service, beginning with an unsuccessful 1962 bid for Congress. From 1979 to 1983, he was a member of the Advisory Council to the National Aeronautics and Space Administration, an experience which he used to write his 1982 novel Space. Between 1978 and 1987, he served on the committee that advises that U.S.
    [Show full text]
  • An Integrated Reliability and Physics-Based Risk Modeling Approach for Assessing Human Spaceflight Systems
    An Integrated Reliability and Physics-based Risk Modeling Approach for Assessing Human Spaceflight Systems Susie Go*a, Donovan Mathiasa, Chris Mattenbergerb, Scott Lawrencea, and Ken Geea a NASA Ames Research Center, Moffett Field, CA, USA b Science and Technology Corp., Moffett Field, CA, USA Abstract: This paper presents an integrated reliability and physics-based risk modeling approach for assessing human spaceflight systems. The approach is demonstrated using an example, end-to-end risk assessment of a generic crewed space transportation system during a reference mission to the International Space Station. The behavior of the system is modeled using analysis techniques from multiple disciplines in order to properly capture the dynamic time- and state- dependent consequences of failures encountered in different mission phases. We discuss how to combine traditional reliability analyses with Monte Carlo simulation methods and physics-based engineering models to produce loss- of-mission and loss-of-crew risk estimates supporting risk-based decision-making and requirement verification. This approach facilitates risk-informed design by providing more realistic representation of system failures and interactions; identifying key risk-driving sensitivities, dependencies, and assumptions; and tracking multiple figures of merit within a single, responsive assessment framework that can readily incorporate evolving design information throughout system development. Keywords: PRA, simulation, physical modeling, reliability modeling, risk-informed design. 1. INTRODUCTION Over the years, NASA has developed a working knowledge and body of standards to guide both the design and the evaluation of safe human space flight systems. These include specific requirements on procedures and best practices in addition to quantitative mission risk requirements.
    [Show full text]
  • Transmittal of Geotail Prelaunch Mission Operation Report
    National Aeronautics and Space Administration Washington, D.C. 20546 ss Reply to Attn of: TO: DISTRIBUTION FROM: S/Associate Administrator for Space Science and Applications SUBJECT: Transmittal of Geotail Prelaunch Mission Operation Report I am pleased to forward with this memorandum the Prelaunch Mission Operation Report for Geotail, a joint project of the Institute of Space and Astronautical Science (ISAS) of Japan and NASA to investigate the geomagnetic tail region of the magnetosphere. The satellite was designed and developed by ISAS and will carry two ISAS, two NASA, and three joint ISAS/NASA instruments. The launch, on a Delta II expendable launch vehicle (ELV), will take place no earlier than July 14, 1992, from Cape Canaveral Air Force Station. This launch is the first under NASA’s Medium ELV launch service contract with the McDonnell Douglas Corporation. Geotail is an element in the International Solar Terrestrial Physics (ISTP) Program. The overall goal of the ISTP Program is to employ simultaneous and closely coordinated remote observations of the sun and in situ observations both in the undisturbed heliosphere near Earth and in Earth’s magnetosphere to measure, model, and quantitatively assess the processes in the sun/Earth interaction chain. In the early phase of the Program, simultaneous measurements in the key regions of geospace from Geotail and the two U.S. satellites of the Global Geospace Science (GGS) Program, Wind and Polar, along with equatorial measurements, will be used to characterize global energy transfer. The current schedule includes, in addition to the July launch of Geotail, launches of Wind in August 1993 and Polar in May 1994.
    [Show full text]