Chemistry and Utilization of Condensed Tannins from Tree Barks

Total Page:16

File Type:pdf, Size:1020Kb

Chemistry and Utilization of Condensed Tannins from Tree Barks JARQ 28, 70-78 (1994) Chemistry and Utilization of Condensed Tannins from Tree Barks Seip .. OHARA. ... Wood Chemistry Division, Forestry and Forest Products Research Institute (Tsukub a, Ibaraki, 305 Japan) Abstract Chemical characteristics, protein-adsorbing capacity, chemical modifications and utilization of condensed tannis from tree barks were reviewed. Various aspects relating to the chemistry of these compounds and prospects for their utilization were discussed. Condensed tannins from Quercusjalcata, Salix sieboldiana and most of the Japanese conifers consist mainly of procyanidins and those from Acacia mearn­ sii of prorobinetinidins. The protein-adsorbing capacity of condensed tannins is closely related to their molecular weights and the positions of phenolic hydroxyl groups in the B-ring. The most effective hydroxyl group is located in the para­ position. In the reactions of catechin, the pyran ring is cleaved by alkaline treatment at 40°C or phenolation in the presence of BF3. The latter reaction can be effective for opening the pyran ring selectively. The tannins can be processed for utilization as cold-setting adhesives, polyurethane foams and adsorbents of heavy metal ions. Prospects for uses of condensed tannins include applications to biologically active compounds and functional materials. Discipline: Forestry and forest products Additional keywords: catechin, proanthocyanidins, protein-adsorbing capacity, pyran ring, tannin-derived polyurethane foams dicotyledoneae. They are present at very high Introduction concentrations in the bark of timber species such as conifers, eucalypts and leguminous Vegetable tannins are widely distributed in hardwoods. Their molecular weights cover a plants and have been used as tanning agents, wider range than those of hydrolysable tannins dyestuffs and drugs since older times. They with the highest one being 20,000. Recently, can be divided into two major groups, con­ many investigations on new forms of utiliza­ densed tannins and hydrolysable tannins. The tion and biological activities have been reported. former group consists of proanthocyanidins and In this paper the classification, chemical the latter of polyesters based on gallic acid or characteristics, protein-adsorbing capacity and hexahydroxydifenic acid and their derivatives. chemical modifications of condensed tannins, Condensed tannins are distributed in ferns and as well as several fields of utilization are allied species, and both monocotyledoneae and reviewed. Furthermore, various aspects relating This work was supported in part by the Integrated Research Program for Bio Renaissance Program from the Ministry of Agriculture, Forestry and Fisheries (BRP93 - V - B-I). Ohara: Chemistry a11d U1iliw1io11 of Tannins from Tree Barks 71 to the chemistry or these compounds and ponding (2R, 3R) isomers are designated by the prospects for their utilization are discussed. addition of the prefix 'cpi' to the beginning of each monomer name, and (2S, 3R) or (2S, Classification 3S) isomers are indicated by the addition of the prefix ent to the beginning of the appropri­ Condensed tannins belong to pro•an­ ate monomer name. thocyanidins as plant secondary metabolites. Proanthocyanidins which are polymers of sever­ Chemical characteristics al kinds or flavan-3-ols are classified as shown in Fig. I, according to the hydroxylation pat­ J) Quercus falcata terns or A- and B-rings of the monomer Q. falcata (southern red oak) is the most im­ units8>. Procyanidins are widely distributed portant species of red oak in the forests of the and prodelphinidins, profisetinidins and southern United States. Related compounds of prorobinetinidins are also found frequently in condensed tannins isolated from the bark of many plants. As each flavan-3-ol has two the southern red oak are listed in Fig. 25>. The asymmetric carbon atoms in the C-ring, there bark of southern red oak is a rich source of are four stereoisomers. Guibourtinidol, quercetin-3-rhamnoside (1) and it contains only fisetinidol, robinetinidol, afzelechin, catechin low concentrations of catechin (2). The three and gallocatechin are the monomer units with major dimeric proanthocyanidins are a (2R, 3S) absolute stereochemistry correspond­ epicatechin-(4.8-8)-catechin (3), catechin-(4a-8)­ ing to progibourtinidin, profisetinidin, catechin (5) and the 3-gallatc ester of prorobinetinidin, propelagonidin, procyanidin epicalechin-(4~·8)-calcchin ( 4). The acetone­ and prodelphinidin, respectively. The corres- water soluble tannins with a higher molecular weight consist of polymeric procyanidins predominantly made up of 2,3-cis chain ex­ R2 OH tender units with a 2,3-trans catcchin terminal. I The polymers contain only small amounts of HO~O2, 0 R3 I A C 3 2,3-trans procyanidin chain extender units and ~ only traces of prodelphinidin units. R, r OH 2) Salix sieboldiana There is only one report on the chemical n analysis of proanthocyanidins in the Salix spe­ cies grown in Japan. Proanthocyanidins and their derivatives from the bark of S. sieboldi­ ana, a shrub common in Japan, arc shown in Fig. 3 2>. This species contains a homologous series of acylated procyanidins (7), (9) and R1 (I/), together with the widespread procyanidin 8-1(6), B-3(8) and trimer (10). Their struc­ R,:H, R2:H, R3=H -·· Proglbourtlnldln R1:H, R2:0H, R3:H --· Prollsetinidin tures are assigned to the 3-0-(1-hydroxy-6-oxo- R :H, R :0H, R :0H -··· Proroblnetlnidln 1 2 3 2-cyclohexcne carboxylic acid esters) of pro­ R1: 0H, R2:H, R3=H --- Propelargonldln R1:0H, R2:0H, R3:H •··· Procyanldln cyanidins B -1, 8-3 and trimer. As 1-hydroxy- R :0H, R :0H, R : 0H ····Prodelphinldin 1 2 3 6-oxo-2-cyclohexene carboxylic acid is structur­ Fig. I. Proanthocyanidin classification ally related to saligenin, it is considered to be 72 JARQ 28(1) 1994 OH 0 HO Q(X'-:::, 6 h OH H 0 (1) (2) OH 0 HOC(X'6 OH I OH 'OR OOH h OH OOH OH I o , ::::,... I HO Gu'-:::O , ::::,... OH h OH H (3) A: H (5) (4) A= Galloyl Fig. 2. Compounds isolated from the bark of southern red oak a biosynthetic precursor of salicin which is a conifers amount to 5- 18% and 2-7%; common constituent in the Salicaceae. respectively9>. The composition of the poly­ meric proanthocyanidins from 9 species of 3) Acacia mearnsii conifers is shown in Table I 10>. Although poly­ The bark of A. mearnsii is a good source meric proanthocyanidins from the bark are of tannins (phenol content 380Jo, tannin con­ composed generally of polymeric procyanidins tent 24% 1>). it contains a large amount of low in many coniferous species, Abies sachalinen­ molecular weight proanthocyanidins. About sis and Picea jezoensis contain a certain amount 30% of 70% acetone extracts from the bark of polymeric prodelphinidins. The level of are dimers or trimers. Major dimeric proan­ stereochemistry of the flavan-3-ol monomer thocyanidins are robinetinidol-(4a-8)-catechin units of the polymers varies considerably with ( 12) and robinetinidol-(4a-8) -gallocatechin ( 13) the species. As for the extender units, the poly­ (Fig. 3). The acetone-water soluble tannins with mers from Cupressaceae and Cryptomeria a higher molecular weight are proanthocyanidin japonica show nearly the same or higher ratios polymers with a 2,3-trans heterocyclic ring, the of 2,3-trans units to 2,3-cis. On the other hand, extender units of which consist mainly of the polymers from Pinaceae show extremely prorobinetinidin units. high ratios of 2,3-cis units to 2,3-trans. In the terminal units, 2,3-trans units predominate and 4) Conifers almost all the units consist of 2,3-trans in P. Many Japanese conifers contain a large jezoensis and Pinus densiflora. amount of phenolic extractives in the bark, and proanthocyanidins are the main components of Protein-adsorbing capacity these phenolic extractives. Plavanol and tan­ nin contents in the bark of the Japanese main Condensed tannins are able to precipitate Ohara: Chemistry and Utilization of Tannins from Tree Barks 73 OH OH OH OH I O HOco~0 O OH OH OH h OH O OH I OH I O HOco~ OR OH OH OR (6) A = H (8) A= H 0-x,H 0-x,OH (7)R= V (9)R= V OH OH HOC(XOO OH I OH h OH OOHI HO ~ R h COOH OH (12)R:H (13)R:OH -CO OH (11)R= OD Fig. 3. Proanthocyanidins and their derivatives from the bark of Salix sieboldiana a.nd A. meamsii Table 1. Composition of polymeric proanthocyanidins from coniferous bark Ratios of stereochemistry Pcy:Pdp•J (2,3 -trans: 2,3-cis) Extender units Termination units Cupressaceae Chamaecyparis obtusa 100:0 60:40 59:41 Chamaecyparis pisijera 100:0 54:46 64:36 Taxodiaceac Cryptomeria japonica 100:0 78:22 69:31 Pinaceae Ables sachalinensis 71 :29 73:27 84 : 16 Larix leptolepis 100:0 11 :89 80:20 Picea jezoensis 95:5 11: 89 100 :0 Pinus densijlora 100:0 7 :93 97:3 Tsuga sieboldii 100:0 11 :89 44:56 Pseudotsuga japonica 100:0 16:84 23:77 a): Pcy; Procyanidins, Pdp; Prodelphinidins. 74 JARQ 28(1) 1994 proteins and it is assumed that they are involved adsorbing capacity increases with the increase in the chemical defense of some plants against of the molecular weights. 3) Tetramers show predators such as insects and herbivores. In a capacity nearly equal to that of polymers. the tannin-protein interaction, phenolic hydroxyl groups in the A- and B-rings play / / important roles. Results of BSA-precipitating 3.0 / I 00<';!, 1>rcci11i1a1ion-, / tests of synthesized condensed tannin oligomers / with mono-, di-, and tri-hydroxylated B-rings / 6 3 / --6 < 2.0 are shown in Fig. 4 >. BSA-precipitating ca­ v> / ---- 8 pacity of oligomers D and G accounts for 83 a, ,,.---- a= "<.> /~~ and 87% of that of oligomer F, respectively. s These results indicate that the condensed tan­ l 1.0 / / J: / nins with only a 4 ' -hydroxylated B- ring show / almost a similar capacity to that of the tannins / with 3 ', 4 '-dihydroxylated or 3 ' , 4 ', 5 '-tri­ hydroxylated B-rings.
Recommended publications
  • Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
    molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q.
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • DOCTOR of the University Montpellier
    Dissertation in Co-supervision: University of Tehran-University of Montpellier To obtain the degree of DOCTOR of the University Montpellier Title Preservation of plywood against biological attack with low environmental impact using tannin-boron preservative By Davood EFHAMISISI Thesis defense planned Monday, 21 September 2015 Jury Mr. Bertrand CHARRIER University of Pau and Pays de l'Adour Reviewer Mr. Ghanbar EBRAHIMI University of Tehran Reviewer Mr. Asghar OMIDVAR Gorgan University of Agricultural Sciences Examiner and Natural Resources Mr. Saeid NEZAMABADI University of Montpellier Examiner Mr. Kambiz POURTAHMASI University of Tehran Examiner Mrs. Marie-France THEVENON CIRAD, Montpellier Thesis director Mr. Yahya HAMZEH University of Tehran Thesis director Mr. Ali-Naghi KARIMI University of Tehran Co-director Mr. Antonio PIZZI University of Lorraine Co-director i Thèse en co-tutelle: l'Université de Téhéran-l'université de Montpellier Pour obtenir le grade de DOCTEUR de l'université de Montpellier Titre Protection à faible impact environnemental des contreplaqués avec des associations tannins-bore Par Davood EFHAMISISI Soutenance de thèse prévue le lundi, 21 Septembre 2015 Jury M. Bertrand CHARRIER Université de Pau et des Pays de l'Adour Rapporteur M. Ghanbar EBRAHIMI Université de Téhéran Rapporteur M. Asghar OMIDVAR Université Gorgan des sciences agricoles et Examinateur des ressources naturelles M. Saeid NEZAMABADI Université de Montpellier Examinateur M. Kambiz POURTAHMASI Université de Téhéran Examinateur Mme. Marie-France THEVENON CIRAD, Montpellier Directeur de Thèse M. Yahya HAMZEH Université de Téhéran Directeur de Thèse M. Ali-Naghi KARIMI Université de Téhéran Co-directeur M. Antonio PIZZI Université de Lorraine Co-directeur ii Acknowledgments I would like to express my deepest gratitude and appreciation to my director, Prof.
    [Show full text]
  • Relation Structure/Activité De Tanins Bioactifs Contre Les Nématodes
    En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (INP Toulouse) Discipline ou spécialité : Pathologie, Toxicologie, Génétique et Nutrition Présentée et soutenue par : Mme JESSICA QUIJADA PINANGO le jeudi 17 décembre 2015 Titre : RELATION STRUCTURE/ACTIVITE DE TANINS BIOACTIFS CONTRE LES NEMATODES GASTROINTESTINAUX (HAEMONCHUS CONTORTUS) PARASITES DES PETITS RUMINANTS Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : Interactions Hôtes - Agents Pathogènes (IHAP) Directeur(s) de Thèse : M. HERVÉ HOSTE Rapporteurs : M. ADIBE LUIZ ABDALLA, UNIVERSIDAD DE SAO PAULO Mme HEIDI ENEMARK, NORWEGIAN VETERINARY INSTITUTE Membre(s) du jury : 1 M. FRANÇOIS SCHELCHER, ECOLE NATIONALE VETERINAIRE DE TOULOUSE, Président 2 M. HERVÉ HOSTE, INRA TOULOUSE, Membre 2 Mme CARINE MARIE-MAGDELAINE, INRA PETIT BOURG, Membre 2 M. SMARO SOTIRAKI, HAO-DEMETER, Membre 2 M. VINCENT NIDERKORN, INRA CLERMONT FERRAND, Membre QUIJADA J. 2015 Cette thèse est dédiée à mes parents, Teresa et Héctor, À mon mari, Rafäel, pour son soutien inconditionnel, son amour illimité, sa patience, sa loyauté, son amitié et surtout sa confidence, À ma grand-mère, Marcolina, car m'ait donné le plus grand et précieux cadeau en ma vie : ma foi en Dieu ma forteresse et mon espoir (Isaïas 41:13). À mes adorés sœurs, belle- sœurs et frère : Yurlin, Indira, Iskay, Olga, Zoraida et Jesus. Merci pour l’amour infini que m’ont toujours été donné, celui qu’a été prolongé par l'amour de mes merveilleux neveux. 1 QUIJADA J. 2015 REMERCIEMENTS Je remercie tout d’abord mon Dieu pour me donner le cadeau de la vie, et la forteresse pour vivre chaque jour.
    [Show full text]
  • 2.1 Structure Elucidation 14 2.2 Synthesis 15
    , HIERDIE EKSEMPlAAR MAG ONDER University Free State GEEN OMSTANDIGHEDE UIT DIE mml~lmmMMllllllln34300000347405 Universiteit Vrystaat BIBLIOTEEK VER\VYDER WORD NIE THE STRUCTURE AND SYNTHESIS OF OLIGOFLA VANOIDS AND OLIGOSTILBENES FROM CASSIA ABBREVIATA. Dissertation submitted infulfilment of the requirements for the degree Master of Science in the Department of Chemisrty Faculty of Natural Sciences at University of Orange Free State Bloemfontein by Makhosazana Claribel Mthembu Supervisor: Prof. E. Malan Co-supervisor Dr J. C. Coetzee JANUARY 2000 ACKNOWLEDGEMENTS I wish to express my gratitude to the following people: • God the Almighty for the love and support he has shown me throughout my studies. • My supervisors Professor f. Malan and Dr j. C. Coetzee, their guidance and helpful recommendations throughout this study will always be appreciated: • • Proff. Malan for his constructive guidance, critism and invaluable support in putting this work in paper. • Dr j. C. Coetzeefor recording my NMR spectra, his encourangement and unselfish assistance. • Proff. V. Brandt ,D. Ferrdra and NRF sponsor for granting me this opportumity. • Finally the members of the fomily and [riends, Irene,jaqui, Zanele, Vusl and Busi for their love, tolerance and constant encouragement, I owe the greatest debt to them. M. C. Mthembu Table of Content Abstract LITERATURE SURVERY CHAPTER 1: MONOMERIC STILBENES 1 1.1 Nomenclature 1 1.2 Structure and Natural Occurrence 3 1.3 Structure Elucidation 5 1.4 Synthesis 5 CHAPTER 2: OLIGOMERIC STILBENES 11 2.1 Structure Elucidation 14 2.2 Synthesis 15 CHAPTER 3.: FLA VAN-3-0LS 16 3.1 Nomenclature 16 3.2 Structure and Natural Occurrence 17 3.3 Structure Elucidation 19 CHAPTER 4: LEUCOANTHOCY ANIDINS.
    [Show full text]
  • Different Approaches to Evaluate Tannin Content and Structure of Selected Plant Extracts – Review and New Aspects M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by JKI Open Journal Systems (Julius Kühn-Institut) Journal of Applied Botany and Food Quality 86, 154 - 166 (2013), DOI:10.5073/JABFQ.2013.086.021 1University of Kiel, Institute of Crop Science and Plant Breeding – Grass and Forage Science / Organic Agriculture, Kiel, Germany 2Institute of Ecological Chemistry, Plant Analysis and Stored Product Protection; Julius Kühn-Institute, Quedlinburg, Germany Different approaches to evaluate tannin content and structure of selected plant extracts – review and new aspects M. Kardel1*, F. Taube1, H. Schulz2, W. Schütze2, M. Gierus1 (Received July 2, 2013) Summary extracts, tannins, salts and derivates was imported to the EU in the year 2011, mainly from Argentina, with a trade value of nearly Tannins occur in many field herbs and legumes, providing an im- 63.5 mio. US Dollar (UN-COMTRADE, 2013). These extracts are pro- mense variability in structure and molecular weight. This leads to duced industrially on a large scale. They could therefore maintain complications when measuring tannin content; comparability of a relatively constant quality and thus provide an advantage in rumi- different methods is problematic. The present investigations aimed at nant feeding. characterizing four different tannin extracts: quebracho (Schinopsis Tannins from different sources can react very diverse regarding lorentzii), mimosa (Acacia mearnsii), tara (Caesalpinia spinosa), protein affinity (MCNABB et al., 1998; BUENO et al., 2008). Diffe- and gambier (Uncaria gambir) and impact of storage conditions. rences in tannin structure can occur even between similar plant Using photometrical methods as well as HPLC-ESI-MS, fundamen- species (OSBORNE and MCNEILL, 2001; HATTAS et al., 2011) and a tal differences could be determined.
    [Show full text]
  • Perspectives on Tannins • Andrzej Szczurek Perspectives on Tannins
    Perspectives on Tannins on Perspectives • Andrzej Szczurek Perspectives on Tannins Edited by Andrzej Szczurek Printed Edition of the Special Issue Published in Biomolecules www.mdpi.com/journal/biomolecules Perspectives on Tannins Perspectives on Tannins Editor Andrzej Szczurek MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Andrzej Szczurek Centre of New Technologies, University of Warsaw Poland Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Biomolecules (ISSN 2218-273X) (available at: https://www.mdpi.com/journal/biomolecules/special issues/Perspectives Tannins). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-1092-7 (Hbk) ISBN 978-3-0365-1093-4 (PDF) © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Andrzej Szczurek Perspectives on Tannins Reprinted from: Biomolecules 2021, 11, 442, doi:10.3390/biom11030442 ................ 1 Xiaowei Sun, Haley N. Ferguson and Ann E. Hagerman Conformation and Aggregation of Human Serum Albumin in the Presence of Green Tea Polyphenol (EGCg) and/or Palmitic Acid Reprinted from: Biomolecules 2019, 9, 705, doi:10.3390/biom9110705 ................
    [Show full text]
  • Penetration of the Polyflavonoids and Simple Phenolics
    420 Penetration of the Polyflavonoids and Simple Phenolics: A Mechanistic Investigation of Vegetable Tanning by Bo Teng,1 Jiacheng Wu1 and Wuyong Chen1,2* 1National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, 610065, Chengdu, P.R. China 2Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, 610065, Chengdu, P.R. China Abstract to help improving the vegetable tanning agents crafts, leather chemists put in massive amounts of efforts to study the Mechanisms of tanning are the fundamental base for predicting mechanisms which age-related the tannin-collagen 4-6 and developing new tanning agents and technologies. However, interactions. many mechanistic questions remain for us, such as: How does the penetration happen? How do the phenolic compounds work The hydrophobic-hydrogen bonding theory is widely accepted to individually? In this study, penetration processes of the tannin describe the interactions between proteins and phenolics. This extracts were investigated with the Bayberry extract theory highlights the importance of both hydrophobic and (prodelphenidins), the Larch extract (procyanidins) and the hydrophilic sites of the tannin and protein molecules, meanwhile Acacia Mangiumextract (prodelphenidin-procyanidin it is considered as the fundamental base to understand their 7-8 complexes) used as tanning agents. During the process, the interactions. Covington provided the “rigid, non-rigid” theory tanning liquids were regularly sampled and the simple phenolics and deduced the relationships between structural and thermal 9 and polyflavonoids were quantified respectively with a Prussian properties. In this theory, not only the hydrogen bonds, but also blue assay, a conductivity analysis, an acid-butanol assay as well the size and rigidity of the tannin molecules are all considered as as a HPLC analysis.
    [Show full text]
  • Polymerization Degrees, Molecular Weights and Protein-Binding Affinities of Condensed Tannin Fractions from a Leucaena Leucocephala Hybrid
    Molecules 2014, 19, 7990-8010; doi:10.3390/molecules19067990 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Polymerization Degrees, Molecular Weights and Protein-Binding Affinities of Condensed Tannin Fractions from a Leucaena leucocephala Hybrid Mookiah Saminathan 1, Hui Yin Tan 2, Chin Chin Sieo 1,3, Norhani Abdullah 3,4, Clemente Michael Vui Ling Wong 5, Emilia Abdulmalek 6 and Yin Wan Ho 1,* 1 Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: [email protected] (M.S.); [email protected] (C.C.S.) 2 Faculty of Applied Sciences and Computing, Tunku Abdul Rahman University College, 53300 Kuala Lumpur, Malaysia; E-Mail: [email protected] 3 Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail: [email protected] 4 Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 5 Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia; E-Mail: [email protected] 6 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +603-8947-2161; Fax: +603-8947-2101. Received: 18 March 2014; in revised form: 11 May 2014 / Accepted: 21 May 2014 / Published: 12 June 2014 Abstract: Condensed tannins (CTs) form insoluble complexes with proteins and are able to protect them from degradation, which could lead to rumen bypass proteins. Depending on their degrees of polymerization (DP) and molecular weights, CT fractions vary in their capability to bind proteins.
    [Show full text]
  • Ep 3138585 A1
    (19) TZZ¥_¥_T (11) EP 3 138 585 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.03.2017 Bulletin 2017/10 A61L 27/20 (2006.01) A61L 27/54 (2006.01) A61L 27/52 (2006.01) (21) Application number: 16191450.2 (22) Date of filing: 13.01.2011 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Gousse, Cecile GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 74230 Dingy Saint Clair (FR) PL PT RO RS SE SI SK SM TR • Lebreton, Pierre Designated Extension States: 74000 Annecy (FR) BA ME •Prost,Nicloas 69440 Mornant (FR) (30) Priority: 13.01.2010 US 687048 26.02.2010 US 714377 (74) Representative: Hoffmann Eitle 30.11.2010 US 956542 Patent- und Rechtsanwälte PartmbB Arabellastraße 30 (62) Document number(s) of the earlier application(s) in 81925 München (DE) accordance with Art. 76 EPC: 15178823.9 / 2 959 923 Remarks: 11709184.3 / 2 523 701 This application was filed on 29-09-2016 as a divisional application to the application mentioned (71) Applicant: Allergan Industrie, SAS under INID code 62. 74370 Pringy (FR) (54) STABLE HYDROGEL COMPOSITIONS INCLUDING ADDITIVES (57) The present specification generally relates to hydrogel compositions and methods of treating a soft tissue condition using such hydrogel compositions. EP 3 138 585 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 138 585 A1 Description CROSS REFERENCE 5 [0001] This patent application is a continuation-in-part of U.S.
    [Show full text]
  • Condensed Tannins in Tropical Forage Legumes: Their Characterisation and Study of Their Nutritional Impact from the Standpoint of Structure-Activity
    The University of Reading Condensed tannins in tropical forage legumes: their characterisation and study of their nutritional impact from the standpoint of structure-activity relationships By Rolando Barahona Rosales B.S. (Kansas State University, 1992) M.Sc. (Kansas State University, 1995) A thesis submitted for the degree of Doctor of Philosophy Department of Agriculture, The University of Reading July 1999 SOLANGE, SAMUEL, SANTIAGO and ISABELA: Contar con ustedes ha sido la bendicion mas grande de mi vida. En esta y en las futuras obras de mi vida se los encontrara a Uds. como mi inagotable fuente de inspiracion. i ACKNOWLEDGEMENTS This thesis is the culmination of a long-held dream, that started in the days I was attending the John F. Kennedy School of Agriculture at San Francisco, Atlantida, Honduras. There, and throughout my days as a student at Kansas State University, my daily interactions with friends and professors kept alive and nurtured those aspirations. Undoubtedly, the number of persons and institutions to whom I am indebted for the completion of my PhD career is enormous. I would have not advanced so far into this journey, however, without the encouragement and inspiration provided by my parents, sisters and brothers, who never made a secret of their satisfaction for my chosen career. Throughout my PhD studies, I was fortunate to receive advice and supervision from four great individuals: At the Centro Internacional de Agricultura Tropical (CIAT) in Cali, Colombia, I received supervision and most invaluably, friendship from Dr. Carlos Lascano. Ever since we met in 1994, Carlos and I have shared the desire to understand the true impact of tannins in ruminant nutrition.
    [Show full text]
  • The Science of Flavonoids the Science of Flavonoids
    The Science of Flavonoids The Science of Flavonoids Edited by Erich Grotewold The Ohio State University Columbus, Ohio, USA Erich Grotewold Department of Cellular and Molecular Biology The Ohio State University Columbus, Ohio 43210 USA [email protected] The background of the cover corresponds to the accumulation of flavonols in the plasmodesmata of Arabidopsis root cells, as visualized with DBPA (provided by Dr. Wendy Peer). The structure corresponds to a model of the Arabidopsis F3 'H enzyme (provided by Dr. Brenda Winkel). The chemical structure corresponds to dihydrokaempferol. Library of Congress Control Number: 2005934296 ISBN-10: 0-387-28821-X ISBN-13: 978-0387-28821-5 ᭧2006 Springer ScienceϩBusiness Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceϩBusiness Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America (BS/DH) 987654321 springeronline.com PREFACE There is no doubt that among the large number of natural products of plant origin, debatably called secondary metabolites because their importance to the eco- physiology of the organisms that accumulate them was not initially recognized, flavonoids play a central role.
    [Show full text]