Analysis of Quasistatic MHD Perturbations and Stray Magnetic Fields in a Tokamak Plasma P

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Quasistatic MHD Perturbations and Stray Magnetic Fields in a Tokamak Plasma P Plasma Physics Reports, Vol. 27, No. 9, 2001, pp. 727–732. Translated from Fizika Plazmy, Vol. 27, No. 9, 2001, pp. 771–776. Original Russian Text Copyright © 2001 by Savrukhin. TOKAMAKS Analysis of Quasistatic MHD Perturbations and Stray Magnetic Fields in a Tokamak Plasma P. V. Savrukhin Russian Research Centre Kurchatov Institute, pl. Kurchatova, Moscow, 123182 Russia Received October 23, 2000; in final form, April 4, 2001 Abstract—Mechanisms for the development of quasistatic MHD perturbations in a viscous rotating tokamak plasma are considered. The influence of stray magnetic fields on the stability of MHD modes in the plasma of the TFTR tokamak is analyzed. © 2001 MAIK “Nauka/Interperiodica”. 1. INTRODUCTION involve the three-dimensional modeling of magnetic Recently, the problem of quasistatic MHD perturba- fluxes (including the fluxes induced in the tokamak tions in large tokamaks has attracted considerable inter- conductors) at given positions of the controlling coils. est [1, 2]. An analysis shows that these perturbations Unfortunately, such modeling does not provide the can arise either due to the rotation of magnetic islands required accuracy in determining the stray fields or due to the destabilization of static (locked) MHD because of the complicated spatial structure of the modes. The stopping of rotation is usually accompa- induced fluxes and the mechanical deformation of the nied by a rapid increase in the perturbation amplitude tokamak construction during the experiment. Another and, sometimes, by discharge disruption (see [3]). One method is the direct measurement of helical perturba- of the factors favorable for the development of quasi- tions of the magnetic field with the help of magnetic static MHD perturbations is the breaking of the symme- probes and saddle loops. However, under the experi- try of the tokamak equilibrium magnetic configuration mental conditions, magnetic probes are situated outside (the generation of stray magnetic fields). The threshold the plasma (outside the vacuum chamber of the toka- amplitude of the stray magnetic field at which quasi- mak), which hampers the determination of the local static MHD perturbations develop decreases substan- field structure inside the plasma column. Magnetic tially as the tokamak size increases, the plasma rotation fields inside the vacuum chamber can be measured if slows down, and the plasma pressure increases (see [1, the tokamak is equipped with special movable probes 3]). For these reasons, this kind of instability may be (e.g., in experiments in the DIII-D tokamak [1]). How- dangerous for future tokamak reactors with a slowly ever, such measurements cannot be carried out during rotating plasma under burning conditions [3]. The pri- the discharge. The accuracy of the measurements of mary cause for the appearance of stray magnetic fields, stray magnetic fields can be substantially improved if which is associated with the imperfect fabrication of the tokamak is equipped with additional coils for gen- the tokamak magnetic system and the nonsymmetric erating helical magnetic fields with given amplitudes configuration of conductors, can be minimized by and spatial orientations [2]. In this case, the stray fields improving the accuracy of the device assembly. How- can be deduced by analyzing the thresholds for the ever, there are a number of factors that are fundamen- destabilization of quasistatic MHD perturbations at dif- tally unavoidable. First of all, there is the asymmetry of ferent amplitudes and phases of the external helical the tokamak mechanical elements (such as the divertor, magnetic fields. diagnostic ports, and neutral beam injectors), the inho- Unfortunately, experiments with helical magnetic mogeneity of internal plasma perturbations, and the fields produced by additional coils present serious local character of the interaction of the plasma with the problems to large tokamaks because of the high equip- chamber wall during major disruptions (the excitation ment cost and the rigorous schedule of the device oper- of halo-currents and the injection of impurities [4]). ation. In such a situation, the stray fields can be The diversity of sources exciting inhomogeneous mag- deduced by analyzing the dynamics of internal MHD netic fields makes it difficult to predict the onset of perturbations [5]. In this paper, we describe a procedure instabilities and hampers the development of stabiliza- of determining the dominant harmonics of external tion systems for future experiments. helical perturbations based on the numerical modeling At present, there are several methods for identifying of tearing modes in a viscous rotating plasma. By ana- the structure of stray fields. A direct method is based on lyzing internal perturbations in the TFTR plasma as an the calculations of magnetic fields excited by currents example, we identify the m = 2, n = 1 harmonic (where in the tokamak magnetic system. These calculations m and n are the transverse and longitudinal wavenum- 1063-780X/01/2709-0727 $21.00 © 2001 MAIK “Nauka/Interperiodica” 728 SAVRUKHIN bers, respectively), which plays a key role in the initi- one-fluid MHD theory [6], which describes the electro- ation of the discharge disruption. In order to improve magnetic effects in a plasma with finite viscosity and the accuracy of the analysis, the parameters of the inertia. The geometry of the model is shown schemati- numerical model are determined by comparing the cally in Fig. 1. results of calculations with the results of previous External magnetic field perturbations and MHD experiments in tokamaks equipped with external coils perturbations (modes) are represented in the form of (JET, DIII-D) at prescribed helical perturbations of the helical harmonics B = B exp( jmχ ) and B = magnetic field [5]. em e e rm χ χ ϑ ϕ ω χ Brexp( jm m). Here, m m = m Ð n + ∫ mdt , m e = ϑ ϕ ω χ χ 2. NUMERICAL MODEL OF MHD m Ð n + ∫ edt (where m and e are the phases and PERTURBATIONS CONTROLLED ω ω m and e are the angular frequencies of the modes and BY EXTERNAL MAGNETIC FIELDS external fields, respectively), and θ and φ are the trans- The evolution of MHD perturbations under the verse (poloidal) and longitudinal (toroidal) coordinates. ω action of external helical magnetic fields is analyzed The amplitude Br and the instantaneous frequency m = χ using a phenomenological model of tearing modes in a d m/dt are described by the equations viscous rotating plasma [5]. The model is based on the B dB /dt= c ∆' B r r 1 frb r (1) ()ω τ 2 ()ω 2 τ 2 ()χ χ 2 1 – c2 Br m w /1+ m w + c3 Be cos e – m , ω ()ω ω Brd m/dt= c4 p – m (2) 2ω τ ()ω 2 τ 2 ()χ χ – c5 Br m w/1+ m w + c6 Be sin e – m ; ∆ where 'frb is the stability parameter of the tearing τ mode in a plasma with a free boundary, w is the time ω constant of the conducting tokamak chamber, p is the instantaneous rotation frequency of the bulk plasma surrounding the magnetic island, and ci (i = 1Ð6) are numerical factors calculated using the measured plasma parameters. MHD perturbations were modeled and stray mag- netic fields were then identified using the PLASCON 3 program [5] in the MATLAB programming environ- ment [7]. The block diagram of the program is shown ω (‡) in Fig. 2. The TEARING MODE block models the growth and rotation of MHD perturbations by numeri- cally solving Eqs. (1) and (2) for given values of B and ω e p0 χ ∆ e. The stability parameter of the tearing mode 'frb is ω p specified using the current density profile calculated with the TRANSP code [4]. The transmission charac- (b) teristics of the set of magnetic probes (see below) are ω modeled by the MAGNETIC block. The calculated val- m ω Ω ues of Br, m (denoted by BR and m), and the signals r from magnetic detectors (BR-LMD and BP-MM) are rs rp rw compared with the measured values. The amplitude and phase of external fields are determined by fitting the Fig. 1. Schematic illustration of the tearing mode model and calculated values to the experimental results. the profiles of the angular plasma rotation velocity (a) in a ω quasi-stable configuration and (b) upon the onset of MHD The instantaneous angular frequency m and the perturbations. Magnetic islands ( ) are located in the vis- 1 perturbation amplitude Br depend on the mode phase cous plasma (2) confined in a chamber with conducting ω ω with respect to the external magnetic field [see Eqs. (1), walls (3). Here, m and p are the instantaneous angular χ χ frequencies of the mode and the plasma, respectively; r , r , (2)]. Depending on the phase shift ( e Ð m), the mode s p periodically accelerates and decelerates during the rota- and rw are the minor radii of the resonant magnetic surface, the bulk plasma, and the conducting wall, respectively; and tion period. At large amplitudes of the external field, ω p0 is the plasma rotation frequency in the absence of tear- such nonuniform rotation produces characteristic saw- ing modes. tooth signals from magnetic detectors, which allows us PLASMA PHYSICS REPORTS Vol. 27 No. 9 2001 ANALYSIS OF QUASISTATIC MHD PERTURBATIONS 729 to identify the phase of the stray field under given Experimental data experimental conditions. Magnetic detectors 3. EXPERIMENTAL RESULTS Plasma parameters BLMD, Bp AND COMPARISON WITH CALCULATIONS ω R0, rp, rw, p, The diagnostic complex of the TFTR tokamak [8] ∆' , B , T , frb τt e makes it possible to identify external and internal MHD ne, w perturbations and, concurrently, to measure the plasma MHD modes m/n, , , ω parameters used in numerical calculations (see table rs wi Br m and Fig. 3). The spatial structure of internal MHD modes (wavenumbers m and n), the angular frequency, Model and the magnetic island width are measured with the χ help of two microwave polychromators situated in the TEARING MODE Be, e cross sections separated by an angle of 126¡ in the tor- oidal direction.
Recommended publications
  • Table of Exposures
    Table of Exposures Dole UT Focal Emulsion Exposure Moon's age Plate Nos. ralio sec. days 08.11.65 2132· f/29 Kodak 0.250 Plole 0.4 15.3 7e/2 08.01.66 2228 f/24 Kodak 0.250 Plate 0.31 17.0 3b, 15e 31.01.66 1947 1/24 Kodak 0.250 Plale 0.3 10.1 5b 02.02.66 1944 f/24 Kodak 0.250 Plote 0.25 12.1 7b, 8b 06.02.66 2326 1/24 Kodak 0.250 Plole 0.2 16.3 14c,16b 05.03.66 2259 1/41 IIford Zenith Plole 0.1 13 .5 lOe/l 27.04.66 2152 1/24 lIford G.30 Plate 0.5 6.9 150 28.04.66 2046 f/30 lIford G.30 Pia Ie 0.8 7.9 10,130 23.05.66 2033 f/24 Kodak 0.250 Plole 0.7 3.4 15e/2 23.05,66 2034 f/24 Kodak 0.250 Plate 0.7 3.4 3e/2,4b 23.05.66 2036 1/24 Kodak 0.250 Plate 0.7 3.4 16e 28.05.66 2122 1/30 IIford G.30 Plole 0.8 8.4 140 29.05.66 2103 1/30 IIford G.30 Plate 0.8 9.4 2e 23.06.66 2109 f/24 lIford G.30 Pia Ie 1.0 5.0 160 06.08.66 0211 f/30 Illord G.30 Pia Ie 0.7 18.9 2b 06.08.66 0215 1/30 IIford G.30 Plale 0.7 18.9 lb, 13b 09.08.66 0315 1/30 IIlord G.30 Plate 1.1 23.8 50,60 09.08.66 03 17 1/30 Ilford G.30 Plate 1.1 23.8 90, 91/2, 11 b, 12e/l 06.
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • User Guide to 1:250,000 Scale Lunar Maps
    CORE https://ntrs.nasa.gov/search.jsp?R=19750010068Metadata, citation 2020-03-22T22:26:24+00:00Z and similar papers at core.ac.uk Provided by NASA Technical Reports Server USER GUIDE TO 1:250,000 SCALE LUNAR MAPS (NASA-CF-136753) USE? GJIDE TO l:i>,, :LC h75- lu1+3 SCALE LUNAR YAPS (Lumoalcs Feseclrch Ltu., Ottewa (Ontario) .) 24 p KC 53.25 CSCL ,33 'JIACA~S G3/31 11111 DANNY C, KINSLER Lunar Science Instltute 3303 NASA Road $1 Houston, TX 77058 Telephone: 7131488-5200 Cable Address: LUtiSI USER GUIDE TO 1: 250,000 SCALE LUNAR MAPS GENERAL In 1972 the NASA Lunar Programs Office initiated the Apollo Photographic Data Analysis Program. The principal point of this program was a detailed scientific analysis of the orbital and surface experiments data derived from Apollo missions 15, 16, and 17. One of the requirements of this program was the production of detailed photo base maps at a useable scale. NASA in conjunction with the Defense Mapping Agency (DMA) commenced a mapping program in early 1973 that would lead to the production of the necessary maps based on the need for certain areas. This paper is designed to present in outline form the neces- sary background informatiox or users to become familiar with the program. MAP FORMAT * The scale chosen for the project was 1:250,000 . The re- search being done required a scale that Principal Investigators (PI'S) using orbital photography could use, but would also serve PI'S doing surface photographic investigations. Each map sheet covers an area four degrees north/south by five degrees east/west.
    [Show full text]
  • Adams Adkinson Aeschlimann Aisslinger Akkermann
    BUSCAPRONTA www.buscapronta.com ARQUIVO 27 DE PESQUISAS GENEALÓGICAS 189 PÁGINAS – MÉDIA DE 60.800 SOBRENOMES/OCORRÊNCIA Para pesquisar, utilize a ferramenta EDITAR/LOCALIZAR do WORD. A cada vez que você clicar ENTER e aparecer o sobrenome pesquisado GRIFADO (FUNDO PRETO) corresponderá um endereço Internet correspondente que foi pesquisado por nossa equipe. Ao solicitar seus endereços de acesso Internet, informe o SOBRENOME PESQUISADO, o número do ARQUIVO BUSCAPRONTA DIV ou BUSCAPRONTA GEN correspondente e o número de vezes em que encontrou o SOBRENOME PESQUISADO. Número eventualmente existente à direita do sobrenome (e na mesma linha) indica número de pessoas com aquele sobrenome cujas informações genealógicas são apresentadas. O valor de cada endereço Internet solicitado está em nosso site www.buscapronta.com . Para dados especificamente de registros gerais pesquise nos arquivos BUSCAPRONTA DIV. ATENÇÃO: Quando pesquisar em nossos arquivos, ao digitar o sobrenome procurado, faça- o, sempre que julgar necessário, COM E SEM os acentos agudo, grave, circunflexo, crase, til e trema. Sobrenomes com (ç) cedilha, digite também somente com (c) ou com dois esses (ss). Sobrenomes com dois esses (ss), digite com somente um esse (s) e com (ç). (ZZ) digite, também (Z) e vice-versa. (LL) digite, também (L) e vice-versa. Van Wolfgang – pesquise Wolfgang (faça o mesmo com outros complementos: Van der, De la etc) Sobrenomes compostos ( Mendes Caldeira) pesquise separadamente: MENDES e depois CALDEIRA. Tendo dificuldade com caracter Ø HAMMERSHØY – pesquise HAMMERSH HØJBJERG – pesquise JBJERG BUSCAPRONTA não reproduz dados genealógicos das pessoas, sendo necessário acessar os documentos Internet correspondentes para obter tais dados e informações. DESEJAMOS PLENO SUCESSO EM SUA PESQUISA.
    [Show full text]
  • Lunar Domes in Delisle Region: Morphometry and Mode of Formation
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 1009.pdf Lunar domes in Delisle region: Morphometry and mode of formation. KC Pau1 and R. Lena2. 1 Flat 20A, Fook Chak House, 17 Po Yan Street, Hong Kong; [email protected]; 2Via Cartesio 144, sc. D, 00137 Rome, Italy- BAA Lunar section;[email protected] Introduction: Recent studies about lunar domes the examined domes by applying the combined are based on the evaluation of their spectrophotometric photoclinometry and shape from shading method (sfs) and morphometric properties, rheologic parameters, described in [1-4]. and their classification based on the spectral properties The heights of the domes De1 and De2 were de- and three dimensional shapes of the volcanic edifices termined to 108 ± 10 m and 95 ± 10 m, resulting in [1-3]. In this contribution we provide an analysis of flank slopes of 0.60° and 0.55° respectively (Fig. 5). two domes located in Delisle region near the crater Assuming a parabolic shape the estimated edifice vol- Artsimovich and Diophantus D, termed De1 and 2 umes correspond to about 23 and 24 km3 for the domes (Fig.1 and Table 1). De1 and De2. Fig. 2. WAC imagery: two domes are not apparent as in CCD telescopic image. Fig. 1. Telescopic image acquired on January, 8, 2017 at 13:35 UT with a 250 mm f/6 Newtonian reflector and a 2.5X barlow (Pau). General description and spectral properties: Delisle is an impact crater located in the western part of the Mare Imbrium. It lies to the north of the crater Diophantus, and to the northeast of the designated Mons Delisle (Figs.
    [Show full text]
  • 6 Supplementary References
    6 6 SUPPLEMENTARY REFERENCES 6 SUPPLEMENTARY REFERENCES 1203 6.1 GENERAL ENCYCLOPEDIAS Cosmology glossary. Western Washington Univ. Planetarium, Bellingham, WA; http://www.wwu.edu/depts/skywise/a101_cosmologyglossary.html. Bilder-Konversationslexikon. 4 vols., Brockhaus, Leipzig (1834). CXC Glossary of astrophysical terms. Chandra X-ray Center (CXC), operated Brockhaus Enzyklopädie. 20 vols., Brockhaus, Wiesbaden (1966–1974). for NASA by Harvard-Smithsonian Center for Astrophysics, Cambridge, Brockhaus-Konversationslexikon. 16 vols., Brockhaus, Leipzig (1892–1897). MA; http://chandra.harvard.edu/resources/glossaryA.html. Chambers’s encyclopaedia (ed. by M.D. LAW). 15 vols., International Learn- Dictionnaire des sciences naturelles (ed. by F.G. CUVIER). Levrault, Stras- ing Systems Corporation Ltd., London (1963). bourg (1816–1826). Columbia encyclopedia. Columbia University Press, New York (6th edn., Dictionary of medieval Latin from British sources (ed. by R.E. LATHAM and 2001–2005); http://www.bartleby.com/65/. D.R. HOWLETT). Oxford University Press, London; vol. 1 (1975) to vol. 6 Collier’s encyclopedia. 24 vols., Macmillan Education Co, New York (1987). (2003). Der Große Herder. 13 vols., Herder, Freiburg (1932–1935). Dictionary of mining, mineral, and related terms [compiled and edited by the Encyclopaedia Britannica. 29 vols. (11th edn., 1911). LoveToKnow™ free U.S. Bureau of Mines, U.S. Dept. of the Interior]. Am. Geol. Inst., Alex- online Encyclopedia; http://www.1911encyclopedia.org/. andria, VA (1997); http://www.maden.hacettepe.edu.tr/dmmrt/index.html. Encyclopaedia Britannica. 24 vols. (1875–1889), 24 vols. (1929), 24 vols. Dictionary of SDI (ed. by H. WALDMAN). Scholarly Resources Imprint, Wil- (1959); 30 vols. (1974–1984); 32 vols. (1985–2002) mington, DE (1988).
    [Show full text]
  • Ensuring Strategic Stability in the Past and Present: Theoretical and Applied Questions
    Ensuring Strategic Stability in the Past and Present: Theoretical and Applied Questions By Andrei Kokoshin Foreword by Graham Allison Belfer Center for Science and International Affairs Harvard Kennedy School 79 JFK Street Cambridge, MA 02138 Fax: (617) 495-8963 Email: [email protected] Website: http://belfercenter.org Copyright 2011 President and Fellows of Harvard College Ensuring Strategic Stability in the Past and Present: Theoretical and Applied Questions By Andrei Kokoshin Foreword by Graham Allison June 2011 This paper was commissioned by the Nuclear Threat Initiative. The Belfer Center for Science and International Affairs would like to thank the Nuclear Threat Initiative for its support and financial sponsorship of this work. Table of Contents Foreword by Graham Allison: 2 Introduction: 4 Chapter 1: On the Path toward Defining Strategic Stability 10 Chapter 2: On the Principles and Parameters of Strategic Stability 20 Chapter 3: Challenges of Ensuring the Capability for a Guaranteed Response Strike and Demonstrating Such a Capability 26 Chapter 4: Challenges of Preventing Accidental or Unsanctioned Use of Nuclear Weapons 29 Chapter 5: The Goal of Preventing Escalatory Domination 30 Chapter 6: On Tactical and Operational-Tactical Nuclear Weapons 33 Chapter 7: Nuclear Deterrence as a Combination of “Vulnerability-Invulnerability” 34 Chapter 8: A Set of Measures for Ensuring Strategic Stability as an Example of an “Asymmetric Response” to Ronald Reagan’s Strategic Defense Initiative 36 Chapter 9: Latest Trends in the Development
    [Show full text]
  • LLNL 65 Th Anniversary Book, 2017
    Scientific Editor Paul Chrzanowski Production Editor Arnie Heller Pamela MacGregor (first edition) Graphic Designer George Kitrinos Proofreader Caryn Meissner About the Cover Since its inception in 1952, the Laboratory has transformed from a deactivated U.S. Naval Air Station to a campus-like setting (top) with outstanding research facilities through U.S. government investments in our important missions and the efforts of generations of exceptional people dedicated to national service. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, About the Laboratory nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or Lawrence Livermore National Laboratory (LLNL) was founded in 1952 to enhance process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to the security of the United States by advancing nuclear weapons science and any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise technology and ensuring a safe, secure, and effective nuclear deterrent. With does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States a talented and dedicated workforce and world-class research capabilities, the government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed Laboratory strengthens national security with a tradition of science and technology herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.
    [Show full text]
  • User Guide To
    USER GUIDE TO 1 2 5 0 , 000 S CA L E L U NA R MA P S DANNY C. KINSLER Lunar Science Institute 3303 NASA Road #1 Houston, TX 77058 Telephone: 713/488-5200 Cable Address: LUNSI The Lunar Science Institute is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration. This document constitutes LSI Contribution No. 206 March 1975 USER GUIDE TO 1 : 250 , 000 SCALE LUNAR MAPS GENERAL In 1 972 the NASA Lunar Programs Office initiated the Apoll o Photographic Data Analysis Program. The principal point of this program was a detail ed scientific analysis of the orbital and surface experiments data derived from Apollo missions 15, 16, and 17 . One of the requirements of this program was the production of detailed photo base maps at a useabl e scale . NASA in conjunction with the Defense Mapping Agency (DMA) commenced a mapping program in early 1973 that would lead to the production of the necessary maps based on the need for certain areas . This paper is desi gned to present in outline form the neces- sary background information for users to become familiar with the program. MAP FORMAT The scale chosen for the project was 1:250,000* . The re- search being done required a scale that Principal Investigators (PI's) using orbital photography could use, but would also serve PI's doing surface photographic investigations. Each map sheet covers an area four degrees north/south by five degrees east/west. The base is compiled from vertical Metric photography from Apollo missions 15, 16, and 17.
    [Show full text]
  • Thedatabook.Pdf
    THE DATA BOOK OF ASTRONOMY Also available from Institute of Physics Publishing The Wandering Astronomer Patrick Moore The Photographic Atlas of the Stars H. J. P. Arnold, Paul Doherty and Patrick Moore THE DATA BOOK OF ASTRONOMY P ATRICK M OORE I NSTITUTE O F P HYSICS P UBLISHING B RISTOL A ND P HILADELPHIA c IOP Publishing Ltd 2000 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency under the terms of its agreement with the Committee of Vice-Chancellors and Principals. British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. ISBN 0 7503 0620 3 Library of Congress Cataloging-in-Publication Data are available Publisher: Nicki Dennis Production Editor: Simon Laurenson Production Control: Sarah Plenty Cover Design: Kevin Lowry Marketing Executive: Colin Fenton Published by Institute of Physics Publishing, wholly owned by The Institute of Physics, London Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK US Office: Institute of Physics Publishing, The Public Ledger Building, Suite 1035, 150 South Independence Mall West, Philadelphia, PA 19106, USA Printed in the UK by Bookcraft, Midsomer Norton, Somerset CONTENTS FOREWORD vii 1 THE SOLAR SYSTEM 1
    [Show full text]
  • Generation and Emplacement of Fine-Grained Ejecta in Planetary
    Icarus 209 (2010) 818–835 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Generation and emplacement of fine-grained ejecta in planetary impacts Rebecca R. Ghent a,*, V. Gupta a, B.A. Campbell b, S.A. Ferguson a, J.C.W. Brown a, R.L. Fergason c, L.M. Carter b a Department of Geology, University of Toronto, 22 Russell St., Toronto, ON, Canada M5S 3B1 b Center for Earth and Planetary Studies, Smithsonian Institution, Washington, DC 20013-7012, United States c Astrogeology Science Center, USGS, Flagstaff, AZ 86001, United States article info abstract Article history: We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all Received 22 October 2009 three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and Revised 7 May 2010 other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find Accepted 11 May 2010 that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are Available online 20 May 2010 depleted in rocks P1 cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from 10 lmto Keywords: 10 mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete Moon nearside radar map for the Moon, we establish statistically robust scaling relationships between crater Mars à à À0.18 Venus radius R and fine-grained ejecta run-out r for all three planets.
    [Show full text]
  • Lunar 1000 Challenge List
    LUNAR 1000 CHALLENGE A B C D E F G H I LUNAR PROGRAM BOOKLET LOG 1 LUNAR OBJECT LAT LONG OBJECTIVE RUKL DATE VIEWED BOOK PAGE NOTES 2 Abbot 5.6 54.8 37 3 Abel -34.6 85.8 69, IV Libration object 4 Abenezra -21.0 11.9 55 56 5 Abetti 19.9 27.7 24 6 Abulfeda -13.8 13.9 54 45 7 Acosta -5.6 60.1 49 8 Adams -31.9 68.2 69 9 Aepinus 88.0 -109.7 Libration object 10 Agatharchides -19.8 -30.9 113 52 11 Agrippa 4.1 10.5 61 34 12 Airy -18.1 5.7 63 55, 56 13 Al-Bakri 14.3 20.2 35 14 Albategnius -11.2 4.1 66 44, 45 15 Al-Biruni 17.9 92.5 III Libration object 16 Aldrin 1.4 22.1 44 35 17 Alexander 40.3 13.5 13 18 Alfraganus -5.4 19.0 46 19 Alhazen 15.9 71.8 27 20 Aliacensis -30.6 5.2 67 55, 65 21 Almanon -16.8 15.2 55 56 22 Al-Marrakushi -10.4 55.8 48 23 Alpetragius -16.0 -4.5 74 55 24 Alphonsus -13.4 -2.8 75 44, 55 25 Ameghino 3.3 57.0 38 26 Ammonius -8.5 -0.8 75 44 27 Amontons -5.3 46.8 48 28 Amundsen -84.5 82.8 73, 74, V Libration object 29 Anaxagoras 73.4 -10.1 76 4 30 Anaximander 66.9 -51.3 2 31 Anaximenes 72.5 -44.5 3 32 Andel -10.4 12.4 45 33 Andersson -49.7 -95.3 VI Libration object 34 Angstrom 29.9 -41.6 19 35 Ansgarius -12.7 79.7 49, IV Libration object 36 Anuchin -49.0 101.3 V Libration object 37 Anville 1.9 49.5 37 38 Apianus -26.9 7.9 55 56 39 Apollonius 4.5 61.1 2 38 40 Arago 6.2 21.4 44 35 41 Aratus 23.6 4.5 22 42 Archimedes 29.7 -4.0 78 22, 12 43 Archytas 58.7 5.0 76 4 44 Argelander -16.5 5.8 63 56 45 Ariadaeus 4.6 17.3 35 46 Aristarchus 23.7 -47.4 122 18 47 Aristillus 33.9 1.2 69 12 48 Aristoteles 50.2 17.4 48 5 49 Armstrong 1.4 25.0 44
    [Show full text]