A Computer Program for the Prediction of Viscosity and Thermal Conductivity in Hydrocarbon Mixtures

Total Page:16

File Type:pdf, Size:1020Kb

A Computer Program for the Prediction of Viscosity and Thermal Conductivity in Hydrocarbon Mixtures NBS TECHNICAL NOTE 1039 U.S. DEPARTMENT OF COMMERCE /National Bureau of Standards A Computer Program for the Prediction of Viscosity and Thermal Conductivity in Hydrocarbon Mixtures NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system ol physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities 2 — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science. THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser- vices to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts: builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers: Applied Mathematics — Electronics and Electrical Engineering- — Mechanical Engineering and Process Technology 2 — Building Technology — Fire Research — Consumer Product Technology — Field Methods. THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers: Programming Science and Technology — Computer Systems Engineering. 'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234. : Some divisions within the center are located at Boulder, CO 80303. A Computer Program for the Prediction of Viscosity and Thermal Conductivity in Hydrocarbon Mixtures .tAttoPAL. BURKAC Of ST ANDASM L1BBABY JUL 2 1981 not. i' u^, CiUoo James F. Ely no- ioz<\ H.J.M. Hanley int Thermophysical Properties Division National Engineering Laboratory National Bureau of Standards Boulder, Colorado 80303 ** OF ° Jrf. 7 U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director Issued April 1981 NATIONAL BUREAU OF STANDARDS TECHNICAL NOTE 1039 Nat. Bur. Stand. (U.S.), Tech. Note 1039, 80 pages (April 1981) CODEN: NBTNAE U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1981 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Price $4.00 (Add 25 percent for other than U.S. mailing) CONTENTS Page 1. INTRODUCTION 1 2. THE ONE-FLUID MODEL AND EQUATIONS 2 2.1 Extended Corresponding States 4 2.2 Mixing Rules and Assumptions 5 3. SUMMARY OF THE CALCULATION PROCEDURE 7 4. THE REFERENCE FLUID: EXTENDED EQUATIONS FOR METHANE 7 5. RESULTS FOR PURE FLUIDS 14 6. RESULTS FOR MIXTURES 14 7. CONCLUSIONS 25 8. COMPUTER PROGRAM 25 9. ACKNOWLEDGMENTS 31 10. REFERENCES 32 APPENDIX A. TRAPP USER'S GUIDE 33 APPENDIX B. LISTING OF COMPUTER PROGRAM TRAPP 42 in LIST OF FIGURES Page Figure 1. (a) Comparison of reduced density of methane and n-decane as a function of reduced temperature, (b) Comparison of scaled viscosity of methane and n-decane as a function of reduced density 9 Figure 2. Comparison of calculated and experimental viscosity of methane, pentane, decane and hexadecane as a function of reduced density 20 Figure 3. Comparison of calculated and experimental viscosity for toluene, carbon dioxide, ethylene and isobutane 21 Figure 4. Comparison of calculated and experimental thermal conductivity for propane, decane, hexadecane, eicosane and methyl cyclohexane 22 Figure 5. Comparison of calculated and experimental thermal conductivity for ethylene, 1-hexene, benzene, toulene, p-xylene and carbon dioxide 23 Figure 6. Comparison of calculated and experimental viscosity of selected paraffin binary mixtures as a function of reduced density 28 Figure 7. Comparison of calculated and experimental viscosity of selected aromatic/paraffin mixtures 29 Figure 8. Comparison of calculated and experimental thermal conductivity of selected binary mixtures 30 Figure Al. Block diagram of computer program TRAPP 35 Figure A2. Flow diagram of I/O portion of TRAPP 38 LIST OF TABLES Table 1. Reference Fluid Equation of State 10 Table 2. Coefficients for Shape Factor Correlations 12 Table 3. Reference Fluid Viscosity Correlation 13 Table 4. Reference Fluid Translational Thermal Conductivity Correlation 15 Table 5. Summary of Calculated Results for Pure Fluid Viscosity . 16 Table 6. Summary of Calculated Results for Pure Fluid Thermal Conductivity 18 IV LIST OF TABLES (Continued) Page Table 7. Summary of Results for Binary Mixture Viscosity 26 Table 8. Summary of Results for Binary Mixture Thermal Conductivity . 27 Table Al. Listing of Components and TRAPP Data Base 34 Table A2 . Sample Input and Output 39 Table A3. Sample Input and Output 40 Table A4. Sample Input and Output 41 A COMPUTER PROGRAM FOR THE PREDICTION OF VISCOSITY AND THERMAL CONDUCTIVITY IN HYDROCARBON MIXTURES by James F. Ely and H. J. M. Hartley Thermophysical Properties Division National Engineering Laboratory National Bureau of Standards Boulder, Colorado 80303 A model for the prediction of the density, viscosity and thermal conductivity of non-polar fluid mixtures over the entire range of pVT states is presented. The model is based on the extended corresponding states model and covers molecular weight ranges including C20 Only pure component equilibrium data such as the critical constants are required as input to the calculation procedure — no transport data are required. Extensive comparisons with experimental data for pure fluids and binary mixtures are presented. The average percentage deviation for both the viscosity and thermal conductivity was observed to be less than 8 percent. A computer program (TRAPP) which performs the calculations reported in this manuscript is described and listed in the Appendices. Key words: Computer Droaram; density; extended corresDonding states; fluid mixtures; thermal conductivity; viscosity. 1. INTRODUCTION Engineering design requires transport properties for heat exchangers, compressors, pumps and for example, pipelines. Owing to the complexity of transport phenomena in general, accurate methods for the prediction of these properties have not advanced to a level comparable to equilibrium properties. In fact, most engineering calculations of transport properties are based on empirical correlations which are generally limited to narrow ranges of pressure and temperature and very frequently to pure fluids. These methods have been reviewed by Reid, et al . [1]. The purpose of this manuscript is to present a reliable, self-consistent method for predicting the density, viscosity and thermal conductivity of pure non-polar fluids and their mixtures. The method is applicable to a wide variety of chemical types, to thermodynamic states ranging from the dilute gas to compressed liquid and, in principle, the number of mixture components is unrestricted. The procedure is an extension of a method [2,3] which was proposed to estimate the transport properties of natural gas and similar mixtures and is based on the corresponding states principle and the conf ormal , one-fluid concept. It is predictive and requires only the critical parameters, Pitzer's acentric factor and the component ideal gas heat capacity as input. No mixture properties or transport data are required. The basic
Recommended publications
  • COM 113 INTRO to COMPUTER PROGRAMMING Theory Book
    1 [Type the document title] UNESCO -NIGERIA TECHNICAL & VOCATIONAL EDUCATION REVITALISATION PROJECT -PHASE II NATIONAL DIPLOMA IN COMPUTER TECHNOLOGY Computer Programming COURSE CODE: COM113 YEAR I - SE MESTER I THEORY Version 1: December 2008 2 [Type the document title] Table of Contents WEEK 1 Concept of programming ................................................................................................................ 6 Features of a good computer program ............................................................................................ 7 System Development Cycle ............................................................................................................ 9 WEEK 2 Concept of Algorithm ................................................................................................................... 11 Features of an Algorithm .............................................................................................................. 11 Methods of Representing Algorithm ............................................................................................ 11 Pseudo code .................................................................................................................................. 12 WEEK 3 English-like form .......................................................................................................................... 15 Flowchart .....................................................................................................................................
    [Show full text]
  • Defining Computer Program Parts Under Learned Hand's Abstractions Test in Software Copyright Infringement Cases
    Michigan Law Review Volume 91 Issue 3 1992 Defining Computer Program Parts Under Learned Hand's Abstractions Test in Software Copyright Infringement Cases John W.L. Ogilive University of Michigan Law School Follow this and additional works at: https://repository.law.umich.edu/mlr Part of the Computer Law Commons, Intellectual Property Law Commons, and the Judges Commons Recommended Citation John W. Ogilive, Defining Computer Program Parts Under Learned Hand's Abstractions Test in Software Copyright Infringement Cases, 91 MICH. L. REV. 526 (1992). Available at: https://repository.law.umich.edu/mlr/vol91/iss3/5 This Note is brought to you for free and open access by the Michigan Law Review at University of Michigan Law School Scholarship Repository. It has been accepted for inclusion in Michigan Law Review by an authorized editor of University of Michigan Law School Scholarship Repository. For more information, please contact [email protected]. NOTE Defining Computer Program Parts Under Learned Hand's Abstractions Test in Software Copyright Infringement Cases John W.L. Ogilvie INTRODUCTION Although computer programs enjoy copyright protection as pro­ tectable "literary works" under the federal copyright statute, 1 the case law governing software infringement is confused, inconsistent, and even unintelligible to those who must interpret it.2 A computer pro­ gram is often viewed as a collection of different parts, just as a book or play is seen as an amalgamation of plot, characters, and other familiar parts. However, different courts recognize vastly different computer program parts for copyright infringement purposes. 3 Much of the dis­ array in software copyright law stems from mutually incompatible and conclusory program part definitions that bear no relation to how a computer program is actually designed and created.
    [Show full text]
  • Language Translators
    Student Notes Theory LANGUAGE TRANSLATORS A. HIGH AND LOW LEVEL LANGUAGES Programming languages Low – Level Languages High-Level Languages Example: Assembly Language Example: Pascal, Basic, Java Characteristics of LOW Level Languages: They are machine oriented : an assembly language program written for one machine will not work on any other type of machine unless they happen to use the same processor chip. Each assembly language statement generally translates into one machine code instruction, therefore the program becomes long and time-consuming to create. Example: 10100101 01110001 LDA &71 01101001 00000001 ADD #&01 10000101 01110001 STA &71 Characteristics of HIGH Level Languages: They are not machine oriented: in theory they are portable , meaning that a program written for one machine will run on any other machine for which the appropriate compiler or interpreter is available. They are problem oriented: most high level languages have structures and facilities appropriate to a particular use or type of problem. For example, FORTRAN was developed for use in solving mathematical problems. Some languages, such as PASCAL were developed as general-purpose languages. Statements in high-level languages usually resemble English sentences or mathematical expressions and these languages tend to be easier to learn and understand than assembly language. Each statement in a high level language will be translated into several machine code instructions. Example: number:= number + 1; 10100101 01110001 01101001 00000001 10000101 01110001 B. GENERATIONS OF PROGRAMMING LANGUAGES 4th generation 4GLs 3rd generation High Level Languages 2nd generation Low-level Languages 1st generation Machine Code Page 1 of 5 K Aquilina Student Notes Theory 1. MACHINE LANGUAGE – 1ST GENERATION In the early days of computer programming all programs had to be written in machine code.
    [Show full text]
  • 13. Stored-Program Computers
    13. Stored-Program Computers 13.1 Introduction This chapter concentrates on the low-level usage and structure of stored program computers. We focus on a particular hypothetical machine known as the ISC, describing its programming in assembly language. We show how recursion and switch statements are compiled into machine language, and how memory-mapped overlapped I/O is achieved. We also show the logic implement of the ISC, in terms of registers, buses, and finite-state machine controllers. 13.2 Programmer's Abstraction for a Stored-Program Computer By stored-program computer, we mean a machine in which the program, as well as the data, are stored in memory, each word of which can be accessed in uniform time. Most of the high-level language programming the reader has done will likely have used this kind of computer implicitly. However, the program that is stored is not high-level language text. If it were, then it would be necessary to constantly parse this text, which would slow down execution immensely. Instead one of two other forms of storage is used: An abstract syntax representation of the program could be stored. The identifiers in this representation are pre-translated, and the structure is traversed dynamically as needed during execution. This is the approach used by an interpreter for the language. A second approach is to use a compiler for the language. The compiler translates the program into the very low-level language native to the machine, appropriately called machine language. The native machine language acts as a least-common-denominator language for the computer.
    [Show full text]
  • Programming Fundamentals - I Basic Concepts Fall-Semester 2016
    Programming Fundamentals - I Basic Concepts Fall-Semester 2016 Prepared By: Rao Muhammad Umer Lecturer, Web: raoumer.github.io Department of Computer Science & IT, The University of Lahore. What is computer? The term "computer" was originally given to humans who performed numerical calculations using mechanical calculators, such as the abacus and slide rule. The term was later given to a mechanical device as they began replacing the human computers. Today's computers are electronic devices that accept data such as numbers, text, sound, image, animations, video, etc., (input), process that data (converts data to information) , produce output, and then store (storage) the results. A basic computer consists of 4 components: 1. Input devices 2. Central Processing Unit or CPU 3. Output devices 4. Memory Input Devices are used to provide input to the computer basic input devices include keyboard, mouse, touch screens etc. Central Processing Unit acts like a brain, it processes all instructions and data in the computer, the instructions are computer commands, these commands are given to CPU by input devices, some of the instructions are generated by the computer itself Output devices are used to receive computer output, the output, some basic output devices are hard drive disk (HDD, commonly known as hard disk), printers, computer screens (Monitors and LCDs) The computer memory is a temporary storage area. It holds the data and instructions that the Central Processing Unit (CPU) needs. Before a program can be run, the program is loaded from some storage device such as into the memory, the CPU loads the program or part of the program from the memory and executes it.
    [Show full text]
  • Introduction to Computer Programming
    Introduction to Computer Programming CISC1600/1610 Computer Science I/Lab Spring 2016 CISC1600 Yanjun Li 1 Outline This Course Computer Programming Spring 2016 CISC1600 Yanjun Li 2 1 This is a course In Programming For beginners who want to become professionals or who would like to know something about programming who are assumed to be bright Though not (necessarily) geniuses who are willing to work hard Though do need sleep occasionally, and take a normal course load Using the C++ programming language Spring 2016 CISC1600 Yanjun Li 3 Learning Goals Learn Fundamental programming concepts Key useful techniques Basic Standard C++ facilities After the course, you’ll be able to Write small sound C++ programs Read much larger programs Learn the basics of many other languages by yourself Proceed with an “advanced” C++ programming course After the course, you will not (yet) be An expert programmer A C++ language expert An expert user of advanced libraries Spring 2016 CISC1600 Yanjun Li 4 2 The Means Lectures Attend every one Outside of lectures Read a chapter ahead, and read the chapter again after each lecture Read actively: with questions in mind, try to reorganize/rephrase the key points in your mind Review questions/Terms in chapters Drills Always do the drills, before the exercises Exercises Spring 2016 CISC1600 Yanjun Li 5 The Means (Cont.) Lab projects That’s where the most fun and the best learning takes place Don’t wait until lab section to start the project Start to think about the project early Finish up & get help during labs Exams Midterms Final Spring 2016 CISC1600 Yanjun Li 6 3 How to be Successful? Don’t study alone when you don’t have to Form study groups Do help each other (without plagiarizing) If in doubt if a collaboration is legitimate: ask! Don’t claim to have written code that you copied from others Don’t give anyone else your code (to hand in for a grade) When you rely on the work of others, explicitly list all of your sources – i.e.
    [Show full text]
  • Lecture 1: Introduction to Java®
    Lecture 1: Introduction to Java MIT-AITI Kenya 2005 1 Lecture Outline • What a computer program is • How to write a computer program • The disadvantages and advantages of using Java • How a program that you write in Java is changed into a form that your computer can understand • Sample Java code and comments MIT-Africa Internet Technology Initiative ©2005 2 Computer Program vs. Food Recipe Food Recipe Computer Program A chef writes a set of A programmer writes a set of instructions called a recipe instructions called a program The recipe requires specific The program requires specific ingredients inputs The cook follows the The computer follows the instructions step-by-step instructions step-by-step The food will vary depending on The output will vary depending the amount of ingredients and on the values of the inputs and the cook the computer MIT-Africa Internet Technology Initiative ©2005 3 Recipe and Program Examples Student’s Student’s Ingredient # 1 Ingredient # 2 Name Grade Recipe Program Dinner “Bilha got an A on the exam!” MIT-Africa Internet Technology Initiative ©2005 4 What is a computer program? • For a computer to be able to perform specific tasks (i.e. print what grade a student got on an exam), it must be given instructions to do the task • The set of instructions that tells the computer to perform specific tasks is known as a computer program MIT-Africa Internet Technology Initiative ©2005 5 Writing Computer Programs • We write computer programs (i.e. a set of instructions) in programming languages such as C, Pascal, and
    [Show full text]
  • What Is a Computer Program? 1 High-Level Vs Low-Level Languages
    What Is A Computer Program? Scientific Computing Fall, 2019 Paul Gribble 1 High-level vs low-level languages1 2 Interpreted vs compiled languages3 What is a computer program? What is code? What is a computer language? A computer program is simply a series of instructions that the computer executes, one after the other. An instruction is a single command. A program is a series of instructions. Code is another way of referring to a single instruction or a series of instructions (a program). 1 High-level vs low-level languages The CPU (central processing unit) chip(s) that sit on the motherboard of your computer is the piece of hardware that actually executes instructions. A CPU only understands a relatively low-level language called machine code. Often machine code is generated automatically by translating code written in assembly language, which is a low-level programming language that has a relatively direcy relationship to machine code (but is more readable by a human). A utility program called an assembler is what translates assembly language code into machine code. In this course we will be learning how to program in MATLAB, which is a high-level programming language. The “high-level” refers to the fact that the language has a strong abstraction from the details of the computer (the details of the machine code). A “strong abstraction” means that one can operate using high-level instructions without having to worry about the low-level details of carrying out those instructions. An analogy is motor skill learning. A high-level language for human action might be drive your car to the grocery store and buy apples.
    [Show full text]
  • Virtual Machines for Dynamic Languages Ausgewählte Kapitel Der Systemsoftwaretechnik, WS2021
    Virtual Machines for Dynamic Languages Ausgewählte Kapitel der Systemsoftwaretechnik, WS2021 Mark Deutel Friedrich-Alexander-University Erlangen-Nürnberg (FAU) Erlangen, Germany [email protected] ABSTRACT threading model. It is common that once a dynamic language has A common approach to execute dynamic languages is inside a vir- grown popular enough the interpreter is extended by a just-in-time tual machine (VM), usually implemented in a low level system (JIT) compiler to more efficiently execute interpreted code. language like C. Such VMs have to support the often complex However this approach does not come without problems. The syntax and semantics of the dynamic languages they are hosting. effort required to write a complete virtual machine from scratch Additionally, some properties of dynamic language code can only is huge. It also forces the language implementer to deal with plat- be inferred at runtime making the optimization of code execution form or target architecture specific details. This makes implement- another challenging task. Therefore, it is hardly possible to provide ing a VM time consuming, error prone, and complicated to port general purpose implementations that support a large range of to other systems. Additionally, modern dynamic languages like different dynamic languages. Furthermore, many commonly used Python, Ruby or JavaScript evolve rapidly and have complex syn- dynamic languages such as Python or Javascript are still evolving tax and semantics. This not only makes it hard to represent the which means that their VMs have to adapt constantly. This implies language properly in low level code, but makes maintenance of that it is necessary to write and maintain a sufficiently elaborated existing VM implementations a complicated task as well.
    [Show full text]
  • Computer Programming
    d. Ballpoint pens or sharpened pencils e. Blank notebook paper COMPUTER f. All competitors must create a one-page résumé and submit a hard copy to the PROGRAMMING technical committee chair at orientation. Failure to do so will result in a 10-point penalty. PURPOSE To evaluate each contestant’s preparation for Note: Your contest may also require a hard employment and to recognize outstanding copy of your résumé as part of the actual students for excellence and professionalism in contest. Check the Contest Guidelines the field of computer programming. and/or the updates page on the SkillsUSA website: http://updates.skillsusa.org. First, download and review the General Regulations at: http://updates.skillsusa.org. SCOPE OF THE CONTEST The contest uses competencies identified by the ELIGIBILITY Computing Technology Industry Association. Open to active SkillsUSA members enrolled in The specific projects chosen for national programs with computer programming as the competition will be determined by the occupational objective. Computer Programming technical committee. Knowledge Performance CLOTHING REQUIREMENTS The contest includes a written knowledge test Class E: Contest specific — Business Casual assessing knowledge of Visual Basic, Java, C++ • Official SkillsUSA white polo shirt or RPG or “other approved language.” Check • Black dress slacks (accompanied by black the Contest Guidelines and/or the updates page dress socks or black or skin-tone seamless on the SkillsUSA website: updates.skillsusa.org. hose) or black dress skirt (knee-length, accompanied by black or skin-tone Skill Performance seamless hose) The contest includes a computer programming • Black leather closed-toe dress shoes problem consisting of background information and program specifications with accompanying These regulations refer to clothing items that reference materials and description of program are pictured and described at: output requirements.
    [Show full text]
  • Introduction to Computer Programming with C Language
    Introduction to Computer Programming with C Language BY Dr. MOHAMED ANWAR MODIFIED BY Dr. EMAD SAMI C Language Course Chapters 1. Introduction 2. Program development 3. The Essentials of C programs 4. Manipulating data with operators 5. Reading and writing standard I/O 6. Decision 7. Iteration 8. Arrays 9. C functions 1. Introduction Chapter Objectives: 1-1 Computer Program 1-2 Programming Languages 1-3 The C programming Language 1-4 Interpreter 1-5 Compiler 1-6 Assembler 1-7 Setting up the computer 1-8 The C-Free 4.0 IDE Preparation Steps 1-9 The first C program 1-1 Computer Program • A computer program is a sequence of instructions written to perform a specified task with a computer. • The program has an executable form (i.e., after your write the program to performs a specific task and then save it, .exe file is obtained for running) • The .exe program: # It has human readable form called the source code # this source code is written by computer programmers. # this source code written using a programming language. # an interpreter or compiler is used to convert the source code into .exe form. 1-2 Programming Languages • It is an artificial language designed to communicate instructions to a computer. • It has a text form (i.e., it contains words, numbers, and punctuation). • Have three groups: machine language, assembly language and high level language. 1-2 Programming Languages (Cont’s) • machine language: – program code has 0’s and 1’s only. – difficult to read and write. • assembly language: – Its level higher than machine language.
    [Show full text]
  • Computers and History Outline What Is a Computer?
    Computer system • Hardware -- physical components of Computers and History computer that you see or touch • Software -- computer programs that instruct hardware to perform specific tasks • A computer program is a set of instructions written in a programming language. CS 1305 Intro to Computers and History 4 Computer Tecnology Outline Basic Computer Components • Computer and information • Central Processing Unit • History of computer technology • Storage -- memory • Input devices • Output devices CS 1305 Intro to Computers and History 2 CS 1305 Intro to Computers and History 5 Computer Tecnology Computer Tecnology What is a computer? Categories of Computers A computer is an information-processing • Personal computer (PC) machine that performs simple tasks • Minicomputers according to specific instructions. This • Mainframe computers means it can store, retrieve, output and process data. • Supercomputers Data is a collection of unorganized facts or information, which includes words, numbers, images, and sound. CS 1305 Intro to Computers and History 3 CS 1305 Intro to Computers and History 6 Computer Tecnology Computer Tecnology 1 Personal Computers Supercomputers • Desktop computers A supercomputer is the fastest, most • Network of computers and Web appliances powerful, and most expensive. It is -- WebTV designed specifically for applications • Laptop or notebook computers requiring complex, sophisticated mathematical calculations -- weather • Handheld computers -- small personal forecasting, medical image processing, computers petroleum exploration,... CS 1305 Intro to Computers and History 7 CS 1305 Intro to Computers and History 10 Computer Tecnology Computer Tecnology Minicomputers Software A minicomputer is designed for a small group • System software of organizations with a more powerful – Operating system computing capabilities. The computing – System utilities process of a minicomputer can be accessed • Application software by several users via terminal that connected to it.
    [Show full text]