Computer Programming

Total Page:16

File Type:pdf, Size:1020Kb

Computer Programming d. Ballpoint pens or sharpened pencils e. Blank notebook paper COMPUTER f. All competitors must create a one-page résumé and submit a hard copy to the PROGRAMMING technical committee chair at orientation. Failure to do so will result in a 10-point penalty. PURPOSE To evaluate each contestant’s preparation for Note: Your contest may also require a hard employment and to recognize outstanding copy of your résumé as part of the actual students for excellence and professionalism in contest. Check the Contest Guidelines the field of computer programming. and/or the updates page on the SkillsUSA website: http://updates.skillsusa.org. First, download and review the General Regulations at: http://updates.skillsusa.org. SCOPE OF THE CONTEST The contest uses competencies identified by the ELIGIBILITY Computing Technology Industry Association. Open to active SkillsUSA members enrolled in The specific projects chosen for national programs with computer programming as the competition will be determined by the occupational objective. Computer Programming technical committee. Knowledge Performance CLOTHING REQUIREMENTS The contest includes a written knowledge test Class E: Contest specific — Business Casual assessing knowledge of Visual Basic, Java, C++ • Official SkillsUSA white polo shirt or RPG or “other approved language.” Check • Black dress slacks (accompanied by black the Contest Guidelines and/or the updates page dress socks or black or skin-tone seamless on the SkillsUSA website: updates.skillsusa.org. hose) or black dress skirt (knee-length, accompanied by black or skin-tone Skill Performance seamless hose) The contest includes a computer programming • Black leather closed-toe dress shoes problem consisting of background information and program specifications with accompanying These regulations refer to clothing items that reference materials and description of program are pictured and described at: output requirements. An appropriate www.skillsusastore.org. If you have questions (successfully executable) computer program about clothing or other logo items, call from design notes and instructions will be 800-401-1560 or 703-956-3723. developed. Note: Contestants must wear their official Contest Guidelines contest clothing to the contest orientation 1. The contestants will receive a packet that meeting. includes three or four projects. 2. Each project’s specifications are written for EQUIPMENT AND MATERIALS either Visual Basic, Java, C++ or RPG. 1. Supplied by the technical committee: 3. Projects will be scored on the following six a. Printer criteria: completeness, correctness of b. Programming instructions output, validation of input, internal c. Timing and judges procedures documentation, efficiency of code, and 2. Supplied by the contestant: quality of work. a. Desktop computer/monitor or laptop 4. The contest will also include an interview b. Visual Basic, Java, C++ or RPG software to assess contestants’ ability to answer c. One copy only of the coding reference questions typical of an entry-level position manual of the language in which they for a computer programmer. will code the program Standards and Competencies 3.9 Use pointers in C++ programs 3.10 Use sequential files in C++ programs CP 1.0 — Demonstrate knowledge of computer programming CP 4.0 — Perform competencies related to Visual Basic 1.1 Describe how programs and programming programming languages work 1.2 Describe the purposes and practices of 4.1 Demonstrate knowledge of the structured programming fundamentals of Visual Basic (VB) programming using Visual Basic.NET CP 2.0 — Perform competencies related to Java programming 4.2 Use sequential and random access files in VB programs 2.1 Explain the structured programming 4.3 Use advanced controls and multiple paradigm controls in a business application 2.2 Identify the primary components of a 4.4 Use a database and database controls in Java program a business application 2.3 Explain the basic syntax of a Java 4.5 Demonstrate knowledge of structured program and object-oriented programming 2.4 Demonstrate procedures for compiling techniques through the process of and running a Java application subprograms, selection, and repetition in 2.5 Demonstrate use of Java’s online projects hypertext technology documentation 4.6 Use GUI design principles in all projects 2.6 Demonstrate use of Java’s identifiers to name variables, constants, and methods 2.7 Demonstrate use of Java’s operators to Committee Identified Academic Skills write expressions The technical committee has identified that the 2.8 Explain the rules governing operand following academic skills are embedded in this evaluation order and operator contest. precedence 2.9 Summarize Java’s variable naming Math Skills conventions • Use fractions to solve practical problems 2.10 Distinguish syntax errors, runtime errors • Use proportions and ratios to solve and logic errors practical problems 2.11 Understand program flow control in • Simplify numerical expressions selection and loop statements • Use scientific notation 2.12 Demonstrate use of methods in Java • Solve practical problems involving percents 2.13 Demonstrate use of declaring, initializing • Solve single variable algebraic expressions and accessing elements in arrays • Solve multiple variable algebraic 2.14 Demonstrate use of the string class to expressions process fixed strings • Apply transformations (rotate or turn, reflect or flip, translate or slide, and dilate CP 3.0 — Perform competencies related to C++ programming or scale) to geometric figures 3.1 Write C++ programs using input/output • Construct three-dimensional models statements • Apply Pythagorean Theorem 3.2 Write C++ programs using selection and • Make predictions using knowledge of iteration probability 3.3 Create C++ programs using functions • Make comparisons, predictions, and 3.4 Write C++ programs using one- inferences using graphs and charts dimensional arrays • Organize and describe data using matrixes 3.5 Properly document and debug C++ • Graph linear equations programs • Solve problems using proportions, 3.6 Create object concepts and terminology formulas, and functions 3.7 Implement those algorithms in the C++ • Find slope of a line programming language using classes • Use laws of exponents to perform 3.8 Debug C++ programs written by others operations • Solve quadratic equations Computer Programming, 2020 • 2 • Solve problems involving symmetry and understanding of textual features (e.g., transformation sound-letter correspondence, sentence structure, context, graphics) Language Arts Skills • Students adjust their use of spoken, written • Provide information in conversations and in and visual language (e.g., conventions, group discussions style, vocabulary) to communicate • Provide information in oral presentations effectively with a variety of audiences and • Demonstrate comprehension of a variety of for different purposes informational texts • Students employ a wide range of strategies • Organize and synthesize information for as they write and use different writing use in written and oral presentations process elements appropriately to • Demonstrate knowledge of appropriate communicate with different audiences for a reference materials variety of purposes • Use print, electronic databases and online • Students conduct research on issues and resources to access information in books interests by generating ideas and questions, and articles and by posing problems. They gather, evaluate and synthesize data from a variety Connections to National Standards of sources (e.g., print and nonprint texts, artifacts, people) to communicate their State-level academic curriculum specialists discoveries in ways that suit their purpose identified the following connections to national and audience academic standards. • Students use a variety of technological and information resources (e.g., libraries, Math Standards databases, computer networks, video) to • Numbers and operations gather and synthesize information and to • Algebra create and communicate knowledge • Reasoning and proof • Students use spoken, written and visual • Communication language to accomplish their own purposes • Connections (e.g., for learning, enjoyment, persuasion • Representation and the exchange of information) Source: NCTM Principles and Standards for School Source: IRA/NCTE Standards for the English Language Mathematics. For more information, visit: Arts. To view the standards, visit: http://www.nctm.org. www.ncte.org/standards. Science Standards • Understands the sources and properties of energy • Understands forces and motion • Understands the nature of scientific inquiry Source: McREL compendium of national science standards. To view and search the compendium, visit: www2.mcrel.org/compendium/browse.asp. Language Arts Standards • Students apply a wide range of strategies to comprehend, interpret, evaluate and appreciate texts. They draw on their prior experience, their interactions with other readers and writers, their knowledge of word meaning and of other texts, their word identification strategies, and their Computer Programming, 2020 • 3 .
Recommended publications
  • COM 113 INTRO to COMPUTER PROGRAMMING Theory Book
    1 [Type the document title] UNESCO -NIGERIA TECHNICAL & VOCATIONAL EDUCATION REVITALISATION PROJECT -PHASE II NATIONAL DIPLOMA IN COMPUTER TECHNOLOGY Computer Programming COURSE CODE: COM113 YEAR I - SE MESTER I THEORY Version 1: December 2008 2 [Type the document title] Table of Contents WEEK 1 Concept of programming ................................................................................................................ 6 Features of a good computer program ............................................................................................ 7 System Development Cycle ............................................................................................................ 9 WEEK 2 Concept of Algorithm ................................................................................................................... 11 Features of an Algorithm .............................................................................................................. 11 Methods of Representing Algorithm ............................................................................................ 11 Pseudo code .................................................................................................................................. 12 WEEK 3 English-like form .......................................................................................................................... 15 Flowchart .....................................................................................................................................
    [Show full text]
  • Software Development Career Pathway
    Career Exploration Guide Software Development Career Pathway Information Technology Career Cluster For more information about NYC Career and Technical Education, visit: www.cte.nyc Summer 2018 Getting Started What is software? What Types of Software Can You Develop? Computers and other smart devices are made up of Software includes operating systems—like Windows, Web applications are websites that allow users to contact management system, and PeopleSoft, a hardware and software. Hardware includes all of the Apple, and Google Android—and the applications check email, share documents, and shop online, human resources information system. physical parts of a device, like the power supply, that run on them— like word processors and games. among other things. Users access them with a Mobile applications are programs that can be data storage, and microprocessors. Software contains Software applications can be run directly from a connection to the Internet through a web browser accessed directly through mobile devices like smart instructions that are stored and run by the hardware. device or through a connection to the Internet. like Firefox, Chrome, or Safari. Web browsers are phones and tablets. Many mobile applications have Other names for software are programs or applications. the platforms people use to find, retrieve, and web-based counterparts. display information online. Web browsers are applications too. Desktop applications are programs that are stored on and accessed from a computer or laptop, like Enterprise software are off-the-shelf applications What is Software Development? word processors and spreadsheets. that are customized to the needs of businesses. Popular examples include Salesforce, a customer Software development is the design and creation of Quality Testers test the application to make sure software and is usually done by a team of people.
    [Show full text]
  • Chapter 1 Introduction to Computers, Programs, and Java
    Chapter 1 Introduction to Computers, Programs, and Java 1.1 Introduction • The central theme of this book is to learn how to solve problems by writing a program . • This book teaches you how to create programs by using the Java programming languages . • Java is the Internet program language • Why Java? The answer is that Java enables user to deploy applications on the Internet for servers , desktop computers , and small hand-held devices . 1.2 What is a Computer? • A computer is an electronic device that stores and processes data. • A computer includes both hardware and software. o Hardware is the physical aspect of the computer that can be seen. o Software is the invisible instructions that control the hardware and make it work. • Computer programming consists of writing instructions for computers to perform. • A computer consists of the following hardware components o CPU (Central Processing Unit) o Memory (Main memory) o Storage Devices (hard disk, floppy disk, CDs) o Input/Output devices (monitor, printer, keyboard, mouse) o Communication devices (Modem, NIC (Network Interface Card)). Bus Storage Communication Input Output Memory CPU Devices Devices Devices Devices e.g., Disk, CD, e.g., Modem, e.g., Keyboard, e.g., Monitor, and Tape and NIC Mouse Printer FIGURE 1.1 A computer consists of a CPU, memory, Hard disk, floppy disk, monitor, printer, and communication devices. CMPS161 Class Notes (Chap 01) Page 1 / 15 Kuo-pao Yang 1.2.1 Central Processing Unit (CPU) • The central processing unit (CPU) is the brain of a computer. • It retrieves instructions from memory and executes them.
    [Show full text]
  • Smart Battery Charging Programmer Software User Manual Smart Battery Charging Programmer Software User Manual
    Smart Battery Charging Programmer Software User Manual Smart Battery Charging Programmer Software User Manual 1. Introduction ............................................................................................................... 1 ................................................................................................... 2. Prerequisites 1 .................................................................................................. 2.1 System requirements 1 .................................................................................................. 2.2 Hardware installation 1 ................................................................................................... 2.3 Software installation 2 3. User Interface ............................................................................................................ 2 .............................................................................................................. 3.1 Basic layout 2 CURVE PROFILE ......................................................................................................... 3.2 2 SETTING ...................................................................................... ............. 3.3 ................ 3 . ...................................................................................................... 4 General Operation 4 ...................................................................................................... 4.1 Connection 4 4.2 .........................................................................
    [Show full text]
  • Introduction to High Performance Computing
    Introduction to High Performance Computing Shaohao Chen Research Computing Services (RCS) Boston University Outline • What is HPC? Why computer cluster? • Basic structure of a computer cluster • Computer performance and the top 500 list • HPC for scientific research and parallel computing • National-wide HPC resources: XSEDE • BU SCC and RCS tutorials What is HPC? • High Performance Computing (HPC) refers to the practice of aggregating computing power in order to solve large problems in science, engineering, or business. • Purpose of HPC: accelerates computer programs, and thus accelerates work process. • Computer cluster: A set of connected computers that work together. They can be viewed as a single system. • Similar terminologies: supercomputing, parallel computing. • Parallel computing: many computations are carried out simultaneously, typically computed on a computer cluster. • Related terminologies: grid computing, cloud computing. Computing power of a single CPU chip • Moore‘s law is the observation that the computing power of CPU doubles approximately every two years. • Nowadays the multi-core technique is the key to keep up with Moore's law. Why computer cluster? • Drawbacks of increasing CPU clock frequency: --- Electric power consumption is proportional to the cubic of CPU clock frequency (ν3). --- Generates more heat. • A drawback of increasing the number of cores within one CPU chip: --- Difficult for heat dissipation. • Computer cluster: connect many computers with high- speed networks. • Currently computer cluster is the best solution to scale up computer power. • Consequently software/programs need to be designed in the manner of parallel computing. Basic structure of a computer cluster • Cluster – a collection of many computers/nodes. • Rack – a closet to hold a bunch of nodes.
    [Show full text]
  • Defining Computer Program Parts Under Learned Hand's Abstractions Test in Software Copyright Infringement Cases
    Michigan Law Review Volume 91 Issue 3 1992 Defining Computer Program Parts Under Learned Hand's Abstractions Test in Software Copyright Infringement Cases John W.L. Ogilive University of Michigan Law School Follow this and additional works at: https://repository.law.umich.edu/mlr Part of the Computer Law Commons, Intellectual Property Law Commons, and the Judges Commons Recommended Citation John W. Ogilive, Defining Computer Program Parts Under Learned Hand's Abstractions Test in Software Copyright Infringement Cases, 91 MICH. L. REV. 526 (1992). Available at: https://repository.law.umich.edu/mlr/vol91/iss3/5 This Note is brought to you for free and open access by the Michigan Law Review at University of Michigan Law School Scholarship Repository. It has been accepted for inclusion in Michigan Law Review by an authorized editor of University of Michigan Law School Scholarship Repository. For more information, please contact [email protected]. NOTE Defining Computer Program Parts Under Learned Hand's Abstractions Test in Software Copyright Infringement Cases John W.L. Ogilvie INTRODUCTION Although computer programs enjoy copyright protection as pro­ tectable "literary works" under the federal copyright statute, 1 the case law governing software infringement is confused, inconsistent, and even unintelligible to those who must interpret it.2 A computer pro­ gram is often viewed as a collection of different parts, just as a book or play is seen as an amalgamation of plot, characters, and other familiar parts. However, different courts recognize vastly different computer program parts for copyright infringement purposes. 3 Much of the dis­ array in software copyright law stems from mutually incompatible and conclusory program part definitions that bear no relation to how a computer program is actually designed and created.
    [Show full text]
  • PHP Programmer Location: North Las Vegas NV, USA
    Batteries ... For Life! PHP Programmer Position Title: PHP Programmer Location: North Las Vegas NV, USA Description: BatterieslnAFlash.com, Inc. has an immediate need for a PH? Web Programmer to join their team full­ time. The ideal candidate will work on development and implementation ofa wide variety of Web-based products using PHP, JavaScript, MySQL and AJAX. Qualified applicants would be initially working on a 90 day probationary period for a growing online battery company. " Responsibilities: • Participate in a team-oriented environment to develop complex Web-based applications. Improve, repair, and manage existing websites and applications. / ( • Maintain existing codebases to include troubieshooting bugs and adding new features. • Convert data from various formats (Excel, ACCESS etc.) into developed databases. • Balance a variety of concurrent projects. Required Experience: • Ability to work independently, take initiative, and contribute to new ideas required in a diverse, fast­ paced, deadline-driven team environment. Self-starter with a professional appearance. • Detailed knowledge of web application development and extensive experience using PHP and Javascript as well as relational databases such a~. PostgreSQL and MySQL. • Proven hands on experience with web applicationfi"."meworks such as CAKE, Kohana, Zend, etc. • Proven hands on experience with JavaScript fral.;cworks such as jQuery and EXT JS • Proven hands on experience with SECURE CODING techniques • Experience developing cross-browser frontends using XHTML, CSS, AJAX, JavaScript. • Organization and analytic skills, with strong problem solving ability. • Excellent written and verbal communications skills • Experience with version control systems such as SVN and CVS • Hands on experience with L1NUX especially using command line tools and writing SHELL scripts (Benefit, not required) • Experience using common business software ~ uch as WORD, PowerPoint, Excel and VISIO to visualize, discuss and present ideas to technical and non-technical audiences.
    [Show full text]
  • Language Translators
    Student Notes Theory LANGUAGE TRANSLATORS A. HIGH AND LOW LEVEL LANGUAGES Programming languages Low – Level Languages High-Level Languages Example: Assembly Language Example: Pascal, Basic, Java Characteristics of LOW Level Languages: They are machine oriented : an assembly language program written for one machine will not work on any other type of machine unless they happen to use the same processor chip. Each assembly language statement generally translates into one machine code instruction, therefore the program becomes long and time-consuming to create. Example: 10100101 01110001 LDA &71 01101001 00000001 ADD #&01 10000101 01110001 STA &71 Characteristics of HIGH Level Languages: They are not machine oriented: in theory they are portable , meaning that a program written for one machine will run on any other machine for which the appropriate compiler or interpreter is available. They are problem oriented: most high level languages have structures and facilities appropriate to a particular use or type of problem. For example, FORTRAN was developed for use in solving mathematical problems. Some languages, such as PASCAL were developed as general-purpose languages. Statements in high-level languages usually resemble English sentences or mathematical expressions and these languages tend to be easier to learn and understand than assembly language. Each statement in a high level language will be translated into several machine code instructions. Example: number:= number + 1; 10100101 01110001 01101001 00000001 10000101 01110001 B. GENERATIONS OF PROGRAMMING LANGUAGES 4th generation 4GLs 3rd generation High Level Languages 2nd generation Low-level Languages 1st generation Machine Code Page 1 of 5 K Aquilina Student Notes Theory 1. MACHINE LANGUAGE – 1ST GENERATION In the early days of computer programming all programs had to be written in machine code.
    [Show full text]
  • Dissertation Submitted in Partial Fulfillment of the Requirements for The
    ON THE HUMAN FACTORS IMPACT OF POLYGLOT PROGRAMMING ON PROGRAMMER PRODUCTIVITY by Phillip Merlin Uesbeck Master of Science - Computer Science University of Nevada, Las Vegas 2016 Bachelor of Science - Applied Computer Science Universit¨at Duisburg-Essen 2014 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy { Computer Science Department of Computer Science Howard R. Hughes College of Engineering The Graduate College University of Nevada, Las Vegas December 2019 c Phillip Merlin Uesbeck, 2019 All Rights Reserved Dissertation Approval The Graduate College The University of Nevada, Las Vegas November 15, 2019 This dissertation prepared by Phillip Merlin Uesbeck entitled On The Human Factors Impact of Polyglot Programming on Programmer Productivity is approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy – Computer Science Department of Computer Science Andreas Stefik, Ph.D. Kathryn Hausbeck Korgan, Ph.D. Examination Committee Chair Graduate College Dean Jan Pedersen, Ph.D. Examination Committee Member Evangelos Yfantis, Ph.D. Examination Committee Member Hal Berghel, Ph.D. Examination Committee Member Deborah Arteaga-Capen, Ph.D. Graduate College Faculty Representative ii Abstract Polyglot programming is a common practice in modern software development. This practice is often con- sidered useful to create software by allowing developers to use whichever language they consider most well suited for the different parts of their software. Despite this ubiquity of polyglot programming there is no empirical research into how this practice affects software developers and their productivity. In this disser- tation, after reviewing the state of the art in programming language and linguistic research pertaining to the topic, this matter is investigated by way of two empirical studies with 109 and 171 participants solving programming tasks.
    [Show full text]
  • Intermittent Computation Without Hardware Support Or Programmer
    Intermittent Computation without Hardware Support or Programmer Intervention Joel Van Der Woude, Sandia National Laboratories; Matthew Hicks, University of Michigan https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude This paper is included in the Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16). November 2–4, 2016 • Savannah, GA, USA ISBN 978-1-931971-33-1 Open access to the Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation is sponsored by USENIX. Intermittent Computation without Hardware Support or Programmer Intervention Joel Van Der Woude Matthew Hicks Sandia National Laboratories∗ University of Michigan Abstract rapid changes drive us closer to the realization of smart As computation scales downward in area, the limi- dust [20], enabling applications where the cost and size tations imposed by the batteries required to power that of computation had previously been prohibitive. We are computation become more pronounced. Thus, many fu- rapidly approaching a world where computers are not ture devices will forgo batteries and harvest energy from just your laptop or smart phone, but are integral parts their environment. Harvested energy, with its frequent your clothing [47], home [9], or even groceries [4]. power cycles, is at odds with current models of long- Unfortunately, while the smaller size and lower cost of running computation. microcontrollers enables new applications, their ubiqui- To enable the correct execution of long-running appli- tous adoption is limited by the form factor and expense of cations on harvested energy—without requiring special- batteries. Batteries take up an increasing amount of space purpose hardware or programmer intervention—we pro- and weight in an embedded system and require special pose Ratchet.
    [Show full text]
  • On the Cognitive Prerequisites of Learning Computer Programming
    On the Cognitive Prerequisites of Learning Computer Programming Roy D. Pea D. Midian Kurland Technical Report No. 18 ON THE COGNITIVE PREREQUISITES OF LEARNING COMPUTER PROGRAMMING* Roy D. Pea and D. Midian Kurland Introduction Training in computer literacy of some form, much of which will consist of training in computer programming, is likely to involve $3 billion of the $14 billion to be spent on personal computers by 1986 (Harmon, 1983). Who will do the training? "hardware and software manu- facturers, management consultants, -retailers, independent computer instruction centers, corporations' in-house training programs, public and private schools and universities, and a variety of consultants1' (ibid.,- p. 27). To date, very little is known about what one needs to know in order to learn to program, and the ways in which edu- cators might provide optimal learning conditions. The ultimate suc- cess of these vast training programs in programming--especially toward the goal of providing a basic computer programming compe- tency for all individuals--will depend to a great degree on an ade- quate understanding of the developmental psychology of programming skills, a field currently in its infancy. In the absence of such a theory, training will continue, guided--or to express it more aptly, misguided--by the tacit Volk theories1' of programming development that until now have served as the underpinnings of programming instruction. Our paper begins to explore the complex agenda of issues, promise, and problems that building a developmental science of programming entails. Microcomputer Use in Schools The National Center for Education Statistics has recently released figures revealing that the use of micros in schools tripled from Fall 1980 to Spring 1983.
    [Show full text]
  • 13. Stored-Program Computers
    13. Stored-Program Computers 13.1 Introduction This chapter concentrates on the low-level usage and structure of stored program computers. We focus on a particular hypothetical machine known as the ISC, describing its programming in assembly language. We show how recursion and switch statements are compiled into machine language, and how memory-mapped overlapped I/O is achieved. We also show the logic implement of the ISC, in terms of registers, buses, and finite-state machine controllers. 13.2 Programmer's Abstraction for a Stored-Program Computer By stored-program computer, we mean a machine in which the program, as well as the data, are stored in memory, each word of which can be accessed in uniform time. Most of the high-level language programming the reader has done will likely have used this kind of computer implicitly. However, the program that is stored is not high-level language text. If it were, then it would be necessary to constantly parse this text, which would slow down execution immensely. Instead one of two other forms of storage is used: An abstract syntax representation of the program could be stored. The identifiers in this representation are pre-translated, and the structure is traversed dynamically as needed during execution. This is the approach used by an interpreter for the language. A second approach is to use a compiler for the language. The compiler translates the program into the very low-level language native to the machine, appropriately called machine language. The native machine language acts as a least-common-denominator language for the computer.
    [Show full text]