Mn-Andalusite, Spessartine, Mn-Grossular, Piemontite and Mn-Zoisite/Clinozoisite from Trikorfo, Thassos Island, Greece

Total Page:16

File Type:pdf, Size:1020Kb

Mn-Andalusite, Spessartine, Mn-Grossular, Piemontite and Mn-Zoisite/Clinozoisite from Trikorfo, Thassos Island, Greece Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, τόμος L, σελ. 2068-2078 Bulletin of the Geological Society of Greece, vol. L, 2068-2078 Πρακτικά 14ου Διεθνούς Συνεδρίου, Θεσσαλονίκη, Μάιος 2016 Proceedings of the 14th International Congress, Thessaloniki, May 2016 MN-ANDALUSITE, SPESSARTINE, MN-GROSSULAR, PIEMONTITE AND MN-ZOISITE/CLINOZOISITE FROM TRIKORFO, THASSOS ISLAND, GREECE Voudouris P.1, Graham I.2, Mavrogonatos K.1, Su S.2, Papavasiliou K.3, Farmaki M.-V.1 and Panagiotidis P.1 1Department of Mineralogy and Petrology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, [email protected], [email protected],[email protected], [email protected] 2School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia, [email protected], [email protected] 3Department of Economic Geology & Geochemistry, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, [email protected] Abstract Mylonitized manganiferous schists and calc-silicate layers intercalated within amphibolite- to greenschist facies mica schists from the Trikorfo area (Thassos Island, Greece), host an unusual Mn-rich paragenesis of metamorphic silicate minerals, most of them in large, gemmy crystals. The silicates occur both in layers subparallel to the foliation and within discordant veins cross-cutting the metamorphic fabric. Piemontite (up to 12.7 wt. % Mn2O3), Mn-rich epidote (up to 7.8 wt. % Mn2O3), Mn-rich andalusite (up to 15.6 wt. % Mn2O3), Mn-poor pink clinozoisite-epidote (up to 0.87 wt. % Mn2O3), Mn-poor pink zoisite (up to 0.21 wt. % Mn2O3), spessartine (up to 47.7 wt. % MnO) and Mn-rich grossular (up to 3.6 wt. % MnO) are associated with diopside, hornblende, phlogopite, muscovite, tourmaline, hematite and iron-bearing kyanite. The studied assemblages are indicative of high fO2 conditions due to the presence of highly-oxidized pre-metamorphic Mn-rich mineral associations. They developed during prograde metamorphism of a Mn-rich sedimentary protolith(s), followed by re-equilibration to post-peak metamorphic conditions, vein formation and metasomatism during retrograde metamorphism accompanying the exhumation of the Thassos Island during the Oligocene-Miocene. Alternatively, the skarn-similar mineralogy of the calc-silicate layers could have been formed by fluids released by granitoids during contact metamorphism. The studied area represents a unique mineralogical geotope. Its geological-mineralogical heritage should be protected through establishment of a mineralogical-petrological geopark that will also promote sustainable development of the area. Keywords: Mn-andalusite (viridine), Mn-zoisite (thulite), spessartine, geotope, Thassos Island. Περίληψη Μυλωνιτιωμένοι πλούσιοι σε μαγγάνιο σχιστόλιθοι και ασβεστοπυριτικά στρώματα που απαντούν ως ενδιαστρώσεις εντός αμφιβολιτικής έως πρασινοσχιστολιθικής φάσης μεταμόρφωσης μαρμαρυγιακούς σχιστόλιθους στο Τρίκορφο της Θάσου, 2068 χαρακτηρίζονται από μία ασυνήθιστη Mn-ούχο παραγένεση μεταμορφικών ορυκτών τα περισσότερα από τα οποία σε ιδιαίτερα μεγάλους κρυστάλλους και σε ποικιλία πολύτιμων λίθων. Τα Mn-ούχα πυριτικά ορυκτά απαντούν τόσο σε στρώσεις παράλληλα με την φύλλωση όσο και σε φλέβες που τέμνουν τη μεταμορφική δομή. Τα ορυκτά πιεμοντίτης (έως 12.7 % κ.β. Mn2O3), Mn-ούχο επίδοτο (έως 7.8 % κ.β. Mn2O3), Mn-ούχος ανδαλουσίτης (έως 15.6 % κ.β. Mn2O3), φτωχός σε Mn ροζ κλινοζοϊσίτης/επίδοτο (έως 0.87 % κ.β. Mn2O3), φτωχός σε Mn ροζ έως κόκκινος ζοϊσίτης (έως 0.21 % κ.β. Mn2O3), σπεσσαρτίνης (έως 47.7 % κ.β. MnO) και Mn-ούχος γροσσουλάριος (έως 3.6 % κ.β. MnO), συνοδεύονται από διοψίδιο, κεροστίλβη, φλογοπίτη, μοσχοβίτη, τουρμαλίνη, αιματίτη και σιδηρούχο κυανίτη. Η παραγένεση που μελετήθηκε είναι ενδεικτική υψηλών τιμών πτητικότητας του οξυγόνου λόγω της παρουσίας προϋπάρχουσας έντονα οξειδωτικής προ-μεταμορφικής ορυκτολογικής παραγένεσης πλούσιας σε μαγγάνιο. Σχηματίσθηκε κατά την πρόδρομη μεταμόρφωση ιζηματογενών πρωτόλιθων πλούσιων σε Mn, με ακόλουθη επανισσορόπηση απο τις μέγιστες συνθήκες πίεσης και θερμοκρασίας, σχηματισμό φλεβών και μετασωμάτωσης κατά την ανάδρομη μεταμόρφωση που συνόδευσε την ανάδυση της Θάσου στο Ολιγόκαινο-Μειόκαινο. Εναλλακτικά, η προσφορά ρευστών από γρανιτοειδή κατά την διάρκεια μεταμόρφωσης επαφής δεν πρέπει να αποκλειστεί. Η περιοχή μελέτης αντιπροσωπεύει μοναδικό ορυκτολογικό Γεώτοπο. Η γεωλογική-ορυκτολογική αυτή κληρονομιά μπορεί να προστατευθεί μέσω της ίδρυσης ενός Γεωπάρκου που θα συμβάλλει επιπλέον και στην προώθηση φιλικής προς το περιβάλλον ανάπτυξης της Θάσου. Λέξεις κλειδιά: Mn-ανδαλουσίτης (βιριδίνης), Mn-ζοϊσίτης (θουλίτης), σπεσσαρτίνης, γεώτοπος, Θάσος. 1. Introduction Greece hosts several sites containing manganiferous minerals that formed in metamorphic environments, such as the Mn-rich metasediments of Andros and Evia islands (Reinecke, 1986), the high P/T Mn-bearing meta-conglomerates from northern Syros Island (Altherr et al., 2013) and the Mn-bearing meta-skarn on Paros Island (Paraskevopoulos, 1958). The Trikorfo area, Thassos Island, is characterized by an unusual manganiferous mineralogical assemblage hosted within metamorphic rocks of the Rhodope Massif, first described by Zachos (1982), and consist of piemontite, braunite, spessartine, dravite, thulite, epidote, kyanite, staurolite, titanite and hematite. Dimitriadis (1989) reported on the presence of pink pleochroic manganoan epidote in mica schists, as well as, biotite- muscovite-kyanite-sillimanite bearing schists, thus limiting peak metamorphic conditions to 600- 650 °C at 4-7 kbar. Voudouris (2005) and Voudouris et al. (2006, 2012, 2013), described in some detail the mineralogy and mineral-chemistry of the above manganiferous minerals and other silicates from Trikorfo (kyanite, tremolite, tourmaline, chlorite, etc) and reported on the discovery of Mn- rich andalusite ((better known as viridine) in the area occurring within piemontite-spessartine schists and quartz veins as deep emerald-green-colored crystals up to 7cm. The Mn-andalusite, spessartine and thulite from Trikorfo are of world class museum quality, and can be considered as potential gemstones (Voudouris et al., 2012). The aim of the current study is to present new data on the manganiferous silicate association(s) of Trikorfo, to describe the mineralogical and mineral- chemical characteristics and discuss the role of various mechanisms in their formation through comparison it with other similar assemblages from elsewhere. 2. Geology Thassos Island consists mainly of Permo-Carboniferous orthogneisses and marbles intercalated with amphibolites and metapelites interpreted as members of the Southern Rhodope Core Complex, and display an intense, penetrative top-to-the-southwest shearing under amphibolite and greenschist facies conditions (Brun and Sokoutis, 2007). The island comprises three dominant rock units from base to top, separated by two SW-dipping low-angle normal fault systems (Wawrzenitz and Krohe, 2069 1998; Brun and Sokoutis, 2007): (1) a lower unit, consisting mainly of marbles with intercalations of paragneisses and micaschists; (2) an intermediate unit consisting of orthogneisses, marbles with intercalations of paragneisses, mica-schists and amphibolites and (3) an upper unit, dominated by migmatites and gneisses. Two major tectonic events affected the above mentioned lithologies: a compressional phase (of pre-Mid-Eocene age) resulted in the thrusting of the gneisses and migmatites on top of the intermediate unit and an extensional ductile to brittle event that took place from 26-24 to 12 Ma, creating a NE-trending stretching lineation, foliated fabric and widespread boudinage formation (Wawrzenitz and Krohe, 1998; Brun and Sokoutis, 2007; Kounov et al., 2015). Rb-Sr and U-Pb dating by the above authors revealed a continuous cooling history of the ductile metamorphic rocks from 700°C to 300°C from 26 to 12 Ma. Figure 1 - (a) Panoramic view of the Trikorfo area, Thassos Island. (b) Blue kyanite crystals from quartz-feldspar lenses within mica schists. (c) Orange kyanite in quartz lense. (d) Outcrop of piemontite (purple) and Mn-andalusite (green) bearing schists. (e) Mn-andalusite crystals in quartz-feldspar lense. (f) Spessartine from piemontite-spessartine assemblage. (g) Gemmy spessartine with muscovite in quartz. (h,i) Mn-zoisite crystals with grossular and quartz from calc-silicate layers hosted within the mica schists. The study area at Trikorfo is located along the major SW-dipping low-angle normal detachment zone (e.g. reactivated thrust) separating the lower from the intermediate unit at Thasos (Fig. 1a). Mica schists and orthogneisses predominate and tectonically overlay the marbles of Theologos (e.g. lower unit; Fig. 1a). Kyanite-sillimanite micaschists which are close to the main shear zone have formed in P-T conditions of 5.5±1.5 kbar and 600±50°C and bear signs of incipient partial melting contemporaneous with the ductile fabric that is related to extensional deformation (Brun and Sokoutis, 2007). Quartz lenses within the mica schists mostly contain blue kyanite crystals, but in some cases green, yellow and orange kyanite are present (Fig. 1b, c), along with uncommon zoned kyanite crystals with dark blue cores and yellow-green rims. Piemontite-andalusite-muscovite, piemontite-spessartine-braunite- 2070 and kyanite-spessartine-muscovite schists are intercalated within the kyanite-bearing mica schists (Fig. 1d). Quartz- and quartzofeldspathic lenses inside the schists
Recommended publications
  • Xrd and Tem Studies on Nanophase Manganese
    Clays and Clay Minerals, Vol. 64, No. 5, 488–501, 2016. 1 1 2 2 3 XRD AND TEM STUDIES ON NANOPHASE MANGANESE OXIDES IN 3 4 FRESHWATER FERROMANGANESE NODULES FROM GREEN BAY, 4 5 5 6 LAKE MICHIGAN 6 7 7 8 8 S EUNGYEOL L EE AND H UIFANG X U* 9 9 NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin Madison, Madison, 10 À 10 1215 West Dayton Street, A352 Weeks Hall, Wisconsin 53706 11 11 12 12 13 Abstract—Freshwater ferromanganese nodules (FFN) from Green Bay, Lake Michigan have been 13 14 investigated by X-ray powder diffraction (XRD), micro X-ray fluorescence (XRF), scanning electron 14 microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and scanning 15 transmission electron microscopy (STEM). The samples can be divided into three types: Mn-rich 15 16 nodules, Fe-Mn nodules, and Fe-rich nodules. The manganese-bearing phases are todorokite, birnessite, 16 17 and buserite. The iron-bearing phases are feroxyhyte, goethite, 2-line ferrihydrite, and proto-goethite 17 18 (intermediate phase between feroxyhyte and goethite). The XRD patterns from a nodule cross section 18 19 suggest the transformation of birnessite to todorokite. The TEM-EDS spectra show that todorokite is 19 associated with Ba, Co, Ni, and Zn; birnessite is associated with Ca and Na; and buserite is associated with 20 2+ +2 3+ 20 Ca. The todorokite has an average chemical formula of Ba0.28(Zn0.14Co0.05 21 2+ 4+ 3+ 3+ 3+ 2+ 21 Ni0.02)(Mn4.99Mn0.82Fe0.12Co0.05Ni0.02)O12·nH2O.
    [Show full text]
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Mineralogy of Low Grade Metamorphosed Manganese Sediments of the Urals: Petrological and Geological Applications
    Ore Geology Reviews 85 (2017) 140–152 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeorev Mineralogy of low grade metamorphosed manganese sediments of the Urals: Petrological and geological applications Aleksey I. Brusnitsyn a,⁎, Elena V. Starikova b,c,IgorG.Zhukovd,e a Department of Mineralogy, St. Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg 199034, Russia b JSC “PolarGeo”, 24 line, 3–7, St. Petersburg 199106, Russia c Department of Geology of Mineral Deposits, St. Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg 199034, Russia d Institute of Mineralogy, Urals Branch, Russian Academy of Sciences, Miass, Chelyabinsk District 456317, Russia e National Research South Urals State University, Miass Branch, 8 July str., 10a, Miass, Chelyabinsk District, 456304, Russia article info abstract Article history: The paper describes mineralogy of the low grade metamorphosed manganese sediments, which occur in sedi- Received 25 September 2015 mentary complexes of the Pai Khoi Ridge and the Polar Urals and volcanosedimentary complexes of the Central Received in revised form 5 July 2016 and South Urals. The degree of metamorphism of the rocks studied corresponds to PT conditions of the prehnite– Accepted 7 July 2016 pumpellyite (deposits of Pai Khoi and Polar and South Urals) and green schist (deposits of the Central Urals) fa- Available online 9 July 2016 cies. One hundred and nine minerals were identified in the manganese-bearing rocks on the basis of optical and electron microscopy, X-ray diffraction, and microprobe analysis. According to the variations in the amount of Keywords: – – Manganese major minerals of the manganese rocks of the Urals, they are subdivided on carbonate (I), oxide carbonate sil- 2+ Deposit icate (II), and oxide–silicate (III) types.
    [Show full text]
  • Sugilite in Manganese Silicate Rocks from the Hoskins Mine and Woods Mine, New South Wales, Australia
    Sugilite in manganese silicate rocks from the Hoskins mine and Woods mine, New South Wales, Australia Y. KAWACHI Geology Department, University of Otago, P.O.Box 56, Dunedin, New Zealand P. M. ASHLEY Department of Geology and Geophysics, University of New England, Armidale, NSW 2351, Australia D. VINCE 1A Ramsay Street, Essendon, Victoria 3040, Australia AND M. GOODWIN P.O.Bo• 314, Lightning Ridge, NSW 2834, Australia Abstract Sugilite relatively rich in manganese has been found at two new localities, the Hoskins and Woods mines in New South Wales, Australia. The occurrences are in manganese-rich silicate rocks of middle to upper greenschist facies (Hoskins mine) and hornblende hornfels facies (Woods mine). Coexisting minerals are members of the namansilite-aegirine and pectolite-serandite series, Mn-rich alkali amphiboles, alkali feldspar, braunite, rhodonite, tephroite, albite, microcline, norrishite, witherite, manganoan calcite, quartz, and several unidentified minerals. Woods mine sugilite is colour-zoned with pale mauve cores and colourless rims, whereas Hoskins mine sugilite is only weakly colour-zoned and pink to mauve. Within single samples, the chemical compositions of sugilite from both localities show wide ranges in A1 contents and less variable ranges of Fe and Mn, similar to trends in sugilite from other localities. The refractive indices and cell dimensions tend to show systematic increases progressing from Al-rich to Fe- Mn-rich. The formation of the sugilite is controlled by the high alkali (especially Li) and manganese contents of the country rock, reflected in the occurrences of coexisting high alkali- and manganese- bearing minerals, and by high fo2 conditions. KEYWORDS: sugilite, manganese silicate rocks, milarite group, New South Wales, Australia Introduction Na2K(Fe 3 +,Mn 3 +,Al)2Li3Sit2030.
    [Show full text]
  • THE MICROHARDNESS of OPAQUE MINERALS VOL.I THESIS Submitted by B.B. YOUNG, B.Sc., A.R.S.M. Degree of Doctor of Philosophy In
    THE MICROHARDNESS OF OPAQUE MINERALS VOL.I THESIS Submitted by B.B. YOUNG, B.Sc., A.R.S.M. Degree of Doctor of Philosophy in the Faculty of Science UNIVERSITY OF LONDON April, 1961 Department of Mining Geology, Imperial College, London. I CONTENTS VOL. 1 Page No. Abstracts 1 Acknowledgements 4 Introduction 5 Chapter I. THEORY OF HARDNESS 9 A. General 9 B. Nature of the bonding forces 10 C. Hardness in relation to polishing 14 D. Assessement of hardness 16 E. Microhardness testing instruments 22 Chapter II. EXPERIMENTAL PROCEDURE 25 A. Methods of mounting sections 25 B. Relative merits of the mounting media used 30 C. Grinding and polishing techniques 32 D. Orientation of sections 36 E. Measurement of microhardness 44 F. Routine procedure 42 G. Accuracy and renroducibility of results 45 11 Page No. Chapter III. VARIATION OF MICROHARDNESS WITH LOAD 53 A. Variation of microhardness values with load 53 (a)General 53 (b)Results 60 (c)Discussion of the results 69 (d)Conclusions 77 B. The relation between load and grain size 78 (a)General 78 (b)Discussion 80 C. Variation of the deformation characteristics with load 88 Chapter IV. VARIATION OF MICROHATNESS WITH ORIENTATION 90 A. General 90 B. Microhardness values determined from randomly oriented sections 91 C. The relation, during indentation, between deformation processes and orientation 104 D. Microhardness values obtained on oriented sections of mineral 110 (a)General 110 (b)Discussion of the results 111 (i) Isometric minerals 111 (ii) Tetragonal minerals 130 (iii)Hexagonal mineral 139 iii Page No. (iv) Orthorhombic minerals 150 (v) Monoclinic minerals 163 (vi) Triclinic mineral E.
    [Show full text]
  • Descriptions of Some Mines and Prospects in the Triassic to Jurassic Magmatic Arc of Western Nevada and Eastern California
    Descriptions of Some Mines and Prospects in the Triassic to Jurassic Magmatic Arc of Western Nevada and Eastern California Larry J. Garside 1996 See U.S. Geological Survey Open File Report 96-9 for geochemical analyses and more details PROPERTY NAME: Lucky Bill mine OTHER NAMES: MINING DISTRICT: Red Canyon COUNTY: Douglas MINERAL COMMODITY(IES):Ag, Pb, Zn TYPE OF DEPOSIT: Polymetallic replacement QUAD SHEET: Oreana Peak 7.5' OWNERSHIP: LOCATION: NE¼ NW¼ sec. 2, T11N, R22E North: 4303100 East: 0284300 PRODUCTION: Minor (?) HISTORY: DEVELOPMENT: Adits, bulldozer roads and cuts GEOLOGY: According to Hill (1915), the workings at the Lucky Bill mine explore small, pockety deposits of argentiferous galena, quartz, and stibnite with miner zones in quartzite, and ore described as replacements, only a few cuts and pits were examined during this visit. In one cut a 1 m wide isolated band of pyrite-rich material occurs parallel to bedding of the siltstone units of Triassic Gardnerville Formation. (Sample 4522). An ore sample (4523) found along a haul road going up the canyon northeast of the main bulldozer cuts contains coarse crystalline calcite, sphalerite galena, and pyrite. The wall rocks are siltstone and carbonate rocks of the Gardnerville Formation. REMARKS: Sample 4522 is a chip sample across a 1 m wide band of pyrite-rich siltstone. Sample 4523 is select ore from a haul road, consisting of galena, calcite, sphalerite, and pyrite. SAMPLE SITE: 4522, 4523 REFERENCES: Hill, 1915, p. 62; Doebrich and others, 1996; MRDS no. M035898 FIELD EXAMINATION: L.J. Garside, R.F. Hardyman; 10/16/89 PROPERTY NAME: None (?) OTHER NAMES: MINING DISTRICT: Peavine COUNTY: Sierra MINERAL COMMODITY(IES): ? TYPE OF DEPOSIT: Disseminated QUAD SHEET: Evans Canyon 7.5 ' OWNERSHIP: LOCATION: SW¼ SW¼ sec.
    [Show full text]
  • Piemontite and Spessartine in Lower Paleozoic Metasediments of the Inner Western Carpathians
    Acta Miner alogica-Petrographica, Szeged, XLi, Supplementum, 2000 PIEMONTITE AND SPESSARTINE IN LOWER PALEOZOIC METASEDIMENTS OF THE INNER WESTERN CARPATHIANS SPISIAK. J. (Slovak Academy of Sciences, Banska Bystrica, Slovak Republic) & HOVORKA, D. (Comenius University, Bratislava, Slovak Republic) E-mail: [email protected] In the Lower Palaeozoic of the Inner Western Carpathians (Rakovec group, Gemericum) a 22 m thick layer of manganese enriched metasediments has been encountered by borehole RHV-1 south of Rudnany. During epigenetic processes the increased Mn content in the original lithofacies gave rise to manganese nodules (concretions). In the subsequent greenschists facies regional metamorphic recrystallization process, the Mn nodules were altered into an anchimonomineralic aggregate of garnet of spessartine composition. Simultaneously, they were partly disintegrated and folded jointly with the country rocks, i.e. the chlorite-sericite-quartz schists. Garnet is the basic mineral of nodules (isometric grains - approx. 0.2 mm in size). The spessartine nodules are encompassed by a 1-20 mm broad rim, intensely coloured in red to violet-red, formed dominantly of piemontite and Fe oxides, which passes gradually into the adjacent rocks. The schists also contain sporadic garnets of microscopic size (0.02 mm) and epidote. The analyses of garnets from different parts of nodules have shown that they have practically identical composition and azonal structure. They contain 80-87 % spessartine, 0.2-0.4 % pyrope, 3-8 % almandine, 7-11 % grossular components. The piemontites form short prismatic crystals (below 0.03 mm) and/or irregularly shaped pink coloured grains with strong pleochroism. Piemontites are zonal and contain 6-16 % piemontite 3+ component (Mn ) (selected analysis: SiOz - 36.70, Ti02 - 0.12, A1203 - 22.86, Fe203 total - 7.94, Mn203* - 8.00, MnO* - 2.52, MgO - 0.04, CaO - 20.52, Na20 - 0.00, K20 - 0.03, * - recalculated).
    [Show full text]
  • Download the Scanned
    American Mineralogist, Volume 77, pages 670475, 1992 NEW MINERAL NAMES* JonN L. J,Annson CANMET, 555 Booth Street,Ottawa, Ontario KIA OGl' Canada Abswurmbachite* rutile, hollandite, and manganoan cuprian clinochlore. The new name is for Irmgard Abs-Wurmbach, in recog- T. Reinecke,E. Tillmanns, H.-J. Bernhardt (1991)Abs- her contribution to the crystal chemistry, sta- wurmbachite, Cu'?*Mnl*[O8/SiOo],a new mineral of nition of physical properties ofbraunite. Type the braunite group: Natural occurrence,synthesis, and bility relations, and crystal structure.Neues Jahrb. Mineral. Abh., 163,ll7- material is in the Smithsonian Institution, Washington, r43. DC, and in the Institut fiir Mineralogie, Ruhr-Universitlit Bochum, Germany. J.L.J. The new mineral and cuprian braunit€ occur in brown- ish red piemontite-sursassitequartzites at Mount Ochi, near Karystos, Evvia, Greece, and in similar quartzites on the Vasilikon mountains near Apikia, Andros Island, Barstowite* Greece.An electron microprobe analysis (Andros mate- C.J. Stanley,G.C. Jones,A.D. Hart (1991) Barstowite, gave SiO, 9.8, TiO, rial; one of six for both localities) 3PbClr'PbCOr'HrO, a new mineral from BoundsClifl 0.61,Al,O3 0.60, Fe'O, 3.0,MnrO. 71.3,MgO 0.04,CuO St. Endellion,Cornwall. Mineral. Mag., 55, l2l-125. 12.5, sum 97.85 wto/o,corresponding to (CuStrMn3tu- Electron microprobe and CHN analysis gavePb75.47, Mgoo,)", oo(Mn3jrFe|jrAlo orTif.[nCuStr)", nrSi' o, for eight (calc.)6.03, sum 101.46wto/o, cations,ideally CuMnuSiO'r, the Cu analogueof braunite. Cl 18.67,C l.Iz,H 0.18,O to Pb.orClrrrCr.or- The range of Cu2* substitution for Mn2' is 0-42 molo/oin which for 17 atoms corresponds The min- cuprian braunite and 52-93 molo/oin abswurmbachite.
    [Show full text]
  • Petrology of Mn Carbonate–Silicate Rocks from the Gangpur Group, India
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eprints@NML Journal of Asian Earth Sciences 25 (2005) 773–780 www.elsevier.com/locate/jaes Petrology of Mn carbonate–silicate rocks from the Gangpur Group, India B.K. Mohapatraa,*, B. Nayakb aRegional Research Laboratory (CSIR), Bhubaneswar 751 013, India bNational Metallurgical Laboratory (CSIR), Jamshedpur 831 007, India Received 11 April 2003; revised 6 February 2004; accepted 21 July 2004 Abstract Metamorphosed Mn carbonate–silicate rocks with or without oxides (assemblage I) and Mn silicate–oxide rocks with minor Mn carbonate (assemblage II) occur as conformable lenses within metapelites and metacherts of the Precambrian Gangpur Group, India. The petrology of the carbonate minerals: rhodochrosite, kutnahorite, and calcite that occur in these two assemblages is reported. Early stabilisation of spessartine, aegirine, quartz, and carbonates (in a wide solid solution range) was followed by pyroxmangite, tephroite, rhodonite through decarbonation reactions. Subsequently, jacobsite, hematite, braunite, hollandite and hausmannite have formed by decarbonation–oxidation processes during prograde metamorphism. Textural characteristics and chemical composition of constituent phases suggest that the mineral assemblages reflect a complex ! w relationship between protolithic composition, variation of XCO2 ( 0.2 to 0.3) and oxygen fugacity. A variation of XCO2 and fO2 would imply internal buffering of pore fluids through mineral reactions that produced diverse assemblages in the carbonate bearing manganiferous rocks. A minor change in temperature (from around 400 to 450 8C) does not appear to have had any major influence on the formation of different mineral associations. q 2004 Elsevier Ltd.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 73, pages 1492-1499. 1988 NEW MINERAL NAMES* JOHN L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontario KIA OGI, Canada ERNST A. J. BURKE lnstituut voor Aardwetenschappen, Vrije Universitiete, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands T. SCOTT ERCIT, JOEL D. GRICE National Museum of Natural Sciences, Ottawa, Ontario KIA OM8, Canada Acuminite* prismatic to acicular crystals that are up to 10 mm long and 0.5 H. Pauly, O.Y. Petersen (1987) Acuminite, a new Sr-fluoride mm in diameter, elongate and striated [001], rhombic to hex- from Ivigtut, South Greenland. Neues Jahrb. Mineral. Mon., agonal in cross section, showing {l00} and {l10}. Perfect {100} 502-514. cleavage, conchoidal fracture, vitreous luster, H = 4, Dm'.. = 2.40(5) glcm3 (pycnometer), Dcale= 2.380 glcm3 for the ideal Wet-chemical analysis gave Li 0.0026, Ca 0.0185, Sr 37.04, formula, and Z = 4. Optically biaxial positive, a = 1.5328(4), (3 Al 11.86, F 33.52, OH (calc. from anion deficit) 6.82, H20 (calc. = 1.5340(4), 1.5378(4), 2 Vmoa,= 57(2)°, 2 Vcale= 59°; weak assuming 1 H20 in the formula) 7.80, sum 97.06 wt%, corre- 'Y = dispersion, r < v; Z = b, Y A c = -10°. X-ray structural study sponding to Sro98AIl.o2F.o7(OH)o.93H20. The mineral occurs as indicated monoclinic symmetry, space group C21c, a = 18.830(2), aggregates of crystals shaped like spear points and about I mm b= I 1.517(2), c= 5.190(I)A,{3 = 100.86(1)°. A Guinierpowder long.
    [Show full text]