Ravensbourne & Crows Nest National
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gasteromycetes) of Alberta and Northwest Montana
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1975 A preliminary study of the flora and taxonomy of the order Lycoperdales (Gasteromycetes) of Alberta and northwest Montana William Blain Askew The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Askew, William Blain, "A preliminary study of the flora and taxonomy of the order Lycoperdales (Gasteromycetes) of Alberta and northwest Montana" (1975). Graduate Student Theses, Dissertations, & Professional Papers. 6854. https://scholarworks.umt.edu/etd/6854 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. A PRELIMINARY STUDY OF THE FLORA AND TAXONOMY OF THE ORDER LYCOPERDALES (GASTEROMYCETES) OF ALBERTA AND NORTHWEST MONTANA By W. Blain Askew B,Ed., B.Sc,, University of Calgary, 1967, 1969* Presented in partial fulfillment of the requirements for the degree of Master of Arts UNIVERSITY OF MONTANA 1975 Approved 'by: Chairman, Board of Examiners ■ /Y, / £ 2 £ Date / UMI Number: EP37655 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. -
Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating. -
Revision of the Genus Cyathus (Basidiomycota) from the Herbaria of Northeast Brazil
Mycosphere 5 (4): 531–540 (2014) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2014 Online Edition Doi 10.5943/mycosphere/5/4/5 Revision of the genus Cyathus (Basidiomycota) from the herbaria of northeast Brazil Cruz RHSF1, Assis NM2, Silva MA3 and Baseia IG4 1Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Natal-RN 59.078-970 Brazil, [email protected] 2Departamento de Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Natal-RN 59.078-970 Brazil, [email protected] 3Departamento de Micologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego 1235, Recife-PE 50.670-901 Brazil, [email protected] 4Departamento de Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Natal-RN 59.078-970 Brazil, [email protected] Cruz RHSF, Assis NM, Silva MA, Baseia IG 2014 – Revision of the genus Cyathus (Basidiomycota) from the herbaria of northeast Brazil. Mycosphere 5(4), 531−540, Doi 10.5943/mycosphere/5/4/5 Abstract Seventy exsiccates of the genus Cyathus deposited in JPB, UESC, URM and UFRN herbaria were studied and nine species were identified: Cyathus badius, C. berkeleyanus, C. earlei, C. gracilis, C. limbatus, C. pallidus, C. poeppigii, C. setosus and C. striatus. Cyathus berkeleyanus and C. poeppigii are recorded for the first time for northeastern Brazil. Descriptions, taxonomic remarks and illustrations of the studied material are presented. Key words – herbarium collection – Nidulariaceae – Gasteromycetes – taxonomic review Introduction The genus Cyathus Haller belongs to the family Nidulariaceae, included in the agaricoid clade of Basidiomycota (Matheny et al. -
Fluted Bird's Nest Fungus, Cyathus Striatus
A Horticulture Information article from the Wisconsin Master Gardener website, posted 19 Sept 2014 Fluted Bird’s Nest Fungus, Cyathus striatus There are many fungi in several genera called bird’s nest fungi because of the resemblance of their fruiting bodies to a tiny nest fi lled with eggs. One of the most common in Wisconsin is Cyathus striatus, the fl uted bird’s nest fungus. This species is widespread throughout temperate regions of the world, developing on dead wood in open forests, typically growing individually or in clusters on small twigs and fallen branches or other wood debris. Because it also grows readily in bark or wood mulch, it is frequently found in landscaped yards and gardens. Other species grow on plant remains or cow or horse dung. C. striatus, and others, are most commonly Fruiting bodies of fl uted bird’s nest seen in the autumn fungus, Cyathus striatus. when damp conditions promote their development, but they can be seen anytime conditions are appropriate. Even though each individual is small and inconspicuous, this species often grows in huge clusters, making A large cluster of fl uted bird’s nest fungi growing them more noticeable – on bark mulch. although they blend in so well with their background that it is very easy to overlook them. All of the bird’s nest fungi look like miniature nests (generally only ¼ inch in diameter) fi lled with four or fi ve tiny eggs. The cup-shaped “nest”, called a peridium, may be brown, gray or white, and smooth or textured inside and out. -
Phd. Thesis Sana Jabeen.Pdf
ECTOMYCORRHIZAL FUNGAL COMMUNITIES ASSOCIATED WITH HIMALAYAN CEDAR FROM PAKISTAN A dissertation submitted to the University of the Punjab in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BOTANY by SANA JABEEN DEPARTMENT OF BOTANY UNIVERSITY OF THE PUNJAB LAHORE, PAKISTAN JUNE 2016 TABLE OF CONTENTS CONTENTS PAGE NO. Summary i Dedication iii Acknowledgements iv CHAPTER 1 Introduction 1 CHAPTER 2 Literature review 5 Aims and objectives 11 CHAPTER 3 Materials and methods 12 3.1. Sampling site description 12 3.2. Sampling strategy 14 3.3. Sampling of sporocarps 14 3.4. Sampling and preservation of fruit bodies 14 3.5. Morphological studies of fruit bodies 14 3.6. Sampling of morphotypes 15 3.7. Soil sampling and analysis 15 3.8. Cleaning, morphotyping and storage of ectomycorrhizae 15 3.9. Morphological studies of ectomycorrhizae 16 3.10. Molecular studies 16 3.10.1. DNA extraction 16 3.10.2. Polymerase chain reaction (PCR) 17 3.10.3. Sequence assembly and data mining 18 3.10.4. Multiple alignments and phylogenetic analysis 18 3.11. Climatic data collection 19 3.12. Statistical analysis 19 CHAPTER 4 Results 22 4.1. Characterization of above ground ectomycorrhizal fungi 22 4.2. Identification of ectomycorrhizal host 184 4.3. Characterization of non ectomycorrhizal fruit bodies 186 4.4. Characterization of saprobic fungi found from fruit bodies 188 4.5. Characterization of below ground ectomycorrhizal fungi 189 4.6. Characterization of below ground non ectomycorrhizal fungi 193 4.7. Identification of host taxa from ectomycorrhizal morphotypes 195 4.8. -
Growth and Antibacterial Metabolite Production by Wild Mushrooms
African Journal of Biomedical Research, Vol. 8 (2005); 157 - 162 ISSN 1119 – 5096 © Ibadan Biomedical Communications Group Available online at http://www.bioline.org.br/md Full Length Research Article Mycelial Growth and Antibacterial Metabolite Production by Wild Mushrooms 1*Shittu, O.B; 2Alofe, F.V; 3Onawunmi, G.O; 4Ogundaini, A.O; and Tiwalade, T.A.4 *1Department of Microbiology, University of Agriculture, Abeokuta and Departments of 2Microbiology, 3Pharmaceutical Microbiology and Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Received: May, 2005 Accepted: September, 2005 ABSTRACT Russula sp. and Pycnoporus cinnabarinus (wild mushrooms) were subjected to laboratory cultivation by spore germination and tissue culturing on Sabouraud dextrose agar plates. Subsequently, the growth and production of metabolite(s) were monitored in submerged fermentation for 7days using agar diffusion method. The result obtained showed that metabolite production peaked on the fourth day in Russula sp. and on the fifth day in Pycnoporus cinnabarinus with subsequent decrease in activity of the fermentation extract. Dry weight increases with fermentation time in both mushrooms. Keywords: Wild mushroom, Spore germination, Tissue culturing, Antibacterial metabolite INTRODUCTION Some mushrooms are used for the treatment of gastric ulcer, duodenal ulcer and chronic gastritis. Some mushrooms contain compounds, which can A good example is Hericium erinacius (Oei, 1991, make a contribution to the general health of man 1996). Some mushrooms such as Tremella (Elliot, 1997). As mushrooms are widely fulciformis are used for curing leukaemia, distributed all over the world, some of them have coughing, phlegm and asthma of patients suffering been used in traditional medicine as anti- from chronic bronchitis (Oei, 1991, 1996). -
Stinkhorns of the Ns of the Hawaiian Isl Aiian Isl Aiian Islands
StinkhorStinkhornsns ofof thethe HawHawaiianaiian IslIslandsands Don E. Hemmes1* and Dennis E. Desjardin2 Abstract: Additional members of the Phallales are recorded from the Hawaiian Islands. Aseroë arachnoidea, Phallus atrovolvatus, and a Protubera sp. have been collected since the publication of the field guide Mushrooms of Hawaii in 2002. A complete list of species and their distribution on the various islands is included. Figure 1. Aseroë rubra is commonly encountered in Eucalyptus plantations Key Words: Phallales, Aseroë, Phallus, Mutinus, Dictyophora, in Hawai’i but these fruiting bodies are growing in wood chip mulch surrounding landscape plants in a park. Pseudocolus, Protubera, Hawaii. Roger Goos made the earliest comprehensive record of mem- bers of the Phallales in the Hawaiian Islands (Goos, 1970) and listed Anthurus javanicus (Penzig.) G. Cunn., Aseroë rubra Labill.: Fr., Dictyophora indusiata (Vent.: Pers.) Desv., Linderiella columnata (Bosc) G. Cunn., and Phallus rubicundus (Bosc) Fr. Later, Goos, along with Dring and Meeker, described the unique Clathrus spe- cies, C. oahuensis Dring (Dring et al., 1971) from the Koko Head Desert Botanical Gardens on Oahu. The records of Dictyophora indusiata and Linderiella columnata in Goos’s paper actually came from observations by N. A. Cobb in the early 1900’s (Cobb, 1906; Cobb, 1909) who reported these two species in sugar cane fields on Hawai’i Island (also known as the Big Island) and Kaua’i, re- spectively, and thought they might be parasitic on sugar cane. To our knowledge, neither Linderiella columnata (now known as Figure 2. Aseroë arachnoidea forming fairy rings on a lawn in Hilo. Clathrus columnatus Bosc) nor Clathrus oahuensis has been seen in the islands since these early observations. -
A New Species of Bird's Nest Fungi: Characterisation of <I>Cyathus Subglobisporus</I>
Persoonia 21, 2008: 71–76 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X370578 A new species of bird’s nest fungi: characterisation of Cyathus subglobisporus sp. nov. based on morphological and molecular data R.-L. Zhao1, D.E. Desjardin 2, K. Soytong 3, K.D. Hyde 4, 5* Key words Abstract Recent collections of bird’s nest fungi (i.e. Crucibulum, Cyathus, Mycocalia, Nidula, and Nidularia species) in northern Thailand resulted in the discovery of a new species of Cyathus, herein described as C. subglobisporus. bird’s nest fungi This species is distinct by a combination of ivory-coloured fruiting bodies covered with shaggy hairs, plications on gasteromycetes the inner surface of the peridium and subglobose basidiospores. Phylogenetic analyses based on ITS and LSU new species ribosomal DNA sequences using neighbour-joining, maximum likelihood and weighted maximum parsimony sup- phylogeny port Cyathus subglobisporus as a distinct species and sister to a clade containing C. annulatus, C. renweii and rDNA C. stercoreus in the Striatum group. Article info Received: 24 June 2008; Accepted: 8 September 2008; Published: 23 September 2008. INTRODUCTION Cyathus striatus as representatives of the Nidulariaceae. Their phylogenetic reconstruction indicated that the Nidulariaceae The genus Cyathus along with the genera Crucibulum, Myco- was sister to the Cystodermateae (represented by Cystoderma calia, Nidula, and Nidularia are known as the bird’s nest fungi amianthinum). Together these two clades appear sister to the because of their small vase-shaped or nest-like fruiting bodies Agaricaceae s.l. but without bootstrap support. A phylogenetic containing lentil-shaped or egg-like peridioles. -
In Vitro Anticoagulant and Antiinflammatory Activities of Geastrum Fimbriatum Fr., Namely As Earthstar Fungus
International Journal of Secondary Metabolite 2019, Vol. 6, No. 1, 1-9 https://dx.doi.org/10.21448/ijsm.454836 Published at http://www.ijate.net http://dergipark.gov.tr/ijsm Research Article In vitro anticoagulant and antiinflammatory activities of Geastrum fimbriatum Fr., namely as Earthstar fungus Nurdan Sarac *,1, Hakan Alli 1, Tuba Baygar 2, Aysel Ugur 3 1 Department of Biology, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey, 2 Material Research Laboratory, Research Laboratories Center, Mugla Sitki Kocman University, 48000 Mugla, Turkey 3 Section of Medical Microbiology, Department of Basic Sciences, Faculty of Dentistry, Gazi University, 06500 Ankara, Turkey Abstract: Mushrooms have great potential to be used as food and pharmaceutical ARTICLE HISTORY sources. Most of the non-edible mushrooms contain biologically active Received: August 22, 2018 metabolites that are functional for modern medicinal applications. Within the present study, anticoagulant and antiinflammatory activities of Geastrum Revised: October 25, 2018 fimbriatum Fr. (Syn. Geastrum sessile (Sowerby) Pouzar), a mushroom naturally Accepted: December 17, 2018 grown in Turkey, were investigated. The in vitro anticoagulant activity of the ethanolic extract obtained with a soxhlet apparatus determined by activated KEYWORDS partial thromboplastin time (APTT) and prothrombin time (PT) assays using commercial reagents. The antiinflammatory activity of the extract was Medicinal mushroom, determined by lipoxygenase inhibition assay. When compared with the negative Lipoxygenase inhibition, control DMSO, G. fimbriatum extract exhibited significant anticoagulant effects in the APTT test that evaluates the intrinsic coagulation pathway. The ethanolic Coagulation extract found to prolong the coagulation time. However, no inhibition was observed in the PT test which evaluates the extrinsic coagulation pathway, The extract showed 12.92% inhibition on the lipoxygenase enzyme activity. -
A New Species and New Records of Gasteroid Fungi (Basidiomycota) from Central Amazonia, Brazil
Phytotaxa 183 (4): 239–253 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.183.4.3 A new species and new records of gasteroid fungi (Basidiomycota) from Central Amazonia, Brazil TIARA S. CABRAL1, BIANCA D. B. DA SILVA2, NOEMIA K. ISHIKAWA3, DONIS S. ALFREDO4, RICARDO BRAGA-NETO5, CHARLES R. CLEMENT6 & IURI G. BASEIA7 1Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva; Instituto Nacional de Pesquisas da Amazônia–INPA; Av. André Araújo, 2936–Petrópolis; Manaus, Amazonas, 69067-375 Brazil. Email: [email protected] 2Programa de Pós-graduação em Sistemática e Evolução; Universidade Federal do Rio Grande do Norte; Natal, Rio Grande do Norte, 59072-970 Brazil. Email: [email protected] 3Coordenação de Biodiversidade; INPA; Manaus, Amazonas, 69067-375 Brazil. Email: [email protected] 4Programa de Pós-graduação em Sistemática e Evolução; Universidade Federal do Rio Grande do Norte; Natal, Rio Grande do Norte, 59072-970 Brazil. Email: [email protected] 5Centro de Referência em Informação Ambiental (CRIA); Av. Romeu Tórtima, 388; Campinas, São Paulo 13084-791, Brazil. Email: [email protected] 6Coordenação de Tecnologia e Inovação; INPA; Manaus, Amazonas, 69067-375 Brazil. Email: [email protected] 7Departamento de Botânica e Zoologia; Universidade Federal do Rio Grande do Norte; Natal, Rio Grande do Norte 59072-970, Brazil. Email: [email protected] Abstract A new species, Geastrum inpaense, is described morphologically and molecularly. Geastrum lloydianum, G. schweinitzii, Phallus merulinus and Staheliomyces cinctus are reported here as new records for Central Amazonia. -
Phallales of West Bengal, India. II. Phallaceae: Phallus and Mutinus
Researcher 2012;4(8) http://www.sciencepub.net/researcher Phallales of West Bengal, India. II. Phallaceae: Phallus and Mutinus Arun Kumar Dutta1,2, Nilanjan Chakraborty1, Prakash Pradhan1,2 and Krishnendu Acharya1* 1. Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata- 700019. 2. West Bengal Biodiversity Board, Paribesh Bhawan, Salt Lake City, Kolkata- 700098 Email: [email protected] Abstract: Four members of Phallaceae were collected from different corners of West Bengal and among them three are reported to be new to India and one from West Bengal. A detailed macro and microscopic features of those members were presented in this paper. [Arun Kumar Dutta, Nilanjan Chakraborty, Prakash Pradhan and Krishnendu Acharya. Phallales of West Bengal, India. II. Phallaceae: Phallus and Mutinus. Researcher 2012;4(8):21-25]. (ISSN: 1553-9865). http://www.sciencepub.net/researcher. 5 Key words: Agaricomycetes, diversity, macrofungi, new record 1. Introduction 2. Materials and methods The diversity and galaxy of fungi and their natural The study materials were collected during the field beauty has prime place in the biological world. Studies trips of various forested regions of West Bengal on macrofungal diversity have been carried out by (2009–2011). The morphological and ecological several countries, and new species for the world features were noted and colour photographs were taken macrofungal flora have continuously been documented in the field. After the specimens were brought to the from all over the world. Macrofungi not only produce laboratory, microscopic features were determined by the well attracted variously colored fruiting bodies, but using Carl Zeiss AX10 Imager A1 phase contrast also play a significant role in day to day life of human microscope. -
The Fascinating Bird's Nest Mushroom, Secondary Metabolites And
International Journal of Pharma Research and Health Sciences, 2021; 9 (1): 3265-3269 DOI:10.21276/ijprhs.2021.01.01 Waill and Ghoson CODEN (USA)-IJPRUR, e-ISSN: 2348-6465 Mini Review The Fascinating Bird’s Nest Mushroom, Secondary Metabolites and Biological Activities Waill A Elkhateeb*, Ghoson M Daba Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt. ARTICLE INFO: ABSTRACT: Received: 05 Feb 2021 Background: Mushrooms are generous source of nutritional and medicinal compounds. Accepted: 16 Feb 2021 Bird’s nest fungi are a gasteromyceteous group of mushrooms named for their similarity in Published: 28 Feb 2021 shape to small bird’s nests. They are considered from the tiniest and most interesting mushrooms all over the world. It is usually found in shady moist environments, and typically survive on plant debris, soil, decaying wood, or animal’s excrement. Bird’s nest mushrooms Corresponding author * are inedible, though they were not previously reported to be poisonous, due to their tiny size. Waill A Elkhateeb, Object: this review aims to put bird’s nest mushrooms under light spot through describing Chemistry of Natural and their morphology and ecology especially of the most common fungus, Cyathus haller. Microbial Products Department, Moreover, discussing important secondary metabolites and biological activities exerted by Pharmaceutical Industries bird’s nest mushrooms. Division, National Research Conclusion: bird’s nest mushrooms are able to produce many novel and potent secondary Centre, Dokki, Giza, 12622, metabolites that exerted different bioactivities especially as antimicrobial, antitumor, and Egypt. anti-neuro inflammation activities. Further studies and investigations are encouraged in E Mail: [email protected] order to find more about this interesting tiny mushroom.