Dispersal of Fungal Spores
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphological and Phylogenetic Analyses of Nia Vibrissa, a Marine
Regional Studies in Marine Science ( ) – Contents lists available at ScienceDirect Regional Studies in Marine Science journal homepage: www.elsevier.com/locate/rsma Morphological and phylogenetic analyses of Nia vibrissa, a marine Basidiomycota collected in Portuguese waters Egídia Azevedo a,b, *, Margarida Barata b,c , Maria Filomena Caeiro a,c a Centro de Estudos do Ambiente e do Mar (CESAM), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal b Centro de Ecologia, Evolução e Alterações climáticas (CE3C), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal c Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal article info a b s t r a c t Article history: This study presents morphological and phylogenetic characterizations of Nia vibrissa specimens detected Received 1 March 2017 on Fagus sylvatica baits, after six months of incubation in moist chambers at the laboratory. The baits had Received in revised form 19 December 2017 been submerged at Cascais marina, Portugal, during a survey carried out in 2006–2008. Morphological Accepted 28 December 2017 observations evidenced differences in basidiocarp color and in the morphology of the peridial hairs, Available online xxxx varying from straight to curved and with bifurcate to non-bifurcate ends. Morphological variability has Keywords: often been reported, associated to the suggestion that N. vibrissa is a species complex. We addressed Basidiocarp this subject through the evaluation of pairwise distances and phylogenetic analyses applying Bayesian Marine fungi and Maximum Likelihood methods, to multi-sequence alignments involving the large subunit (LSU) of Nuc LSU region the nuclear ribosomal DNA. -
Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating. -
Fungal Planet Description Sheets: 716–784 By: P.W
Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H. -
Jéssica Beatriz Anastácio Jacinto Zalerion Maritimum and Nia
Universidade de Departamento de Química Aveiro 2017-2018 Jéssica Beatriz Zalerion maritimum and Nia vibrissa potential for Anastácio Jacinto expanded polystyrene (EPS) biodegradation Avaliação do potencial de Zalerion maritimum e Nia vibrissa para a biodegradação de poliestireno expandido (EPS) Universidade de Departamento de Química Aveiro 2017-2018 Jéssica Beatriz Avaliação do potencial de Zalerion maritimum e Anastácio Jacinto Nia vibrissa para a biodegradação de poliestireno expandido (EPS) Zalerion maritimum and Nia vibrissa potential for expanded polystyrene (EPS) biodegradation Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Biotecnologia Industrial e Ambiental realizada sob a orientação científica do Doutor João Pinto da Costa, Investigador em Pós-Doutoramento do Departamento de Química da Universidade de Aveiro e da Doutora Teresa Rocha Santos, Investigadora Principal do Departamento de Química e do Laboratório Associado CESAM (Centro de Estudos do Ambiente e do Mar) da Universidade de Aveiro Este trabalho foi financiado pelo CESAM (UID/AMB/50017) e FCT/MEC através de fundos nacionais e co-financiado pela FEDER, dentro do programa PT2020 Partnership Agreement e Compete 2020. Foi ainda financiado por fundos nacionais através da FCT/MEC (PIDDAC) sob o projeto IF/00407/2013/CP1162/CT0023 e co-financiado pela FEDER, ao abrigo do projeto PT2020 Partnership Agreement e Compete2020 POCI- 01-0145-FEDER-028740. Realizado ainda graças ao apoio da FCT através da bolsa SFRH/BPD/122538/2016 sob os fundos POCH, co- financiada pela European Social Fund e Portuguese National Funds, MEC. ii Azul poético Ela está morta. Morta em azul poético, azul revolucionário. -
Biodiversity and Characterization of Marine Mycota from Portuguese Waters
Animal Biodiversity and Conservation 34.1 (2011) 205 Biodiversity and characterization of marine mycota from Portuguese waters E. Azevedo, M. F. Caeiro, R. Rebelo & M. Barata Azevedo, E., Caeiro, M. F., Rebelo, R. & Barata, M., 2011. Biodiversity and characterization of marine mycota from Portuguese waters. Animal Biodiversity and Conservation, 34.1: 205–215. Abstract Biodiversity and characterization of marine mycota from Portuguese waters.— The occurrence, diversity and similarity of marine fungi detected by the sum of direct and indirect observations in Fagus sylvatica and Pinus pinaster baits submerged at two Portuguese marinas are analyzed and discussed. In comparison with the data already published in 2010, the higher number of specimens considered in this study led to the higher number of very frequent taxa for these environments and substrata; the significant difference in substrata and also in fungal diversity detected at the two environments is also highlighted, in addition to the decrease in fungal similarity. Because the identification of Lulworthia spp., Fusarium sp., Graphium sp., Phoma sp. and Stachybotrys sp. down to species level was not possible, based only on the morphological characterization, a molecular approach based on the amplification of the LSU rDNA region was performed with isolates of these fungi. This was achieved for three isolates, identified as Fusarium solani, Graphium eumorphum and Stachybotrys chartarum. To achieve this with the other isolates which are more complex taxa, the sequencing of more regions will be considered. Key words: Marine fungi, Wood baits, Fungal diversity, Ascomycota, Anamorphic fungi, Sequence alignment. Resumen Biodiversidad y caracterización de los hongos marinos de las aguas portuguesas.— Se analiza y discute la presencia, la diversidad y la similitud de los hongos marinos detectados mediante la suma de observaciones directas e indirectas utilizando cebos de Fagus sylvatica y Pinus pinaster sumergidos en dos puertos deportivos portugueses. -
A New Poroid Species of Resupinatus from Puerto Rico, with a Reassessment of the Cyphelloid Genus Stigmatolemma
Mycologia, 97(5), 2005, pp. 000–000. # 2005 by The Mycological Society of America, Lawrence, KS 66044-8897 A new poroid species of Resupinatus from Puerto Rico, with a reassessment of the cyphelloid genus Stigmatolemma R. Greg Thorn1 their place in the cyphellaceous genus Stigmatolemma…’’ Department of Biology, University of Western Ontario, (Donk 1966) London, Ontario, N6A 5B7 Canada Jean-Marc Moncalvo INTRODUCTION Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Resupinatus S.F. Gray is a small genus of euagarics of Toronto, Toronto, Ontario, M5S 2C6 Canada (Hibbett and Thorn 2001) with 49 specific and Scott A. Redhead varietal epithets as of Apr 2005, excluding autonyms Systematic Mycology and Botany Section, Eastern Cereal and invalid names (www.indexfungorum.org). Fruit- and Oilseed Research, Agriculture and Agri-Food ing bodies of Resupinatus are small—a few mm to Canada, Ottawa, Ontario, K1A 0C6 Canada 2 cm in breadth—and generally pendent or resupi- D. Jean Lodge nate on the undersides of rotting logs and other Center for Forest Mycology Research, USDA Forest woody materials or herbaceous debris. Historically, Service-FPL, P.O. Box 1377, Luquillo, Puerto Rico, members of Resupinatus were treated within the USA 00773-1377 broad concept of Pleurotus (Fr.) P. Kumm. (e.g. Pila´t 1935, Coker, 1944). In modern times, the genus has Marı´a P. Martı´n been characterized by a gelatinous zone in the pileus, Real Jardı´n Bota´nico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain hyaline inamyloid spores and the absence of metuloid cystidia. The genus Hohenbuehelia Schulzer shares the gelatinized layer and inamyloid spores, but has Abstract: A fungus with gelatinous poroid fruiting metuloid cystidia (Singer 1986, Thorn and Barron bodies was found in Puerto Rico and determined by 1986). -
Re-Thinking the Classification of Corticioid Fungi
mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma. -
Stinkhorns of the Ns of the Hawaiian Isl Aiian Isl Aiian Islands
StinkhorStinkhornsns ofof thethe HawHawaiianaiian IslIslandsands Don E. Hemmes1* and Dennis E. Desjardin2 Abstract: Additional members of the Phallales are recorded from the Hawaiian Islands. Aseroë arachnoidea, Phallus atrovolvatus, and a Protubera sp. have been collected since the publication of the field guide Mushrooms of Hawaii in 2002. A complete list of species and their distribution on the various islands is included. Figure 1. Aseroë rubra is commonly encountered in Eucalyptus plantations Key Words: Phallales, Aseroë, Phallus, Mutinus, Dictyophora, in Hawai’i but these fruiting bodies are growing in wood chip mulch surrounding landscape plants in a park. Pseudocolus, Protubera, Hawaii. Roger Goos made the earliest comprehensive record of mem- bers of the Phallales in the Hawaiian Islands (Goos, 1970) and listed Anthurus javanicus (Penzig.) G. Cunn., Aseroë rubra Labill.: Fr., Dictyophora indusiata (Vent.: Pers.) Desv., Linderiella columnata (Bosc) G. Cunn., and Phallus rubicundus (Bosc) Fr. Later, Goos, along with Dring and Meeker, described the unique Clathrus spe- cies, C. oahuensis Dring (Dring et al., 1971) from the Koko Head Desert Botanical Gardens on Oahu. The records of Dictyophora indusiata and Linderiella columnata in Goos’s paper actually came from observations by N. A. Cobb in the early 1900’s (Cobb, 1906; Cobb, 1909) who reported these two species in sugar cane fields on Hawai’i Island (also known as the Big Island) and Kaua’i, re- spectively, and thought they might be parasitic on sugar cane. To our knowledge, neither Linderiella columnata (now known as Figure 2. Aseroë arachnoidea forming fairy rings on a lawn in Hilo. Clathrus columnatus Bosc) nor Clathrus oahuensis has been seen in the islands since these early observations. -
Fishery Circular
398 NOAA Technical Report NMFS Circular 398 Marine Flora and Fauna of the Northeastern United States ^^ Higher Fungi: Ascomycetes, ^^ATEs OV Deuteromycetes, and Basidiomycetes A. R. Cavaliere March 1977 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA TECHNICAL REPORTS National Marine Fisheries Service, Circulars The major responsibilities of the National Marine Fisheries Service (NMFSl are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishePi' agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS Circular series continues a series that has been in existence since 1941. The Circulars are technical publications of general interest intended to aid conservation and management. Publications that review in considerable detail and at a high technical level certain broad areas of research appear in this series. Technical papers originating in economics studies and from management in- vestigations appear in the Circular series. NOAA Technical Report NMFS Circulars are available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences. -
Phallales of West Bengal, India. II. Phallaceae: Phallus and Mutinus
Researcher 2012;4(8) http://www.sciencepub.net/researcher Phallales of West Bengal, India. II. Phallaceae: Phallus and Mutinus Arun Kumar Dutta1,2, Nilanjan Chakraborty1, Prakash Pradhan1,2 and Krishnendu Acharya1* 1. Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata- 700019. 2. West Bengal Biodiversity Board, Paribesh Bhawan, Salt Lake City, Kolkata- 700098 Email: [email protected] Abstract: Four members of Phallaceae were collected from different corners of West Bengal and among them three are reported to be new to India and one from West Bengal. A detailed macro and microscopic features of those members were presented in this paper. [Arun Kumar Dutta, Nilanjan Chakraborty, Prakash Pradhan and Krishnendu Acharya. Phallales of West Bengal, India. II. Phallaceae: Phallus and Mutinus. Researcher 2012;4(8):21-25]. (ISSN: 1553-9865). http://www.sciencepub.net/researcher. 5 Key words: Agaricomycetes, diversity, macrofungi, new record 1. Introduction 2. Materials and methods The diversity and galaxy of fungi and their natural The study materials were collected during the field beauty has prime place in the biological world. Studies trips of various forested regions of West Bengal on macrofungal diversity have been carried out by (2009–2011). The morphological and ecological several countries, and new species for the world features were noted and colour photographs were taken macrofungal flora have continuously been documented in the field. After the specimens were brought to the from all over the world. Macrofungi not only produce laboratory, microscopic features were determined by the well attracted variously colored fruiting bodies, but using Carl Zeiss AX10 Imager A1 phase contrast also play a significant role in day to day life of human microscope. -
The Fascinating Bird's Nest Mushroom, Secondary Metabolites And
International Journal of Pharma Research and Health Sciences, 2021; 9 (1): 3265-3269 DOI:10.21276/ijprhs.2021.01.01 Waill and Ghoson CODEN (USA)-IJPRUR, e-ISSN: 2348-6465 Mini Review The Fascinating Bird’s Nest Mushroom, Secondary Metabolites and Biological Activities Waill A Elkhateeb*, Ghoson M Daba Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt. ARTICLE INFO: ABSTRACT: Received: 05 Feb 2021 Background: Mushrooms are generous source of nutritional and medicinal compounds. Accepted: 16 Feb 2021 Bird’s nest fungi are a gasteromyceteous group of mushrooms named for their similarity in Published: 28 Feb 2021 shape to small bird’s nests. They are considered from the tiniest and most interesting mushrooms all over the world. It is usually found in shady moist environments, and typically survive on plant debris, soil, decaying wood, or animal’s excrement. Bird’s nest mushrooms Corresponding author * are inedible, though they were not previously reported to be poisonous, due to their tiny size. Waill A Elkhateeb, Object: this review aims to put bird’s nest mushrooms under light spot through describing Chemistry of Natural and their morphology and ecology especially of the most common fungus, Cyathus haller. Microbial Products Department, Moreover, discussing important secondary metabolites and biological activities exerted by Pharmaceutical Industries bird’s nest mushrooms. Division, National Research Conclusion: bird’s nest mushrooms are able to produce many novel and potent secondary Centre, Dokki, Giza, 12622, metabolites that exerted different bioactivities especially as antimicrobial, antitumor, and Egypt. anti-neuro inflammation activities. Further studies and investigations are encouraged in E Mail: [email protected] order to find more about this interesting tiny mushroom. -
Notes, Outline and Divergence Times of Basidiomycota
Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.