Synthesis of and Its Comparison with the Natural Ascaside Isolated from Astragalus Caucasicus

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of and Its Comparison with the Natural Ascaside Isolated from Astragalus Caucasicus Synthesis of Kaempferol-3-0-(3",4'' -di-O-a-L-rhamnopyranosy^-^-D-galactopyranoside and its Comparison with the Natural Ascaside Isolated from Astragalus caucasicus Ingrid Riess-Maurer, Hildebert Wagner* Institut für Pharmazeutische Arzneimittellehre der Universität München, Karlstraße 29, D-8000 München 2 and András Lipták Institute of Biochemistry, L. Kossuth University, H-4010 Debrecen, P.O. Box 55, Hungary Z. Naturforsch. 36b, 257-261 (1981); received October 21, 1980 Trisaccharide, Synthesis, Synthetic Kaempferol Trioside The trisaccharide, 3,4-di-0-(a-L-rhamnopyranosyl)-D-galactose was synthesized using benzyl 2,6-di-0-benzyl-/?-D-galactopyranoside as starting compound. Its acetobromo derivative was coupled with 4',7-di-O-benzyl-kaempferol. The structure of the synthetic kaempferol trioside was characterised by different spectroscopic methods (UV, IR, XH, 13C NMR and MS). Chromatographic and mass spectrometric comparison of the synthetic product with ascaside precluded their identity. Introduction Some fiavonol triosides with branched structures While the synthesis of naturally occuring fla- [6, 7] have been isolated, but the ascaside is the first vonoid mono- and diglycosides are well documented representative among those which contain two and their synthesis is a routine process [1], the rhamnoses and one galactose. The ascaside has an chemical preparation of flavonoid glycosides, con- unique structure which prompted us to work out a taining a trisaccharide as sugar component seems to synthetic route for its preparation. It is the first be more difficult and only few examples of such synthesis of a flavonoid trioside with a branched syntheses may be found in the literature [2, 4]. sugar moiety. There seems to be a need for their syntheses, since the structure elucidation of such compounds by Result and Discussion means of spectroscopic analysis, lacking distinct The key step in the ascaside synthesis is the model compounds, proved to be equivocal [3]. preparation of its trisaccharide part. Generally, the Our results on the field of the structure elucida- synthesis of ohgosaccharides requires two main tion of the xanthorhamnin series showed clearly, operations: i) correct blocking to obtain the required that the distinction between the different structure aglycone, and ii) construction of the glycosidic 13 isomers by C NMR or MS methods is only possible linkage. In some cases the suitable protected ag- if there are synthetic models for the assignment on lycones are the bottle neck of the whole synthesis. hand [4]. An unequivocal synthesis of ascaside required a Here we wish to report on the synthesis of suitable protected galactopyranoside derivative for ascaside, a fiavonol trioside isolated from Astragalus the preparation of the trisaccharide component. For caucasicus [5], of which the structure was postulated with the aid of chemical degradation and spectros- this reason we chose the recently prepared benzyl copic investigations (UV, IR and XH NMR) to be a 2,6-di-0-benzyl-/5-D-galactopyranoside [8] (1) which kaempferol- 3 - 0- (3 " ,4 di - 0 - a-L-rhamnopyranosyl)- contains easily removable groups in all three posi- /3-D-galactopyranoside. tions. This aglycone was rhamnosylated by a-aceto- bromo-L-rhamnose in a modified Helferich procedure using a benzene-nitromethane (1:1) solvent system and Hg(CN)2 as acid acceptor to give compound 2. The high yield of the couphng (76%) and relatively Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung This work has been digitalized and published in 2013 by Verlag Zeitschrift in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der für Naturforschung in cooperation with the Max Planck Society for the Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Advancement of Science under a Creative Commons Attribution Creative Commons Namensnennung 4.0 Lizenz. 4.0 International License. short reaction time showed, that there was not any pounds, one a kaempferol-, the other one an iso- limited reactivity of the axial C4-OH group, which rhamnetin- or tamarixetin-derivative. was observed in the glycosylation reactions of 2,6- The analysis of the mass spectrum of the per- disubstituted galactopyranosyl derivatives [9, 10]. methylated isolated flavonoids showed the following Perhaps the high yield of our reaction may be characteristic fragments: m/e 189 for a rhamnose explained by the fact, that the reactivity of C4-OH trimethyl ether, accompanied with two secondary is increased by the glycosylation of C3-OH. fragments m/e 157 and 125. A fragment of a tetra- The structure of compound 2 was verified by its methyl hexopyranosyl moiety could not be detected. 13C NMR spectrum. The chemical shifts for the The fragment M-205 = m/e 689 may be assigned to anomeric carbons (102.9, 98.6 and 97.6 ppm) and a permethylated kaempferol-(0-rhamnosyl)-0-ga- their 1JCH values (160, 174 and 176 Hz) supported lactoside structure. The m/e 719 is assignable to the the suggested anomeric configurations; the two permethylated quercetin analogue. rhamnopyranosyl units have a-configuration. Com- The fragments m/e 517 and 547 (A -f- S) belong to pound 2 was readily hydrogenolysed over palladium the kaempferol and quercetin-monomethyl ether- on carbon and acetylated to give the crystalline dimethyl galactoside skeletons, respectively. These nonaacetyl-trisaccharide (3). The XH and 13C NMR facts seem to support the presence of a branched spectra of 3 showed the presence of both anomers of oligosaccharide moiety in ascaside. The absence of the reducing end in the galactopyranose unit in a a m/e 362 (T+ S2) fragment rules out a linear carbo- ratio of <z//5 = 5/3. Deacetylation of 3 using the hydrate chain. The spectrum of a peracetylated Zemplen method resulted in the trisaccharide (4) as derivative of the mixture verifies the absence of a an amorphous powder. linear structure, too. Taking into account these Treatment of 3 with HBr in acetic acid afforded fragments and the published data [5] (enzymatic the crystalline a-acetobromo derivative (5) in good degradation, diisopropylidene derivative) it may be yield. Condensation of the acetobromo-trisaccharide assumed, that the isolated substance is a mixture of 5 with 4',7-di-O-benzylkaempferol [11] (6) in a kaempferol-3-0-(di-rhamnosyl)-0-galactoside and quinoline in the presence of silver carbonate and its tamarixitin or isorhamnetine analogue. The Drierite resulted in the crystalline 7 - after separa- bond-types are most hkely a 3",6"- or a 4",6"-di-0- tion on silica gel column using a toluene-methanol, rhamnosyl-galactoside. 8:2 solvent system as eluent The XH NMR and UV spectra of 7 were in good accordance which the proposed structure, indicating that the glycosyla- tion took place in the position 3 of 6. The /S-anomer 8n0—-r-CHjOBn configuration of the new glycosidic linkage was suggested by the value of the optical rotation. Deacetylation of 7 resulted in crystalline 8, which after catalytic debenzylation gave the kaempferol- 2: R == OBn; R' = H; R" = Bn; R'" = Ac 3-0-(3",4"-,di-0-a-L-rhamnopyranosyl)-/?-D-galac- 3a: R = H; R' = OAc; R" = R'" = Ac 3/3: R = OAc; R' = H; R" = R'" = Ac topyranoside (9). Conventional acetylation of 9 gave 4a: R = R" = R'" = H; R' = OH the crystalline peracetylated kaempferoltrioside 4/5: R = OH; R' = R" = R'" = H (10) which also proved to be homogeneous. Though 9 5: R = H; R' = Br; R" = R'" = Ac was not crystalline, its purity was verified by TLC R' in different solvent systems and on different ad- sorbents. UV, IR, MS, *H and 13C NMR investiga- tions confirmed the proposed structure. The /?-glycosidic structure between the aglycone and the 6 OR" trisaccharide part is indicated by the presence of a 7: R = Bn; R' = H; R" = Ac low field signal at 101.3 ppm. 8: R = Bn; R' = R" = H 9: R = R' = R" = H The TLC comparison of the synthesized compound 10: R = R' = R" = Ac 9 with the supplied natural product showed clearly Bn = Benzyl that the latter is a mixture of at least two com- Ac = Acetyl Table. Assignment of the 13C NMR chemical shifts and 1 Jen data. Compound Galactosyl Rhamnosyl Rhamnosyl 1 23456 1 23456 1 23456 1» 102.5 79.3 73.6 69.4 74.6 69.1 (156) 2a 102.9 77.1 79.5 75.2 73.5 68.3 98.7 68.9 70.0 71.1 67.2 17.4 97.6 68.9 69.5 71.1 67.1 17.4 (160) (174) (176) 3* 93.2 69.2 75.6 75.2 69.2 62.11 98.3 69.9 69.6 71.2 67.5 98.7 69.9 69.5 71.2 67.3 97.9 73.2 78.4 75.4 74.4 62.1J 17.5 17.5 4b 93.2 69.6 76.8 76.1 71.7 61.91 101.5 70.8 71.1 72.7 70.0 17.5 102.3 71.0 71.1 72.8 70.2 17.6 97.2 73.1 80.0 75.7 75.5 61.9/ 9C* 101.3 71.6 78.2 73.3 75.6 60.4 100.7 70.3 70.8 71.9 68.9 17.9 101.8 70.5 70.9 72.0 68.9 17.8 * Chemical shift data for kaempferol skeleton of 9: 156.6 (C-2); 133.1 (C-3); 177.5 (C-4); 161.2 (C-5); 98.8 (C-6); 164.3 (C-7); 93.7 (C-8); 156.7 (C-9); 104.0 (C-10); 120.8 (C-l'); 130.9 (C-2',6'); 115.2 (C-3',5'); 160.1 (C-4'). 1«^CH coupling constants are given in brackets [Hz].
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski Et Al
    USOO9421 180B2 (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski et al. (45) Date of Patent: Aug. 23, 2016 (54) ANTIOXIDANT COMPOSITIONS FOR 6,203,817 B1 3/2001 Cormier et al. .............. 424/464 TREATMENT OF INFLAMMATION OR 6,323,232 B1 1 1/2001 Keet al. ............ ... 514,408 6,521,668 B2 2/2003 Anderson et al. ..... 514f679 OXIDATIVE DAMAGE 6,572,882 B1 6/2003 Vercauteren et al. ........ 424/451 6,805,873 B2 10/2004 Gaudout et al. ....... ... 424/401 (71) Applicant: Perio Sciences, LLC, Dallas, TX (US) 7,041,322 B2 5/2006 Gaudout et al. .............. 424/765 7,179,841 B2 2/2007 Zielinski et al. .. ... 514,474 (72) Inventors: Jan Zielinski, Vista, CA (US); Thomas 2003/0069302 A1 4/2003 Zielinski ........ ... 514,452 Russell Moon, Dallas, TX (US); 2004/0037860 A1 2/2004 Maillon ...... ... 424/401 Edward P. Allen, Dallas, TX (US) 2004/0091589 A1 5, 2004 Roy et al. ... 426,265 s s 2004/0224004 A1 1 1/2004 Zielinski ..... ... 424/442 2005/0032882 A1 2/2005 Chen ............................. 514,456 (73) Assignee: Perio Sciences, LLC, Dallas, TX (US) 2005, 0137205 A1 6, 2005 Van Breen ..... 514,252.12 2005. O154054 A1 7/2005 Zielinski et al. ............. 514,474 (*) Notice: Subject to any disclaimer, the term of this 2005/0271692 Al 12/2005 Gervasio-Nugent patent is extended or adjusted under 35 et al. ............................. 424/401 2006/0173065 A1 8/2006 BeZwada ...................... 514,419 U.S.C. 154(b) by 19 days. 2006/O193790 A1 8/2006 Doyle et al.
    [Show full text]
  • Enzyme-Mediated Regioselective Acylations of Flavonoid Glycosides
    FABAD j. P/ıarrıı. Sci., 20, 55-59, 1995 RESEARCH AR.TICLES /BİLİMSEL ARAŞTIRMALAR Enzyme-Mediated Regioselective Acylations of Flavonoid Glycosides Ihsan ÇALIŞ*t, Meltem ÖZİPEK*, Mcvlüt ERTAN**, Petcr RÜEDI*** Abstract: Flavonoid glycosides, xaııtlıorlıanınins B, C, a11d ru­ Flavouoit Glikozitlerirıiu Eıızinıatik Açilleunıesi tin lıaı~ been acylated by the catalytic actioıı of the protense sııbtilisi11 in aıılrydrous pyridine. The acylatioıı occııred ıoitlı Özet: Flavonoit glikozitlerinden ksantornnınin B, C ve rutin, lıiglı yield roitlı rutin giving a single monoester 011 its glııcose anlıidr piridinde proteaz subtilisin ile açillenmiştir. rııoicty Reaksiyo11 slıoıoing excellent selectivity. But it occııred witlı loıv 011 yield the galactose moiety of tJıe two flavonoid triglycosides. sonucunda, glukoz üzerinden rutinin nıonoesteri yüksek vcrinı­ Ie elde edilirken, galaktoz üzerinden flavonoit triglikozitleriııiıı Key words : Acylated f!avonoid glycosides, enzyrnatic acy- esterleri çok düşük verirnle elde edilmiştir. lation. Received : 29.6.1994 Anahtar kelinıeler : Ester flavonoit glikozit/er, enzhnatik Accepted : 19.1.1995 açillenıe Introduction the regioselective acylation of polyhydroxylated cornpounds3.4. Flavonoid glycosides are widely distributed in na­ ture and often found as esters with different acids at We now report on the substilisin-catalyzed esterifica­ specific positions of their sugar moieties. Besides tion of two flavonoid triglycosides isolated from these esters, the cinnamoyl, p-coumaroyl and feru­ Rhamnus petiolaris
    [Show full text]
  • Chemistry of Natural Products
    IHMMR CHEMISTRY OF NATURAL PRODUCTS DISSERTATION SUBMITTED IN PARTIAL FULFILMENT FOR THE DEGREE OF MASTER OF PHILOSOPHY IN CHEMISTRY ALIGARH MUSLIM UNIVERSITY, ALIGARH 1987 KALIM JAVED INSTITUTE OF HISTORY OF MEDICINE AND MEDICAL RESEARCH NEW DELHI (INDIA) ^ 2 m 1918 x^^ Cottvo .<> -^y .-0^ DS1127 643 9686 Phones: 643 9690 643 3685 Grams : EOURES IHMMR INSTITUTE OF HISTORY OF MEDICINE & MEDICAL RESEARCH P.O. HAMDARD NAGAR. NEW DELHI-110062 Ref. No Dated....^.:..'.f......(1.^.7. Chis is to certifa that the dissertation entitled 'Chanistry o£ Natural Products' is the original i»ork of the candidate and is suitable for partial fulfil­ ment of the requirements for the degree of Master of Philosophy in Chemistry. PRCF. ni.^.y. KHAN (Supervisor) ACKNOWLEDGEMENT It g-ivei, me a Qfiaat ptta^aKd to ficcofid my deep 4en4C of^ g^'icLt-ttudc to P^o^. M.S. y. Khan andeA MhoAZ ahtd quidcuict and i,apQJw-ii>-ijon, I could be, abln to COAAIJ out alZ tivu n.zi>zaAch wo^fe. I condtdM. it a Qficat phlvtttge to e.xpn.eM my pfio{,oand 4ett6e o;$ Qfiatitudu and tnde.btQjdn(ii>6 tjo kthaj HofexLm Abdul Hamttd Salitb, Pfiei-Ldcnt o;5 ti^e. Institute 0|) HtitoAy of^ Me.dtctm and Me.dA,cal Re^eoAc/t, Hamda/id Maga/L, New Vtlht ^on lu,i> alZ encou-iagemdnt and gQ,nQAoai> pfio\)i^ion oi all avoAJiabtn {^acAlyitiz^ ioK. tko, smooth pn.ogfi(iAi> o{, thU, Mohk and awoAd o{^ a ^eZton)'i>lu.p. H-oi, constant tnteAz^t tn tlvu> wonk woi alixaip a .iou,ice oi iiUp-iAatJjon.
    [Show full text]
  • 1 Alkaloid Drugs
    1 Alkaloid Drugs Most plant alkaloids are derivatives of tertiary amines, while others contain primary, secondary or quarternary nitrogen. The basicity of individual alkaloids varies consider- ably, depending on which of the four types is represented. The pK, values (dissociation constants) lie in the range of 10-12 for very weak bases (e.g. purines), of 7-10 for weak bases (e.g. Cinchona alkaloids) and of 3-7 for medium-strength bases (e.g. Opium alkaloids). 1.1 Preparation of Extracts Alkaloid drugs with medium to high alkaloid contents (31%) Powdered drug (Lg) is mixed thoroughly with Iml 10Yo ammonia solution or 10% General method, Na,CO, solution and then extracted for lOmin with 5ml methanol under reflux. The extraction filtrate is then concentrated according to the total alltaloids of the specific drug, so that method A 100p1 contains 50-100pg total alkaloids (see drug list, section 1.4). Rarmalae semen: Powdered drug (Ig) is extracted with lOml methanol for 30min Exception under reflux. The filtrate is diluted 1:10 with methanol and 20pl is used for TLC. Strychni semen: Powdered seeds (Ig) are defatted with 20 rnl n-hexane for 30min under reflux. The defatted seeds are then extracted with lOml methanol for lOmin under reflux. A total of 30yl of the filtrate is used for TL.C. Colchici semen: Powdered seeds (1 g) are defatted with 20 ml n-hexane for 30 min under reflux. The defiitted seeds are then extracted for 15 min with 10ml chloroform. After this, 0.4ml 10% NH, is added to the mixture, shaken vigorously and allowed to stand for about 30min before fillration.
    [Show full text]
  • Bbm:978-3-642-64958-5/1.Pdf
    Sachverzeichnis. (Deutsch - Englisch) Wegen allgemeiner Stichworte wie Extraktion, Abtrennung, Reinigung usw. der einzelnen Stoffgruppen vergleiche man auch das Inhaltsverzeichnis am Anfang dieses Bandes. cis-, t.rans-, no, D-, L- und ahnliche lsomere sind unter dem Anfangsbuchst&ben der Ver­ bindung ~nd nicht unter dem Prafix eingeordnet. AIle iso-Verbindungen finden sich unter lso-. A, 0, tJ sind wie Ae, Oe, Ue eingereiht. Bei gleicher Schreibweise in beiden Sprachen sind die Verbindungen jeweils einfach aufgefiihrt. Abietinsaure, abietic acid 36. Albsa}Nnin 115. Abobiosid, abobioside 251. Algarobilla 517. Abogenin 251. Algen, Carotinoide, algae, carotenoid8 276 bis Abomonosid, abmnono8ide 251. 277,281. Acerit, aceritol 517. Alizarin 552, 553, 554. Acertannin, acer·tannin 517. Alkaloide als Antibiotica, alkaloid8 as anti- Aceteugenol416. biotics 714. Acetophenon, acetopheTUYlle 408. Alkannan, alkannane 382. Acetovanillon, acetovanillone 410. Alkannin 361,383. Acofriose 210. Alkohole, tertiare, alcohols, tertiary 29. Acofriosid L, acolrioside L 251. Allicin 657ft'., 720. Acolongiflorosid (E, G, H, J), acolongilloro- Allobetulin 129. Bide (E, a, H, J) 251. Allocholansaure, aUockolanic acid 214. Acolongiflorosid-K-acetat, acolongilloroside- Alloglaucotoxigenin 252. K-acetate 252. Allomethylose 210, 258. Acopiose 251. AIlylguajakol, allyl guaiacol 413. Acovenose 211, 252. p-Allylphenol, p-allyl phenol 413. Acovenosid (A, B, C); acoven08ide 252. Allylprotocatechol, aUyl protocatechol 413. Acovenosigenin A 252. Allyltetramethoxybenzol, aUyl tetramethoxy ADAMKIEwIcz-Reaktion, ADAMKIEWICZ reac- bemene 421. tion 613. Alnulin 83. Adlumiasterin, adlumiasterol 142. Aloe-Emodin, aloe emodin 554. Adonitoxigenin 252. Aloe-Emodinanthron, aloe emodin anthrone Adonitoxin 252. 554. Adynerigenin 252. Aloin 553.· Adynerin 252. Amolonin 177, 185-186. Aescigenin, Il8cigenin 60, 117-118. Ampeloptin 456. Aescin, Il8cin 117-118. I1-Amyrin 60, 63, 90-94, 97.
    [Show full text]
  • Quercetin Gregory S
    amr Monograph Quercetin Gregory S. Kelly, ND Description and Chemical Composition 5, 7, 3’, and 4’ (Figure 2). The difference between quercetin and kaempferol is that the latter lacks Quercetin is categorized as a flavonol, one of the the OH group at position 3’. The difference six subclasses of flavonoid compounds (Table 1). between quercetin and myricetin is that the latter Flavonoids are a family of plant compounds that has an extra OH group at position 5’. share a similar flavone backbone (a three-ringed By definition quercetin is an aglycone, lacking an molecule with hydroxyl [OH] groups attached). A attached sugar. It is a brilliant citron yellow color multitude of other substitutions can occur, giving and is entirely insoluble in cold water, poorly rise to the subclasses of flavonoids and the soluble in hot water, but quite soluble in alcohol different compounds found within these subclasses. Flavonoids also occur as either glycosides (with attached sugars [glycosyl groups]) or as aglycones (without attached sugars).1 Figure 1. 3-Hydroxyflavone Backbone with Flavonols are present in a wide variety of fruits Locations Numbered for Possible Attachment and vegetables. In Western populations, estimated of Hydroxyl (OH) and Glycosyl Groups daily intake of flavonols is in the range of 20-50 mg/day.2 Most of the dietary intake is as 3’ flavonol glycosides of quercetin, kaempferol, and 2’ 4’ myricetin rather than their aglycone forms (Table 8 1 2). Of this, about 13.82 mg/day is in the form of O 1’ 2 7 5’ quercetin-type flavonols. 2 The variety of dietary flavonols is created by the 6’ 6 differential placement of phenolic-OH groups and 3 OH attached sugars.
    [Show full text]
  • WO 2018/002916 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL).
    [Show full text]
  • UHPLC-ESI-QTOF-MS/MS-Based Molecular Networking Guided Isolation and Dereplication of Antibacterial and Antifungal Constituents of Ventilago Denticulata
    antibiotics Article UHPLC-ESI-QTOF-MS/MS-Based Molecular Networking Guided Isolation and Dereplication of Antibacterial and Antifungal Constituents of Ventilago denticulata Muhaiminatul Azizah 1 , Patcharee Pripdeevech 2,3, Tawatchai Thongkongkaew 1, Chulabhorn Mahidol 1,4, Somsak Ruchirawat 1,4,5 and Prasat Kittakoop 1,4,5,* 1 Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; mimi.huffl[email protected] (M.A.); [email protected] (T.T.); [email protected] (C.M.); [email protected] (S.R.) 2 School of Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand; [email protected] 3 Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand 4 Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand 5 Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok 10210, Thailand * Correspondence: [email protected]; Tel.: +66-869755777 Received: 6 August 2020; Accepted: 12 September 2020; Published: 15 September 2020 Abstract: Ventilago denticulata is an herbal medicine for the treatment of wound infection; therefore this plant may rich in antibacterial agents. UHPLC-ESI-QTOF-MS/MS-Based molecular networking guided isolation and dereplication led to the identification of antibacterial and antifungal agents in V. denticulata. Nine antimicrobial agents in V. denticulata were isolated and characterized; they are divided into four groups including (I) flavonoid glycosides, rhamnazin 3-rhamninoside (7), catharticin or rhamnocitrin 3-rhamninoside (8), xanthorhamnin B or rhamnetin 3-rhamninoside (9), kaempferol 3-rhamninoside (10) and flavovilloside or quercetin 3-rhamninoside (11), (II) benzisochromanquinone, ventilatones B (12) and A (15), (III) a naphthopyrone ventilatone C (16) and (IV) a triterpene lupeol (13).
    [Show full text]
  • WO 2017/117099 Al 6 July 2017 (06.07.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/117099 Al 6 July 2017 (06.07.2017) P O P C T (51) International Patent Classification: (US). GENESKY, Geoffery [FR/FR]; 14 Rue Royale, Λ 61Κ 8/04 (2006.01) A61K 8/97 (201 7.01) 75008 Paris (FR). A61K 8/06 (2006.01) A61K 31/70 (2006.01) (74) Agent: BALLS, R., James; Polsinelli PC, 1401 Eye A61K 8/34 (2006.01) A61K 31/351 (2006.01) Street, N.W., Suite 800, Washington, DC 20005 (US). A61K 8/60 (2006.01) A61K 31/355 (2006.01) A61K 5/67 (2006.01) A61K 31/7048 (2006.01) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, PCT/US20 16/068662 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 27 December 2016 (27. 12.2016) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, (25) Filing Language: English MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (26) Publication Language: English NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (30) Priority Data: TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, 62/272,326 29 December 201 5 (29.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,681,907 ISOATION of FILAWONOD COMPOUNDS Simon H
    Patented June 22, 1954 2,681,907 UNITED STATES PATENT OFFICE 2,681,907 ISOATION OF FILAWONOD COMPOUNDS Simon H. Wender, Norman, Okla., assignor to the United States of America as represented by the United States Atomic Energy Commission No Drawing. Application April 22, 1952, Serial No. 283,749 10 Claims. (C. 260-210) 1. 2 My invention relates to a method of purifying vide an improved method for isolating flavonoid flavonoids and more particularly to the recovery compounds. of quantities of substantially pure flavonoids Another object is to provide a method for iso from their naturally occurring source materials. lating relatively large quantities of a flavonoid The flavonoid compounds comprise a very in compound in Substantially pure form. portant class of plant pigments which are widely Still another object is to provide an improved distributed in the vegetable kingdom. Interest proceSS for Separating relatively pure flavonoids is shown in a number of these compounds due to in concentrated form from the original solid their vitamin-like action in increasing the resist source materials. ance of blood capillaries to rupture. The term O Further objects and advantages of my inven “vitamin P' is sometimes applied to flavonoids tion will be apparent from the following descrip having this property. Rutin, a member of this tion. class of plant pigments enjoys widespread use as In accordance with my invention, substantially a drug for blood vessel treatment. In addition, pure flavonoids may be separated in relatively it is anticipated that flavonoids will be of use in concentrated form from extraneous organic and the control of radiation injury, and considerable inoi'ganic impurities by preparing a water ex experimental effort is being expended in this tract of same, contacting said Water extract with direction.
    [Show full text]
  • RÖMPP – Updates 2014
    RÖMPP – Updates 2014 Hier finden Sie alle Stichwörter, die in den jeweiligen Updates aktualisiert oder neu aufgenommen wurden. Update Termine: Dezember 2014 – Version 4.0.12 Oktober 2014 – Version 4.0.11 September 2014 – Version 4.0.10 August 2014 – Version 4.0.9 Juli 2014 – Version 4.0.8 Juni 2014 - Version 4.0.7 Mai 2014 - Version 4.0.6 April 2014 - Version 4.0.5 Februar 2014 - Version 4.0.4 Januar 2014 - Version 4.0.3 Dezember 2014 Am 15. Dezember 2014 ging das RÖMPP Release 4.0.12 (Update 68) online. Stichwort-Titel Fachgebiet Abfallvermeidungsprogramm Umwelt- und Verfahrenstechnologie Acridone Naturstoffe Acrimarin- G Naturstoffe Acronin Naturstoffe Acronycin Naturstoffe Acrylsäure Umwelt- und Verfahrenstechnologie Aldose- Reduktase- Inhibitoren Chemie Alogliptin Chemie Alrestatin Chemie anodischer Wannenschutz Chemie Aripiprazol- lauroxil Chemie Aromadendrol Chemie Aspartyl- 12ADT Chemie 2014 © THIEME STUTTGART • NEW YORK Astilbin Chemie Aurantioobtusin Chemie Avicularin Chemie Batteriegesetz Umwelt- und Verfahrenstechnologie Batterieverordnung Umwelt- und Verfahrenstechnologie BattG Umwelt- und Verfahrenstechnologie Bayer- Verfahren Chemie Bazedoxifen Chemie Benurestat Chemie Bodenhilfsstoff Umwelt- und Verfahrenstechnologie Bundes- Immissionsschutzverordnungen Umwelt- und Verfahrenstechnologie Bushmeat Lebensmittelchemie Cabazitaxel Chemie Cerin Naturstoffe Chemikalien- Sanktionsverordnung Umwelt- und Verfahrenstechnologie Chemisch- Nickel- System Chemie ChemSanktionsV Umwelt- und Verfahrenstechnologie Chrysoobtusin Chemie Ciprofibrat
    [Show full text]
  • 9789290612490 Eng.Pdf (2.401Mo)
    MEDICINAL PLANTS IN PAPUA NEW GUINEA i MEDICINAL PLANTS IN PAPUA NEW GUINEA Information on 126 commonly used medicinal plants in Papua New Guinea ii MEDICINAL PLANTS IN PAPUA NEW GUINEA WHO Library Cataloguing in Publication Data Medicinal Plants in Papua New Guinea 1. Plants, Medicinal. 2. Papua New Guinea ISBN 978 92 9061 249 0 (NLM Classification:QV 770) © World Health Organization 2009 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). For WHO Western Pacific Regional Publications, request for permission to reproduce should be addressed to the Publications Office, World Health Organization, Regional Office for the Western Pacific, P.O. Box 2932, 1000, Manila, Philippines, Fax. No. (632) 521-1036, email: [email protected] The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]