Namenverzeichnis. Author Index
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q. -
Ranking of Substances for Monitoring in Foods, Drinks and Dietary Supplements - Based on Risk and Knowledge Gaps
VKM Report 2019: 13 Ranking of substances for monitoring in foods, drinks and dietary supplements - based on risk and knowledge gaps Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment 16.09.2019 ISBN: 978-82-8259-329-8 ISSN: 2535-4019 Norwegian Scientific Committee for Food and Environment (VKM) Po 222 Skøyen N – 0213 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] vkm.no vkm.no/english Cover photo: Brace Suggested citation: VKM, Inger-Lise Steffensen, Christiane Kruse Fæste, Trine Husøy, Helle Katrine Knutsen, Gro Haarklou Mathisen, Robin Ørnsrud, Angelika Agdestein, Johanna Bodin, Edel Elvevoll, Dag O. Hessen, Merete Hofshagen, Åshild Krogdahl, Asbjørn Magne Nilsen, Trond Rafoss, Taran Skjerdal, Gaute Velle, Yngvild Wasteson, Gro-Ingunn Hemre, Vigdis Vandvik, Jan Alexander (2019). Ranking of substances for monitoring in foods, drinks and dietary supplements - based on risk and knowledge gaps. Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment. VKM report 2019:13, ISBN: 978-82-8259-329-8, ISSN: 2535-4019. VKM Report 2019: 13 Ranking of substances for monitoring in foods, drinks and dietary supplements - based on risk and knowledge gaps Preparation of the opinion The Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) appointed a project group to answer the request from the Norwegian Food Safety Authority. The project group consisted of six VKM members and a project leader from the VKM secretariat. -
Alternaria Alternata Toxins Synergistically Activate the Aryl Hydrocarbon Receptor Pathway in Vitro
biomolecules Article Alternaria alternata Toxins Synergistically Activate the Aryl Hydrocarbon Receptor Pathway In Vitro Julia Hohenbichler 1 , Georg Aichinger 1 , Michael Rychlik 2 , Giorgia Del Favero 1 and Doris Marko 1,* 1 Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Italy; [email protected] (J.H.); [email protected] (G.A.); [email protected] (G.D.F.) 2 Chair of Analytical Chemistry, Technical University of Munich, 80333 Munich, Germany; [email protected] * Correspondence: [email protected] Received: 18 June 2020; Accepted: 30 June 2020; Published: 9 July 2020 Abstract: Alternaria molds simultaneously produce a large variety of mycotoxins, of which several were previously reported to induce enzymes of phase I metabolism through aryl hydrocarbon receptor activation. Thus, we investigated the potential of naturally occurring Alternaria toxin mixtures to induce Cytochrome P450 (CYP) 1A1/1A2/1B1 activity. Two variants of an extract from cultured Alternaria alternata, as well as the toxins alternariol (AOH), alternariol monomethyl ether (AME), altertoxin I (ATX-I), and altertoxin II (ATX-II), were tested singularly and in binary mixtures applying the 7-ethoxy-resorufin-O-deethylase (EROD) assay in MCF-7 breast cancer cells. Sub-cytotoxic concentrations of the two toxin mixtures, as well as ATX-I, ATX-II and AOH, exhibited dose-dependent enhancements of CYP 1 activity. ATX-I and ATX-II interacted synergistically in this respect, demonstrating the two perylene quinones as major contributors to the extract’s potential. Binary mixtures between AOH and the two altertoxins respectively exhibited concentration-dependent antagonistic as well as synergistic combinatory effects. -
(12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski Et Al
USOO9421 180B2 (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski et al. (45) Date of Patent: Aug. 23, 2016 (54) ANTIOXIDANT COMPOSITIONS FOR 6,203,817 B1 3/2001 Cormier et al. .............. 424/464 TREATMENT OF INFLAMMATION OR 6,323,232 B1 1 1/2001 Keet al. ............ ... 514,408 6,521,668 B2 2/2003 Anderson et al. ..... 514f679 OXIDATIVE DAMAGE 6,572,882 B1 6/2003 Vercauteren et al. ........ 424/451 6,805,873 B2 10/2004 Gaudout et al. ....... ... 424/401 (71) Applicant: Perio Sciences, LLC, Dallas, TX (US) 7,041,322 B2 5/2006 Gaudout et al. .............. 424/765 7,179,841 B2 2/2007 Zielinski et al. .. ... 514,474 (72) Inventors: Jan Zielinski, Vista, CA (US); Thomas 2003/0069302 A1 4/2003 Zielinski ........ ... 514,452 Russell Moon, Dallas, TX (US); 2004/0037860 A1 2/2004 Maillon ...... ... 424/401 Edward P. Allen, Dallas, TX (US) 2004/0091589 A1 5, 2004 Roy et al. ... 426,265 s s 2004/0224004 A1 1 1/2004 Zielinski ..... ... 424/442 2005/0032882 A1 2/2005 Chen ............................. 514,456 (73) Assignee: Perio Sciences, LLC, Dallas, TX (US) 2005, 0137205 A1 6, 2005 Van Breen ..... 514,252.12 2005. O154054 A1 7/2005 Zielinski et al. ............. 514,474 (*) Notice: Subject to any disclaimer, the term of this 2005/0271692 Al 12/2005 Gervasio-Nugent patent is extended or adjusted under 35 et al. ............................. 424/401 2006/0173065 A1 8/2006 BeZwada ...................... 514,419 U.S.C. 154(b) by 19 days. 2006/O193790 A1 8/2006 Doyle et al. -
1 Termite Feeding Deterrent from Japanese Larch Wood K. Chen A, W
Termite feeding deterrent from Japanese larch wood K. Chen a, W. Ohmurab, S. Doic, M. Aoyamad* a Kunming University of Science and Technology, Kunming, People’s Republic of China b Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan c Institute of Wood Technology, Akita Prefectural University, Noshiro 016-0876, Japan d Laboratory of Bioresource Science, Department of Applied Chemistry, Kitami Institute of Technology, Kitami 090-8507, Japan Abstract Extraction of flavonoids from Japanese larch (Larix leptolepis) wood with water was carried out to prepare a termite feeding deterrent. A two-stage procedure for the extraction was adopted. The first extraction step was performed at ambient temperature (22C) and the second at elevated temperatures ranging 50-100C. The first step mainly gave a mixture of polysaccharides together with small amount of flavonoids. At the *Corresponding author. I will move to new laboratory (kitami Institute of Technology) in January, 2004. I can not, at present, supply my facsimile number and e-mail address. They will be available at the time of proof-reading. 1 second step, the yield of extract and its chemical composition were greatly affected by the temperature. The yield of solubilised carbohydrates steadily increased with a rise in the temperature, while the overall yield of flavonoids reached its optimum at 70C. An additional increase in the temperature resulted in a decrease in the yield. Model experiments using dihydroflavonols confirmed the occurrence of oxidative dehydrogenation and/or intramolecular rearrangement during the hydrothermal treatment at higher temperatures. The crude water extracts showed strong feeding deterrent activities against the subterranean termite, Coptotermes formosanus, in a choice paper disc assay. -
Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility. -
Chondroprotective Agents
Europaisches Patentamt J European Patent Office © Publication number: 0 633 022 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 94109872.5 © Int. CI.6: A61K 31/365, A61 K 31/70 @ Date of filing: 27.06.94 © Priority: 09.07.93 JP 194182/93 Saitama 350-02 (JP) Inventor: Niimura, Koichi @ Date of publication of application: Rune Warabi 1-718, 11.01.95 Bulletin 95/02 1-17-30, Chuo Warabi-shi, 0 Designated Contracting States: Saitama 335 (JP) CH DE FR GB IT LI SE Inventor: Umekawa, Kiyonori 5-4-309, Mihama © Applicant: KUREHA CHEMICAL INDUSTRY CO., Urayasu-shi, LTD. Chiba 279 (JP) 9-11, Horidome-cho, 1-chome Nihonbashi Chuo-ku © Representative: Minderop, Ralph H. Dr. rer.nat. Tokyo 103 (JP) et al Cohausz & Florack @ Inventor: Watanabe, Koju Patentanwalte 2-5-7, Tsurumai Bergiusstrasse 2 b Sakado-shi, D-30655 Hannover (DE) © Chondroprotective agents. © A chondroprotective agent comprising a flavonoid compound of the general formula (I): (I) CM < CM CM wherein R1 to R9 are, independently, a hydrogen atom, hydroxyl group, or methoxyl group and X is a single bond or a double bond, or a stereoisomer thereof, or a naturally occurring glycoside thereof is disclosed. The 00 00 above compound strongly inhibits proteoglycan depletion from the chondrocyte matrix and exhibits a function to (Q protect cartilage, and thus, is extremely effective for the treatment of arthropathy. Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 633 022 A2 BACKGROUND OF THE INVENTION 1 . Field of the Invention 5 The present invention relates to an agent for protecting cartilage, i.e., a chondroprotective agent, more particularly, a chondroprotective agent containing a flavonoid compound or a stereoisomer thereof, or a naturally occurring glycoside thereof. -
Flesh Color Diversity of Sweet Potato: an Overview of the Composition, Functions, Biosynthesis, and Gene Regulation of the Major Pigments
Phyton-International Journal of Experimental Botany Tech Science Press DOI:10.32604/phyton.2020.011979 Review Flesh Color Diversity of Sweet Potato: An Overview of the Composition, Functions, Biosynthesis, and Gene Regulation of the Major Pigments Hanna Amoanimaa-Dede, Chuntao Su, Akwasi Yeboah, Chunhua Chen, Shaoxia Yang, Hongbo Zhu* and Miao Chen* Department of Biotechnology, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China ÃCorresponding Authors: Hongbo Zhu. Email: [email protected]; Chen Miao. Email: [email protected] Received: 08 June 2020; Accepted: 31 July 2020 Abstract: Sweet potato is a multifunctional root crop and a source of food with many essential nutrients and bioactive compounds. Variations in the flesh color of the diverse sweet potato varieties are attributed to the different phytochemicals and natural pigments they produce. Among them, carotenoids and anthocyanins are the main pigments known for their antioxidant properties which provide a host of health benefits, hence, regarded as a major component of the human diet. In this review, we provide an overview of the major pigments in sweet potato with much emphasis on their biosynthesis, functions, and regulatory control. More- over, current findings on the molecular mechanisms underlying the biosynthesis and accumulation of carotenoids and anthocyanins in sweet potato are discussed. Insights into the composition, biosynthesis, and regulatory control of these major pigments will further advance the biofortification of sweet potato and provide a reference for breeding carotenoid- and anthocyanin-rich varieties. Keywords: Anthocyanin; biosynthesis; carotenoid; flesh color; sweet potato 1 Introduction Sweet potato [Ipomoea batatas (L.) Lam.] is a dicot perennial Convolvulaceae plant cultivated as an annual crop. -
Enzyme-Mediated Regioselective Acylations of Flavonoid Glycosides
FABAD j. P/ıarrıı. Sci., 20, 55-59, 1995 RESEARCH AR.TICLES /BİLİMSEL ARAŞTIRMALAR Enzyme-Mediated Regioselective Acylations of Flavonoid Glycosides Ihsan ÇALIŞ*t, Meltem ÖZİPEK*, Mcvlüt ERTAN**, Petcr RÜEDI*** Abstract: Flavonoid glycosides, xaııtlıorlıanınins B, C, a11d ru Flavouoit Glikozitlerirıiu Eıızinıatik Açilleunıesi tin lıaı~ been acylated by the catalytic actioıı of the protense sııbtilisi11 in aıılrydrous pyridine. The acylatioıı occııred ıoitlı Özet: Flavonoit glikozitlerinden ksantornnınin B, C ve rutin, lıiglı yield roitlı rutin giving a single monoester 011 its glııcose anlıidr piridinde proteaz subtilisin ile açillenmiştir. rııoicty Reaksiyo11 slıoıoing excellent selectivity. But it occııred witlı loıv 011 yield the galactose moiety of tJıe two flavonoid triglycosides. sonucunda, glukoz üzerinden rutinin nıonoesteri yüksek vcrinı Ie elde edilirken, galaktoz üzerinden flavonoit triglikozitleriııiıı Key words : Acylated f!avonoid glycosides, enzyrnatic acy- esterleri çok düşük verirnle elde edilmiştir. lation. Received : 29.6.1994 Anahtar kelinıeler : Ester flavonoit glikozit/er, enzhnatik Accepted : 19.1.1995 açillenıe Introduction the regioselective acylation of polyhydroxylated cornpounds3.4. Flavonoid glycosides are widely distributed in na ture and often found as esters with different acids at We now report on the substilisin-catalyzed esterifica specific positions of their sugar moieties. Besides tion of two flavonoid triglycosides isolated from these esters, the cinnamoyl, p-coumaroyl and feru Rhamnus petiolaris -
Evaluation of Anticancer Activities of Phenolic Compounds In
EVALUATION OF ANTICANCER ACTIVITIES OF PHENOLIC COMPOUNDS IN BLUEBERRIES AND MUSCADINE GRAPES by WEIGUANG YI (Under the Direction of CASIMIR C. AKOH) ABSTRACT Research has shown that diets rich in phenolic compounds may be associated with lower risk of several chronic diseases including cancer. This study systematically evaluated the bioactivities of phenolic compounds in blueberries and muscadine grapes, and assessed their potential cell growth inhibition and apoptosis induction effects using two colon cancer cell lines (HT-29 and Caco-2), and one liver cancer cell line (HepG2). In addition, the absorption of blueberry anthocyanin extracts was evaluated using Caco-2 human intestinal cell monolayers. Polyphenols in three blueberry cultivars (Briteblue, Tifblue and Powderblue), and four cultivars of muscadine (Carlos, Ison, Noble, and Supreme) were extracted and freeze dried. The extracts were further separated into phenolic acids, tannins, flavonols, and anthocyanins using a HLB cartridge and LH20 column. In both blueberries and muscadine grapes, some individual phenolic acids and flavonoids were identified by HPLC with more than 90% purity in anthocyanin fractions. The dried extracts and fractions were added to the cell culture medium to test for cell growth inhibition and induction of apoptosis. Polyphenols from both blueberries and muscadine grapes had significant inhibitory effects on cancer cell growth. The phenolic acid fraction showed relatively lower bioactivities with 50% inhibition at 0.5-3 µg/mL. The intermediate bioactivities were observed in the flavonol and tannin fractions. The greatest inhibitory effect among all four fractions was from the anthocyanin fractions in the three cell lines. Cell growth was significantly inhibited more than 50% by the anthocyanin fractions at concentrations of 15-300 µg/mL. -
Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens
International Journal of Molecular Sciences Review Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens Anna Helena Mazurek 1 , Łukasz Szeleszczuk 1,* , Thomas Simonson 2 and Dariusz Maciej Pisklak 1 1 Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; [email protected] (A.H.M.); [email protected] (D.M.P.) 2 Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91-120 Palaiseau, France; [email protected] * Correspondence: [email protected]; Tel.: +48-501-255-121 Received: 21 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Abstract: In this review, applications of various molecular modelling methods in the study of estrogens and xenoestrogens are summarized. Selected biomolecules that are the most commonly chosen as molecular modelling objects in this field are presented. In most of the reviewed works, ligand docking using solely force field methods was performed, employing various molecular targets involved in metabolism and action of estrogens. Other molecular modelling methods such as molecular dynamics and combined quantum mechanics with molecular mechanics have also been successfully used to predict the properties of estrogens and xenoestrogens. Among published works, a great number also focused on the application of different types of quantitative structure–activity relationship (QSAR) analyses to examine estrogen’s structures and activities. Although the interactions between estrogens and xenoestrogens with various proteins are the most commonly studied, other aspects such as penetration of estrogens through lipid bilayers or their ability to adsorb on different materials are also explored using theoretical calculations. -
Assembly of a Novel Biosynthetic Pathway for Production of the Plant Flavonoid Fisetin in Escherichia Coli
Downloaded from orbit.dtu.dk on: Oct 06, 2021 Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli Stahlhut, Steen Gustav; Siedler, Solvej; Malla, Sailesh; Harrison, Scott James; Maury, Jerome; Neves, Ana Rute; Förster, Jochen Published in: Metabolic Engineering Link to article, DOI: 10.1016/j.ymben.2015.07.002 Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Stahlhut, S. G., Siedler, S., Malla, S., Harrison, S. J., Maury, J., Neves, A. R., & Förster, J. (2015). Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metabolic Engineering, 31, 84-93. https://doi.org/10.1016/j.ymben.2015.07.002 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Metabolic Engineering 31 (2015) 84–93 Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/ymben Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli Steen G.