Namenverzeichnis. Author Index

Total Page:16

File Type:pdf, Size:1020Kb

Namenverzeichnis. Author Index Namenverzeichnis. Author Index Kursiv gedruckte Seitenzahlen beziehen sich auf Literaturverzeichnisse Page numbers printed in italies refer to References Abdel-Kader, M. M. 148 Aota, K. 373 Abdurahman, N. 518 Applegate, H. E. 54 Abe, J. 53 Arakawa, H. 206 Abel, H. 462 Archer, R. A. 53 Abeles, R. H. 624,625,626,627 Ardenne,M.von 394,406,466 Abraham, E. P. 53 Arigoni, D. 458,469,624,628 Abrahamsson, S. 114 Arima, K. 117 Achilladelis, B. 109, 114 Aritomi, M. 187,189,206 Achini, R. 114 Armuth, V. 458 Acker, T. E. 274 Arndt, F. 274 Aczel, St. 216 Arndt, H. G. 210 Adams, M. H. 529,578 Arnold, N. H. 280 Adams, P. M. 114 Aron, E. 274 Adams, R. 219,280 Arroyo, E. R. 408, 448, 458, 466 Adamska, M. 184, 189,206 Arth, G. E. 60 Adinarayana 188 Asao, T. 148 Ager, I. 53 Asen, S. 187, 190 Aichner, F. X. 191,209 Ashbrook, C. W. 57 Alberty, R. A. 623 Asselin, A. 372 Alburn, H. E. 56 Atherton, D. R. 576 Alderweireldt, F. C. 458 Aurnhammer, G. 206,211, 214, 215 Aldrich, P. 518 Algar, J. 199,206 Babel, R. B. 56 Allan, J. 201, 206 Babior, B. M. 623,625 Allen, B. 579 Bader, F. E. 518 Allen, S. H. G. 627 Baeyer, A. 275 Allport, D. C. 274,575 Bagnara, J. D. 575 Alston, R. E. 177, 186,206,212,215 Bailar, J. C. 149 Amos 148 Baird, D. B. 570,575 Andersen, N. H. 283,287,293,304,328,346, Baird, R. 299,372 371, 372, 374 Baird, W. M. 455,458 Anderson, E. L. 518 Baker, P. M. 271,275 Ando, K. 117 Baldwin, J. E. 57 Ando, T. 212 Balenovic, K. 275 Andrews, S. I. 59 Balmain, A. 458 Ang, S. K. 518 Baltimore, B. G. 626 Aoki, Y. 211 Bamberg, P. 53 630 Namenverzeichni,. Author Index Bamburg,1. R. 83, 112,114,148 Bhatia, V. K. 188, 189,206 Ban, Y. 473,518 Bhutani, S. P. 188,206 Barb, M. S. 187 Bickel, H. 55.60.518 Barbesgard, P. 277 Bied-Charreton, C. 629 Barczai-Beke, M. 473,518 Bielka, H. 461 Barczai-Martos, M. 191,206 Bieri, 1. G. 629 Barden, H. 575 Binns, F. 546, 547, 567, 570, 575 BargelJini, G. 195 Biol, M. C. 206 Barger, B. 188,206 Biollatz, M. 148 Barger, G. 148 Birch, A. J. 218,222,223,224,225,226,238, Barker, H. A. 622,623,626,627,628 244,246,250,252,275.372 Barrett, H. C. 314,372 Birkhofer, L. 175,206 Barton, D. H. R. 28,53 Birkinshaw,1. H. 148 Barton, J. E. D. 518 Birnbaum, G. I. 464 Bartosinski, B. 624 Birnbaum, J. 622 Bartsch, H. 458,459,462,463 Black, D. R. 151 Barz, W. 210 Blackley, R. L. 625.626,629 Bassett, C. 148 Bloch, B. 528,530,559,575 Bassett, R. N. 61 Bloch, K. 222,281 Batchelor, F. R. 53 Blois, M. S. 559, 563, 564, 575, 576. 582 Bates, R. B. 374 Blois, M. S. Jr. 575. 576 Battacharyya, S. C. 284,309,313,314,374,376 Blumental, G. 580 Battersby, A. R. 469 Bocian, G. E. 56 Batyuk, V. S. 206 Bodenstein, C. K. 275 Baxter, I. 570, 575 Boehm, R. 380,411,455,459 Bayse, G. S. 532,575 Bogmlr, R. 166, 193, 194, 207, 215. 216 Bear, C. A. 148 Böhme, E. H. W. 54 Beattie, T. R. 54 Böhner, B. 114,115.117 Beck, J. 518 Bollenback, G. N. 191,207 Beck, K. 210 Boltze, K.-H. 275 Beck, W. S. 626 Bonner, T. G. 576 Becker, F. 206 Boole, L. E. 380, 460 Becker, S. W. Jr. 529,577 Borchert, P. 416,418,420 Beckham, T. M. 623,628 Borer, C. 372 Bedford, C. T. 275 Borg, D. C. 565, 577. 582 Beer, R. J. S. 526, 542, 575 Borsche, W. 275 .Beerthuis, R. K. 149 Bose, A. K. 2, 58 Belanger, A. 374 Bouchez, M. P. 169,212 Bell, M. R. 53. 54 Bouchilloux, S. 527, 554,576,579 Benjamin, D. G. 207 Bouillant, M. L. 207.212 Bennet, G. B. 518 Bourquelot, E. 524 Bentley, R. 255,275 Boutard, B. 207 Benzing, E. 279 Boutwell, R. K. 455, 458. 459. 465 Berenblum, I. 379, 380, 384,457,458,459 Bowden, J. P. 64,115 Berger, F. 459 Bowness, J. M. 576 Bergmann, M. 208 Brachmann, I. 462 Bernhard, K. 459 Brackman, W. 576 Bernhauer, K. 624 Bradbeer, C. 625 Bertrand, G. 524 Brady, St. F. 283,374 Bertrand, J. A. 373 Brain, E. G. 54 Bethell, J. R. 244, 275 Bram, G. 229,232,252,275 Beton, J. L. 154,214 Brandl, F. 463 Beyersdorff. P. 2!O Brandt, K. G. 60 Namenverzeichnis. Author Index 631 Braunschweiger, H. 165,209 Carlson, 1. A. 53 Brechbühler, S. 148 Carnaghan, R. B. A. 151 Bredereck, H. 192, 193,209 Carnduff, J. 259,276 Brenneisen, P. E. 274 Carney, R. L. 278 Bresch, H. 458,459,462,463 Carter, L. 190 Brian, P. W. 64,115 Carty, D. J. 625 Bridger, R. F. 151 Casnati, G. 236,276 Bright, H. J. 576 Cathou, R. E. 629 Broadhurst, T. 526,542,575 Cava, M. P. 519 Brown, D. G. 625 Cederbaum, S. 627 Brown, H. W. 576 Chabannes, B. 207 Brown, K. S. 275 Chadenson, M. 207 Brown, L. D. 54 Chan, J. K. 279 Brown, R. T. 518 Chandler, B. V. 175,207 Brownson, C. 625, 626 Chaney, M. O. 58 Brück, D. 465 Chang, C. F. 214 Bruenger, F. W. 576 Chang, S. B. 148 Bruice, T. C. 276 Chapman, R. F. 547,570,575,576 Brunwin, D. M. 54 Chari, V. M. 215 Buchanan, J. M. 629 Chaumont, 1. P. 209 Buchanan, M. 148 Chauvelier, 1. 276 Buchheim, R. 427,459 Chauvette, R. R. 54,57 Büchi, G. 128, 134, 135, 136, 144, 148, 314, Chavin, W. 554, 576 372,491,502,510,513,519 Chen, Y. M. 554,576 Bucourt, R. 410,459 Cheney, L. C. 55,56,59 Budweg, W. 21J, 215 Cheng, F. C. 243,268,276 Bullock, E. 148 Cheng, J. C. 55 Bullot, J. 279 Cherbuliez, E. 380, 460 Bu'Lock, J. D. 274. 276. 526, 527, 540, Chernobrovaya, N. V. 206 541, 543, 545, 553, 566~ 575, 576, Cheung, K. K. 148 578 Chibber, S. S. 206 Bundgaard, H. 54 Chiurdog1u, G. 372 Bundy, G. 372 Chivers, B. R. 465 Burgstahler, A. W. 518 Chopin, J. 177, 179, 184, 189, 191, 197,204, Burkhardt, H. J. 148 205,206,207,212,214 Burnett, J. 580 Chow, A. W. 54 Busch, H. 462 Chow, J. H. S. 214 Bushnell, A. J. 214 Chow, W. Z. 372, 374 Butcher, B. T. 54 Christensen, B. G. 54,56,57 Butenandt, A. 377 Chumbalov, T. K. 187 Butler, T. C. 54 Ciegler, A. 149 Butler, W. H. 148 Cignarella, G. 54 Bycroft, B. W. 271, 275, 276 C1aes, P. 61 By1sma, F. 518,519 Claesen, M. 55 C1ark, D. E. 56 Caine, D. 340,372 Clark, J. M. Jr. 627 Caldwell, S. M. 61 C1arke, E. 460 Cama, L. D. 54 Clarke, H. T. 54 Cameron, D. W. 275 C1ayton, J. P. 54 CampelI, A. D. 151 C1emans, S. D. 54 Canter, F. W. 207 Clements, F. E. 115 Capon, B. 459 Clemo, G. R. 543,576 Carle, A. 181. 209 Coates, R. M. 372 632 Namenverzeichnis. Author Index Cockle, S. A. 623 D'Arcy, A. D. 207 Codner, R. C. 280 Dave, K. D. 519 Coffen, D. L. 519 Davies, J. E. 149 Cole, R. J. 148 Davies, S. P. 623 Coleman, G. H. 193,212 Davis, W. W. 61 Collie, J. N. 218,219,220,221,222,230,244, Dawson, C. R. 533, 535, 536, 544,577 246,276 Dawson, J. B. 340,372 Colvin, E. W. 99,115 Dean, F. M. 244,277 Combs, C. S. Jr. 278 De Boer, Th. J. 416,465 Corner, F. 53 Decot, J. 372 Corner, F. W. 276, 280 De J~ng, K. 149 Commoner, B. 563,576 Dekker, E. E. 627 Conia, J. M. 304,372 Delaroff, V. 459 Connellan, J. 625 Delaveau, P. 213 Co oper, C. M. 53 Dellamonica, G. 197,207 Co oper, R. D. G. 53, 54, 55, 56, 58 Della Porta, G. 577, 578, 581 Corey, E. J. 372 De Marco, P. V. 53, 55, 58 Corey, H. S. 280 De Mayo, P. 373 Cornelius, H. 276 Demoie, E. 301,372 Cornforth,1. W. 115 Dennen, D. W. 55 Cornforth, R. H. 115 Deshapande, S. S. 277 Coronelli, C. 55 Deslongchamps, P. 331,372,374 Costa, G. 623 Detroy, R. W. 149 Costilow, R. N. 627 Deutsch, E. 622 Costin, C. R. 371 Dewdney, J. M. 60 Craig, L. C. 460, 465 De Weck, A. L. 60, 61 Crandall, T. G. 300,372 Dickens, F. 149 Crast, L. B. 56,59 Dickermann, H. W. 629 Crescenzi, S. 581 Dieckmann, H. 115 Cressman, W. A. 55 Diedrichs, H. H. 207 Cretney, W. J. 518 Dilworth, M. J. 629 Cromartie, R. 1. T. 526, 542, 577 Dingankar, Y. V. 277 Crombie, L. 243,255,269,276,277,404,435, DirscherI, R. 207,210,215 438,440,460,464 Dix, P. A. 282 Crowden, R. K. 187 Djerassi, C. 280,376,460 Crowfoot Hodgkin, D. 622 Dobson, R. L. 581 Crürös, Z. 216 Dobson, T. A. 276 Curd, F. H. 207 Dockner, T. 55 Curtis, P. J. 115 Doi, S. 116 Curtis, R. F. 148 Dolfini, J. E. 54,519 Curtis, R.
Recommended publications
  • Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
    molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q.
    [Show full text]
  • Ranking of Substances for Monitoring in Foods, Drinks and Dietary Supplements - Based on Risk and Knowledge Gaps
    VKM Report 2019: 13 Ranking of substances for monitoring in foods, drinks and dietary supplements - based on risk and knowledge gaps Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment 16.09.2019 ISBN: 978-82-8259-329-8 ISSN: 2535-4019 Norwegian Scientific Committee for Food and Environment (VKM) Po 222 Skøyen N – 0213 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] vkm.no vkm.no/english Cover photo: Brace Suggested citation: VKM, Inger-Lise Steffensen, Christiane Kruse Fæste, Trine Husøy, Helle Katrine Knutsen, Gro Haarklou Mathisen, Robin Ørnsrud, Angelika Agdestein, Johanna Bodin, Edel Elvevoll, Dag O. Hessen, Merete Hofshagen, Åshild Krogdahl, Asbjørn Magne Nilsen, Trond Rafoss, Taran Skjerdal, Gaute Velle, Yngvild Wasteson, Gro-Ingunn Hemre, Vigdis Vandvik, Jan Alexander (2019). Ranking of substances for monitoring in foods, drinks and dietary supplements - based on risk and knowledge gaps. Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment. VKM report 2019:13, ISBN: 978-82-8259-329-8, ISSN: 2535-4019. VKM Report 2019: 13 Ranking of substances for monitoring in foods, drinks and dietary supplements - based on risk and knowledge gaps Preparation of the opinion The Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) appointed a project group to answer the request from the Norwegian Food Safety Authority. The project group consisted of six VKM members and a project leader from the VKM secretariat.
    [Show full text]
  • Alternaria Alternata Toxins Synergistically Activate the Aryl Hydrocarbon Receptor Pathway in Vitro
    biomolecules Article Alternaria alternata Toxins Synergistically Activate the Aryl Hydrocarbon Receptor Pathway In Vitro Julia Hohenbichler 1 , Georg Aichinger 1 , Michael Rychlik 2 , Giorgia Del Favero 1 and Doris Marko 1,* 1 Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Italy; [email protected] (J.H.); [email protected] (G.A.); [email protected] (G.D.F.) 2 Chair of Analytical Chemistry, Technical University of Munich, 80333 Munich, Germany; [email protected] * Correspondence: [email protected] Received: 18 June 2020; Accepted: 30 June 2020; Published: 9 July 2020 Abstract: Alternaria molds simultaneously produce a large variety of mycotoxins, of which several were previously reported to induce enzymes of phase I metabolism through aryl hydrocarbon receptor activation. Thus, we investigated the potential of naturally occurring Alternaria toxin mixtures to induce Cytochrome P450 (CYP) 1A1/1A2/1B1 activity. Two variants of an extract from cultured Alternaria alternata, as well as the toxins alternariol (AOH), alternariol monomethyl ether (AME), altertoxin I (ATX-I), and altertoxin II (ATX-II), were tested singularly and in binary mixtures applying the 7-ethoxy-resorufin-O-deethylase (EROD) assay in MCF-7 breast cancer cells. Sub-cytotoxic concentrations of the two toxin mixtures, as well as ATX-I, ATX-II and AOH, exhibited dose-dependent enhancements of CYP 1 activity. ATX-I and ATX-II interacted synergistically in this respect, demonstrating the two perylene quinones as major contributors to the extract’s potential. Binary mixtures between AOH and the two altertoxins respectively exhibited concentration-dependent antagonistic as well as synergistic combinatory effects.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski Et Al
    USOO9421 180B2 (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski et al. (45) Date of Patent: Aug. 23, 2016 (54) ANTIOXIDANT COMPOSITIONS FOR 6,203,817 B1 3/2001 Cormier et al. .............. 424/464 TREATMENT OF INFLAMMATION OR 6,323,232 B1 1 1/2001 Keet al. ............ ... 514,408 6,521,668 B2 2/2003 Anderson et al. ..... 514f679 OXIDATIVE DAMAGE 6,572,882 B1 6/2003 Vercauteren et al. ........ 424/451 6,805,873 B2 10/2004 Gaudout et al. ....... ... 424/401 (71) Applicant: Perio Sciences, LLC, Dallas, TX (US) 7,041,322 B2 5/2006 Gaudout et al. .............. 424/765 7,179,841 B2 2/2007 Zielinski et al. .. ... 514,474 (72) Inventors: Jan Zielinski, Vista, CA (US); Thomas 2003/0069302 A1 4/2003 Zielinski ........ ... 514,452 Russell Moon, Dallas, TX (US); 2004/0037860 A1 2/2004 Maillon ...... ... 424/401 Edward P. Allen, Dallas, TX (US) 2004/0091589 A1 5, 2004 Roy et al. ... 426,265 s s 2004/0224004 A1 1 1/2004 Zielinski ..... ... 424/442 2005/0032882 A1 2/2005 Chen ............................. 514,456 (73) Assignee: Perio Sciences, LLC, Dallas, TX (US) 2005, 0137205 A1 6, 2005 Van Breen ..... 514,252.12 2005. O154054 A1 7/2005 Zielinski et al. ............. 514,474 (*) Notice: Subject to any disclaimer, the term of this 2005/0271692 Al 12/2005 Gervasio-Nugent patent is extended or adjusted under 35 et al. ............................. 424/401 2006/0173065 A1 8/2006 BeZwada ...................... 514,419 U.S.C. 154(b) by 19 days. 2006/O193790 A1 8/2006 Doyle et al.
    [Show full text]
  • 1 Termite Feeding Deterrent from Japanese Larch Wood K. Chen A, W
    Termite feeding deterrent from Japanese larch wood K. Chen a, W. Ohmurab, S. Doic, M. Aoyamad* a Kunming University of Science and Technology, Kunming, People’s Republic of China b Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan c Institute of Wood Technology, Akita Prefectural University, Noshiro 016-0876, Japan d Laboratory of Bioresource Science, Department of Applied Chemistry, Kitami Institute of Technology, Kitami 090-8507, Japan Abstract Extraction of flavonoids from Japanese larch (Larix leptolepis) wood with water was carried out to prepare a termite feeding deterrent. A two-stage procedure for the extraction was adopted. The first extraction step was performed at ambient temperature (22C) and the second at elevated temperatures ranging 50-100C. The first step mainly gave a mixture of polysaccharides together with small amount of flavonoids. At the *Corresponding author. I will move to new laboratory (kitami Institute of Technology) in January, 2004. I can not, at present, supply my facsimile number and e-mail address. They will be available at the time of proof-reading. 1 second step, the yield of extract and its chemical composition were greatly affected by the temperature. The yield of solubilised carbohydrates steadily increased with a rise in the temperature, while the overall yield of flavonoids reached its optimum at 70C. An additional increase in the temperature resulted in a decrease in the yield. Model experiments using dihydroflavonols confirmed the occurrence of oxidative dehydrogenation and/or intramolecular rearrangement during the hydrothermal treatment at higher temperatures. The crude water extracts showed strong feeding deterrent activities against the subterranean termite, Coptotermes formosanus, in a choice paper disc assay.
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Chondroprotective Agents
    Europaisches Patentamt J European Patent Office © Publication number: 0 633 022 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 94109872.5 © Int. CI.6: A61K 31/365, A61 K 31/70 @ Date of filing: 27.06.94 © Priority: 09.07.93 JP 194182/93 Saitama 350-02 (JP) Inventor: Niimura, Koichi @ Date of publication of application: Rune Warabi 1-718, 11.01.95 Bulletin 95/02 1-17-30, Chuo Warabi-shi, 0 Designated Contracting States: Saitama 335 (JP) CH DE FR GB IT LI SE Inventor: Umekawa, Kiyonori 5-4-309, Mihama © Applicant: KUREHA CHEMICAL INDUSTRY CO., Urayasu-shi, LTD. Chiba 279 (JP) 9-11, Horidome-cho, 1-chome Nihonbashi Chuo-ku © Representative: Minderop, Ralph H. Dr. rer.nat. Tokyo 103 (JP) et al Cohausz & Florack @ Inventor: Watanabe, Koju Patentanwalte 2-5-7, Tsurumai Bergiusstrasse 2 b Sakado-shi, D-30655 Hannover (DE) © Chondroprotective agents. © A chondroprotective agent comprising a flavonoid compound of the general formula (I): (I) CM < CM CM wherein R1 to R9 are, independently, a hydrogen atom, hydroxyl group, or methoxyl group and X is a single bond or a double bond, or a stereoisomer thereof, or a naturally occurring glycoside thereof is disclosed. The 00 00 above compound strongly inhibits proteoglycan depletion from the chondrocyte matrix and exhibits a function to (Q protect cartilage, and thus, is extremely effective for the treatment of arthropathy. Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 633 022 A2 BACKGROUND OF THE INVENTION 1 . Field of the Invention 5 The present invention relates to an agent for protecting cartilage, i.e., a chondroprotective agent, more particularly, a chondroprotective agent containing a flavonoid compound or a stereoisomer thereof, or a naturally occurring glycoside thereof.
    [Show full text]
  • Flesh Color Diversity of Sweet Potato: an Overview of the Composition, Functions, Biosynthesis, and Gene Regulation of the Major Pigments
    Phyton-International Journal of Experimental Botany Tech Science Press DOI:10.32604/phyton.2020.011979 Review Flesh Color Diversity of Sweet Potato: An Overview of the Composition, Functions, Biosynthesis, and Gene Regulation of the Major Pigments Hanna Amoanimaa-Dede, Chuntao Su, Akwasi Yeboah, Chunhua Chen, Shaoxia Yang, Hongbo Zhu* and Miao Chen* Department of Biotechnology, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China ÃCorresponding Authors: Hongbo Zhu. Email: [email protected]; Chen Miao. Email: [email protected] Received: 08 June 2020; Accepted: 31 July 2020 Abstract: Sweet potato is a multifunctional root crop and a source of food with many essential nutrients and bioactive compounds. Variations in the flesh color of the diverse sweet potato varieties are attributed to the different phytochemicals and natural pigments they produce. Among them, carotenoids and anthocyanins are the main pigments known for their antioxidant properties which provide a host of health benefits, hence, regarded as a major component of the human diet. In this review, we provide an overview of the major pigments in sweet potato with much emphasis on their biosynthesis, functions, and regulatory control. More- over, current findings on the molecular mechanisms underlying the biosynthesis and accumulation of carotenoids and anthocyanins in sweet potato are discussed. Insights into the composition, biosynthesis, and regulatory control of these major pigments will further advance the biofortification of sweet potato and provide a reference for breeding carotenoid- and anthocyanin-rich varieties. Keywords: Anthocyanin; biosynthesis; carotenoid; flesh color; sweet potato 1 Introduction Sweet potato [Ipomoea batatas (L.) Lam.] is a dicot perennial Convolvulaceae plant cultivated as an annual crop.
    [Show full text]
  • Enzyme-Mediated Regioselective Acylations of Flavonoid Glycosides
    FABAD j. P/ıarrıı. Sci., 20, 55-59, 1995 RESEARCH AR.TICLES /BİLİMSEL ARAŞTIRMALAR Enzyme-Mediated Regioselective Acylations of Flavonoid Glycosides Ihsan ÇALIŞ*t, Meltem ÖZİPEK*, Mcvlüt ERTAN**, Petcr RÜEDI*** Abstract: Flavonoid glycosides, xaııtlıorlıanınins B, C, a11d ru­ Flavouoit Glikozitlerirıiu Eıızinıatik Açilleunıesi tin lıaı~ been acylated by the catalytic actioıı of the protense sııbtilisi11 in aıılrydrous pyridine. The acylatioıı occııred ıoitlı Özet: Flavonoit glikozitlerinden ksantornnınin B, C ve rutin, lıiglı yield roitlı rutin giving a single monoester 011 its glııcose anlıidr piridinde proteaz subtilisin ile açillenmiştir. rııoicty Reaksiyo11 slıoıoing excellent selectivity. But it occııred witlı loıv 011 yield the galactose moiety of tJıe two flavonoid triglycosides. sonucunda, glukoz üzerinden rutinin nıonoesteri yüksek vcrinı­ Ie elde edilirken, galaktoz üzerinden flavonoit triglikozitleriııiıı Key words : Acylated f!avonoid glycosides, enzyrnatic acy- esterleri çok düşük verirnle elde edilmiştir. lation. Received : 29.6.1994 Anahtar kelinıeler : Ester flavonoit glikozit/er, enzhnatik Accepted : 19.1.1995 açillenıe Introduction the regioselective acylation of polyhydroxylated cornpounds3.4. Flavonoid glycosides are widely distributed in na­ ture and often found as esters with different acids at We now report on the substilisin-catalyzed esterifica­ specific positions of their sugar moieties. Besides tion of two flavonoid triglycosides isolated from these esters, the cinnamoyl, p-coumaroyl and feru­ Rhamnus petiolaris
    [Show full text]
  • Evaluation of Anticancer Activities of Phenolic Compounds In
    EVALUATION OF ANTICANCER ACTIVITIES OF PHENOLIC COMPOUNDS IN BLUEBERRIES AND MUSCADINE GRAPES by WEIGUANG YI (Under the Direction of CASIMIR C. AKOH) ABSTRACT Research has shown that diets rich in phenolic compounds may be associated with lower risk of several chronic diseases including cancer. This study systematically evaluated the bioactivities of phenolic compounds in blueberries and muscadine grapes, and assessed their potential cell growth inhibition and apoptosis induction effects using two colon cancer cell lines (HT-29 and Caco-2), and one liver cancer cell line (HepG2). In addition, the absorption of blueberry anthocyanin extracts was evaluated using Caco-2 human intestinal cell monolayers. Polyphenols in three blueberry cultivars (Briteblue, Tifblue and Powderblue), and four cultivars of muscadine (Carlos, Ison, Noble, and Supreme) were extracted and freeze dried. The extracts were further separated into phenolic acids, tannins, flavonols, and anthocyanins using a HLB cartridge and LH20 column. In both blueberries and muscadine grapes, some individual phenolic acids and flavonoids were identified by HPLC with more than 90% purity in anthocyanin fractions. The dried extracts and fractions were added to the cell culture medium to test for cell growth inhibition and induction of apoptosis. Polyphenols from both blueberries and muscadine grapes had significant inhibitory effects on cancer cell growth. The phenolic acid fraction showed relatively lower bioactivities with 50% inhibition at 0.5-3 µg/mL. The intermediate bioactivities were observed in the flavonol and tannin fractions. The greatest inhibitory effect among all four fractions was from the anthocyanin fractions in the three cell lines. Cell growth was significantly inhibited more than 50% by the anthocyanin fractions at concentrations of 15-300 µg/mL.
    [Show full text]
  • Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens
    International Journal of Molecular Sciences Review Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens Anna Helena Mazurek 1 , Łukasz Szeleszczuk 1,* , Thomas Simonson 2 and Dariusz Maciej Pisklak 1 1 Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; [email protected] (A.H.M.); [email protected] (D.M.P.) 2 Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91-120 Palaiseau, France; [email protected] * Correspondence: [email protected]; Tel.: +48-501-255-121 Received: 21 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Abstract: In this review, applications of various molecular modelling methods in the study of estrogens and xenoestrogens are summarized. Selected biomolecules that are the most commonly chosen as molecular modelling objects in this field are presented. In most of the reviewed works, ligand docking using solely force field methods was performed, employing various molecular targets involved in metabolism and action of estrogens. Other molecular modelling methods such as molecular dynamics and combined quantum mechanics with molecular mechanics have also been successfully used to predict the properties of estrogens and xenoestrogens. Among published works, a great number also focused on the application of different types of quantitative structure–activity relationship (QSAR) analyses to examine estrogen’s structures and activities. Although the interactions between estrogens and xenoestrogens with various proteins are the most commonly studied, other aspects such as penetration of estrogens through lipid bilayers or their ability to adsorb on different materials are also explored using theoretical calculations.
    [Show full text]
  • Assembly of a Novel Biosynthetic Pathway for Production of the Plant Flavonoid Fisetin in Escherichia Coli
    Downloaded from orbit.dtu.dk on: Oct 06, 2021 Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli Stahlhut, Steen Gustav; Siedler, Solvej; Malla, Sailesh; Harrison, Scott James; Maury, Jerome; Neves, Ana Rute; Förster, Jochen Published in: Metabolic Engineering Link to article, DOI: 10.1016/j.ymben.2015.07.002 Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Stahlhut, S. G., Siedler, S., Malla, S., Harrison, S. J., Maury, J., Neves, A. R., & Förster, J. (2015). Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metabolic Engineering, 31, 84-93. https://doi.org/10.1016/j.ymben.2015.07.002 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Metabolic Engineering 31 (2015) 84–93 Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/ymben Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli Steen G.
    [Show full text]