Bbm:978-3-642-64958-5/1.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Bbm:978-3-642-64958-5/1.Pdf Sachverzeichnis. (Deutsch - Englisch) Wegen allgemeiner Stichworte wie Extraktion, Abtrennung, Reinigung usw. der einzelnen Stoffgruppen vergleiche man auch das Inhaltsverzeichnis am Anfang dieses Bandes. cis-, t.rans-, no, D-, L- und ahnliche lsomere sind unter dem Anfangsbuchst&ben der Ver­ bindung ~nd nicht unter dem Prafix eingeordnet. AIle iso-Verbindungen finden sich unter lso-. A, 0, tJ sind wie Ae, Oe, Ue eingereiht. Bei gleicher Schreibweise in beiden Sprachen sind die Verbindungen jeweils einfach aufgefiihrt. Abietinsaure, abietic acid 36. Albsa}Nnin 115. Abobiosid, abobioside 251. Algarobilla 517. Abogenin 251. Algen, Carotinoide, algae, carotenoid8 276 bis Abomonosid, abmnono8ide 251. 277,281. Acerit, aceritol 517. Alizarin 552, 553, 554. Acertannin, acer·tannin 517. Alkaloide als Antibiotica, alkaloid8 as anti- Aceteugenol416. biotics 714. Acetophenon, acetopheTUYlle 408. Alkannan, alkannane 382. Acetovanillon, acetovanillone 410. Alkannin 361,383. Acofriose 210. Alkohole, tertiare, alcohols, tertiary 29. Acofriosid L, acolrioside L 251. Allicin 657ft'., 720. Acolongiflorosid (E, G, H, J), acolongilloro- Allobetulin 129. Bide (E, a, H, J) 251. Allocholansaure, aUockolanic acid 214. Acolongiflorosid-K-acetat, acolongilloroside- Alloglaucotoxigenin 252. K-acetate 252. Allomethylose 210, 258. Acopiose 251. AIlylguajakol, allyl guaiacol 413. Acovenose 211, 252. p-Allylphenol, p-allyl phenol 413. Acovenosid (A, B, C); acoven08ide 252. Allylprotocatechol, aUyl protocatechol 413. Acovenosigenin A 252. Allyltetramethoxybenzol, aUyl tetramethoxy ADAMKIEwIcz-Reaktion, ADAMKIEWICZ reac- bemene 421. tion 613. Alnulin 83. Adlumiasterin, adlumiasterol 142. Aloe-Emodin, aloe emodin 554. Adonitoxigenin 252. Aloe-Emodinanthron, aloe emodin anthrone Adonitoxin 252. 554. Adynerigenin 252. Aloin 553.· Adynerin 252. Amolonin 177, 185-186. Aescigenin, Il8cigenin 60, 117-118. Ampeloptin 456. Aescin, Il8cin 117-118. I1-Amyrin 60, 63, 90-94, 97. Aesculetin, Il8culetin 477. fJ-Amyrin 59, 63, 84, 86, 90-94, 96, 126. Aesculin, Il8culin 477. d-Amyrin 59, 90-94. Aesculussaponin, All8Culus aaponin 117. Anacardol 660--662, 720. Atherische Ole, (s. a. Dufrole, Ole) Anacardsii.ure, anacardic acid 6~62, 720. e88ential oils 1, 2, 392. Anasterin, anasteroll47. - -, Ausbeute, yield 16. Anemonin 662, 720. -- als Antibiotica, a8 antibiotics 715. Anethol 415. - -, Destillationsmethoden, distillation p-Anetholprenylather, p-anethol prenyl ether method84,20. 416. - -, Kohobation, redll8~llation 14. Angelicin 142. - -, Riicklaufdestillatio ,cohobation 7. Anhydroabogenin 251. 4tiobiliansaure, etiobilianic acid 180. Anhydro-l1-angelicalacton, anhydro-l1-angeli- Atiocholansaure, etiocholan acid 213. calactone 662. Agavogenin 177,195. Anhydrocalotropagenin 2M. Alantolacton, alantolactone 37. Anhydrogitoxigenin 252. Albsapogenin 115. Anhydrostrospesid, anhydrostrospll8ide 252. 727 Aniaketon, anilketoM 411. Aphanizophyll277. Anonoll42,170. -, Abaorptionsspektr., abeorption 8p#Jt!k. 295. Antherannthin 275. -, Siulenchromatogr., column cMomaIogr. -, AbsorptionsspektrnDl, abeorption BpeCtru.m 288,290. 290. -, Smp., m. p. 293. -, Siulenchromatographie, column cAromtJIo. Apigenin 472, 476, 482. graphy 288, 290. -, Abaorptionsspek.tr., abaorpIioft 6pIdr. 487, -, Smp., m. p. 293. 488. cil-Antheru:anthin 276. -, AbaorptiODll8pektren von Methyll.thern, -, Absorptionsspektrum, abeorption 1lpU­ abeorption IlpUtra of metA" etAer8 490. trum 290. Apiin487. -, Siulenchromatographie, column cAromtJIo. Apiol421. graph, 288, 290. Ara.ligenin 105. -, Smp., m. p. 293. Arb~terin, arbwtuol142, 170. Antheren,Carotinoide,a7ltMr8,carole1Joid8275. Arbutin 477. Anthesterin, afttAuttrol 83, 142. Arctiin 434. Anthocyane, a7lllaocyaniM 450, 454. Arnidendiol 127. -, Farbreaktionen, colour reacti0n8 464--466. Arnidiol 60, 106, 127. Anthocyanidine, Farbreaktionen, amAocyani- Arnisterin, ami8teroZ 127. diM, colour reacti0n8 464--466. Aromatische Siuren. aromatic aciU 345-348. Anthracenderivate, a1&thrace1&t tkrivatit1U554. -, quant. Bestimmg., quam. cUItrm. 347. Anthrachinon, a1&thraqvi1WM 552. Artemisia-Wurzeltest, Artemi8ia rooI 1M 606. - -Derivate ala Antibiotica, tkrivati1lt8 a8 Artostenon, Art08tetaoae 142, 155. afttibiotic8 668. .Asarinin 431, 441. Anthraglykoside, a1&thragl'UC08it:lu 54~. ci.t-Aaaron, ci.t-a8CJ1'Ofte 419. -, biologische Wertbestimmung, biological traM-Aaaron, traM-a8CJ1'Ofte 420. luI 561. Ascosterin, a8OO8Ie1'Ol147, 155. \ Anthranol 552. Asiaticosid, a8iaticoBide 123, 671, 720. Anthriscin 444. Asiatsiure, a8iatic acid 60, 123, 671. Anthron, amh1'Ofte 552. Astacin 295, 301. Antiarigenin 253. Astaxanthin 276, 277, 282, 291, 301. Antiarin 253. -, Absorptionsspektrum, abeorption ~m ktiauxine, amiauxiM 565. 295,298. Antibiotica, amibiotic8 626-725. -, Farbreaktionen, colour reaction8 300. -, atherische Ole, u8e1ltial oil8 715. -, Siulenchromatogr., column cMomaIogr.' -, AlkaIoide, al1mloicl8 714. 283,288. - aus einzelnen Arten in alphabetischer -, Smp., m. p. 293. Reihenfolge, from ri1l{Jle IlpUiu in alpha­ Atromentin 375. betical order 655-713. Aureusidin 455,476. -, Diffusionsmethoden, (Uf/V8ion methocl8 Aureusin 476. 689. Aurone, aur0fte8 450, 454. -, Fettsauren, fatty acid8 716-721. -, Absorptionsspektren, ~ion 8ptCtra -, fliichtige, tx>latile_ 651. 493. - im Gemiise, in '/;egetablu 634. -, Farbreaktionen, colour reactiou 466. - im Holz, in timber 633. Auroxanthin 275. -, Testorganismen, tut organ""" 652. -, Absorptionsspektr., abeorption 8ptCtr. 295, - und Bodenmikroorganismen, and Iotl 297. micro-organ""" 634. -, Siulenchromatogr., column chromalogr. - und Chlorophyll, and chlorophyll 715. 288,290. -, Verbreitung in Pflanzenfamilien, diltri- -, Smp., m. p. 293. bvtion in plam familiu 628ff. Auxin (a, b) 566, 578, 621. -, Verdiinnungsmethoden, dilution methocl8 Auxin, gebundenes, bound auxin 570. 646. Auxine (8. a. Wuchsstoffe), auxiM (8. a. -, Zylinder·~lattenmethode, cylinder-plate growth 8Vb8taftCu) 565. method 640. - und Fruc htwachstum, lruit Antirrhinin 477- and growIA Aphanicin 277, 302. ~ll. -, Absorptionsspektr., abeorption 8ptCtr. 295. Auxin-Inaktivierung, Verhiitung von, auxin­ -, Siulenchromatogr., column chromatogr. iRaCtivation, preveation of 567. 288. Auxin-Komplex, auxin complex 567. Aphanin 277,302. Auxin-Tests 8. Avena-Test, Erbsenteet, -, Absorptionsspektr., abeorption 8ptCtr. 294. Wurzelwachstumsteete, auxin tut8, 8. -, Siulenchromatogr., column chromatogr. Aveaa tut, pea tut, rooI growIA tut8. 288,290. Auxin-Vorstufe, Hydrolyse, auxin precvr_, -, Smp., m. p. 292. hydrolyri8567. 728 Sachverzeichnis. Avena-Kole6ptile, Dekapitierung, Avena 00- Botogenin 177, 195. Zeoplile, decapitation 581-583. Bovogenin (A, E) 253. Avena.-Koleoptiltest, Avena coleoptile test Bovosid (A, B, C, D), bovoside (A, B, C, D) 579--599,601--606. 253. --, Aga.r-Zubereitung, agar preparation Bra.ssica.sterin, bra8sicasterolI42, 147, 156. 585-590. Brein, brein 50, 90-94. -, CaCl.·EinfluB, CaCl.·e//ect 586. Brenzca.techin, catechol 523. --, gera.des Wac~tum, straight growth - als Antibiotikum, as an antibiotic 655, 601-606. 657; 720. -, gespaltene Koleoptilen, slit ooleoptiles 601. --, RrWert, R, value 477. --, IES-y.Aquiva.lent,IAA· M.·equivalent598. Brevifolin 548. -, Koleoptilenschneider, coleoptile cutter 602. Brevifolinca.rbonsaure, brevi/olin carboxylic -, Koleoptilzylinder.Test, section test acid 548. 601-606. BRIESKORN· BRINER· Reaktion, BRIESKORN· --, Kriimmungsmessung, curvature measure· BRINER reaction 65. ment 583, 584. Bryonol142, 170. -, Kriimmungstest, curvature test 579-599. Bryophyta, Carotinoide, carotenoids 276. --, Lanolin 583, 591-592, 596. Burma 527. --, pH.EinfluB, pH elled 585, 604. Butein 469, 477. --, Standa.rdlosungen, starulard solutiuns 590. --, Absorptionsspektrum, absorption 8pectrum --, Va.riationsbreite, variability 593-596,604 . 492,493. Butin 472,476. --, Wirkungskurven, 592, 597. activity curves Butyrospermol 59, 90, 95--98. Ayanin 456. Azafrin 308,309. Cacogenin 177, 196. Azs.frinmethylester, am/rin methyl ester 309. Ca.festerin, ca/esterol 143, 170. Azs.frinon, am/rioone 309. Calamol419. Azulen, azulene 16, 26. Calendulasaponin, Calendula saponin 104-107. Bacteriopurpurin 278. Ca.lIistep.hin 464, 477. Badanwurzel, badan root 527. Ca.losterin, calosteroll42, 170. Bakterien, Carotinoide, bacteria, carotenoids Ca.lotoxin 254. 277--278, 281. Ca.lotropin 254. Bala.ta 312. Cambia.ls!lIt, cambial sap 502. BALJET-Res.ktion, BALJET reaction 218. Campesterin, campesterol 142, 144, 148, 157. BAMBERGER·Res.ktion, BAMBERGER reaction Campher, camphor 26. 364. Canthaxanthin 278. Basseol 60, 95--98. --, Absorptionsspektr., absorption spectr. 294. Bassiasaure, ixusic acid 60, 95-98. -, Saulenchromatogr., column chromatogr. Bassia.Saponin, ixusia saponin 95-98. 288,290. Bassisterin, ixusi8terol 142, 145, 170. -, Smp., m. p. 292. Benzs.lcuma.ranon, benzalcoumaranone 477. Capsanthin 275, 291, 302. -, Absorptionsspektrum, absorption spectrum -, Absorptionsspektr., absorption spectr. 295, 492. 297. Benzoesii.ure, benzoic acid 345, 346. -, optische Drehung, optical rotation 299. Benzolderivate, benzene derivatives 332-350. --, Saulenchromatogr., oolumn chromatogr. Benzylca.rbinol 395. 289,290. Berberin, berberine 667, 673, 720. --, Smp., m. p. 293, 301. Bessisterin, bessisterol 145, 170. Capsorubin 275. Bethogenin 177, 195. -, Absorptionsspektr., ab8orption 8pectr. 295. Betulin, betulin, betulinol 60, 128-129, 130. --, Saulenchromatogr., column chromatogr. Betulinsii.ure, betulinic acid 60, 129--130. 289,290. Bixin, labil, labile 308, 309. -, Smp., m. p. 293,
Recommended publications
  • Thioglycolic Acid (TGA) by Arkema
    Thioglycolic Acid (tga) TGA – a leading corrosion inhibitor and iron controller for the oil and gas industry. Thioglycolic acid (TGA or mercaptoacetic acid, TGA IN CORROSION CAS 68-11-1) is a high-performance chemical INHIBITION FORMULATIONS containing mercaptan and carboxylic acid Water is present in most crude oil and gas functionalities. TGA is completely miscible in production and is the cause of problems in the water and is used in industries and applications recovery and transportation of oil and gas. as diverse as oil and gas, cosmetics, Water can come either from the formation cleaning, leather processing, metals, itself or from the water flooding used in the fine chemistry and polymerization. secondary recovery operations. Thioglycolic acid forms powerful complexes Corrosion is mainly due to the presence of with metals that give it specific characteristics water with CO and/or H2S. sought after for the assisted recovery of ore as well as for cleaning and corrosion inhibition. Corrosion inhibitors could be added to form a film which protects the metal from iron corrosion. Corrosion inhibitors are injected TGA FOR OIL AND GAS either continuously into the fluid stream or into PRODUCTION a producing well. They can be added in the Specialty chemicals are now taking on an water flooding operations of secondary oil important role in the enhancement of oil recovery, as well as pipelines, transmission recovery and production at different stages: lines and refinery units. Although the corrosion inhibition is a complex process, highly Well Drilling dependent of various parameters such as the Drilling fluids are used to lubricate the drill bit, nature of the inhibitor, fluid composition, pH, control the formation pressure, and remove temperature, etc., the mechanism generally formation cuttings.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski Et Al
    USOO9421 180B2 (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski et al. (45) Date of Patent: Aug. 23, 2016 (54) ANTIOXIDANT COMPOSITIONS FOR 6,203,817 B1 3/2001 Cormier et al. .............. 424/464 TREATMENT OF INFLAMMATION OR 6,323,232 B1 1 1/2001 Keet al. ............ ... 514,408 6,521,668 B2 2/2003 Anderson et al. ..... 514f679 OXIDATIVE DAMAGE 6,572,882 B1 6/2003 Vercauteren et al. ........ 424/451 6,805,873 B2 10/2004 Gaudout et al. ....... ... 424/401 (71) Applicant: Perio Sciences, LLC, Dallas, TX (US) 7,041,322 B2 5/2006 Gaudout et al. .............. 424/765 7,179,841 B2 2/2007 Zielinski et al. .. ... 514,474 (72) Inventors: Jan Zielinski, Vista, CA (US); Thomas 2003/0069302 A1 4/2003 Zielinski ........ ... 514,452 Russell Moon, Dallas, TX (US); 2004/0037860 A1 2/2004 Maillon ...... ... 424/401 Edward P. Allen, Dallas, TX (US) 2004/0091589 A1 5, 2004 Roy et al. ... 426,265 s s 2004/0224004 A1 1 1/2004 Zielinski ..... ... 424/442 2005/0032882 A1 2/2005 Chen ............................. 514,456 (73) Assignee: Perio Sciences, LLC, Dallas, TX (US) 2005, 0137205 A1 6, 2005 Van Breen ..... 514,252.12 2005. O154054 A1 7/2005 Zielinski et al. ............. 514,474 (*) Notice: Subject to any disclaimer, the term of this 2005/0271692 Al 12/2005 Gervasio-Nugent patent is extended or adjusted under 35 et al. ............................. 424/401 2006/0173065 A1 8/2006 BeZwada ...................... 514,419 U.S.C. 154(b) by 19 days. 2006/O193790 A1 8/2006 Doyle et al.
    [Show full text]
  • Rapid Modular Synthesis and Processing of Thiol−Ene Functionalized Styrene−Butadiene Block Copolymers Joshua S
    Article pubs.acs.org/Macromolecules Rapid Modular Synthesis and Processing of Thiol−Ene Functionalized Styrene−Butadiene Block Copolymers Joshua S. Silverstein,†,‡ Brendan J. Casey,‡ Mary E. Natoli,† Benita J. Dair,‡ and Peter Kofinas*,† † Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States ‡ Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Chemistry and Materials Science, Food and Drug Administration, Silver Spring, Maryland 20993, United States *S Supporting Information ABSTRACT: Diblock and triblock copolymers of poly- (styrene)-block-poly(1,2-butadiene) (PS/PB) and PS/PB/PS were modified by photochemical thiol−ene chemistry to pro- cess selected functional nanopatterned polymers, with reaction completion in 1 h. PB molecular weight (MW) and thiol−ene ratios were systematically varied based on a model monomer, boc-cysteamine, to determine the efficiency of the reaction. The results demonstrate the polydispersity index (PDI) of modified block copolymers significantly increased when low thiol−ene ratios were employed and sometimes induced gelation of the reacted polymers. Using a 10-fold excess of thiol, functionalizations between 60% and 90% were obtained for amines, carboxylic acids, amides, and a pharmaceutical with a pendant thiol. Differential scanning calorimetry showed a 30−60 °C increase in the glass transition temperature of the daughter polymers. Subsequently, these polymers were spin-coated from solvents found suitable to form self-assembled block copolymer films. The microstructure domain spacing for each polymer was consistent with those originating from the parent polymer. This technique described allows for the formation of nanopatterned block copolymer films with controlled chemistries from a single source material.
    [Show full text]
  • Comparative Study of Microwave Assisted Hydro-Distillation with Conventional Hydro-Distillation for Extraction of Essential Oil from Piper Betle L
    BIOSCIENCES BIOTECHNOLOGY RESEARCH ASIA, March 2017. Vol. 14(1), 401-407 Comparative Study of Microwave Assisted Hydro-Distillation with Conventional Hydro-Distillation for Extraction of Essential Oil from Piper betle L. Amaresh1, P Guha1, Shafat Khan1 and Sumaiyah R Zari2 1Department of Agriculture and Food Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. 2Sher-i-Kashmir University of Agricultural Sciences and Technology Kashmir, Kashmir, India. http://dx.doi.org/10.13005/bbra/2458 (Received: 16 February 2017; accepted: 04 March 2017) Microwave assisted hydro-distillation (MAHD) is a new technique utilizing a modified microwave oven with Clevenger apparatus in the extraction process. MAHD was carried out to study its effect on extraction process at different power levels and leaf to water ratio. The MAHD extraction method was compared with conventional hydro- distillation (CHD) for extraction of essential oil (EO) from betel leaf (Piper betle L.) in terms of extraction yield, extraction time, energy requirement and quality of essential oil obtained. The extraction yield was generally improved by increasing microwave power level and also by increasing leaf to water ratio. The main components found by gas chromatography mass spectrometry (GC-MS) analysis were same for the oil extracted from both MAHD and CHD. There is no significant difference in the results obtained from physical properties and radical scavenging activity evaluation. MAHD was found to be more energy efficient and required less extraction time (50 minutes as compared to 210 minutes in CHD) without adversely affecting the quality of essential oil. The results obtained in this study encouraged the application of MAHD method for extraction of the essential oil.
    [Show full text]
  • Piper Betle (L): Recent Review of Antibacterial and Antifungal Properties, Safety Profiles, and Commercial Applications
    molecules Review Piper betle (L): Recent Review of Antibacterial and Antifungal Properties, Safety Profiles, and Commercial Applications Ni Made Dwi Mara Widyani Nayaka 1,* , Maria Malida Vernandes Sasadara 1 , Dwi Arymbhi Sanjaya 1 , Putu Era Sandhi Kusuma Yuda 1 , Ni Luh Kade Arman Anita Dewi 1 , Erna Cahyaningsih 1 and Rika Hartati 2 1 Department of Natural Medicine, Mahasaraswati University of Denpasar, Denpasar 80233, Indonesia; [email protected] (M.M.V.S.); [email protected] or [email protected] (D.A.S.); [email protected] (P.E.S.K.Y.); [email protected] (N.L.K.A.A.D.); [email protected] or [email protected] (E.C.) 2 Pharmaceutical Biology Department, Bandung Institute of Technology, Bandung 40132, Indonesia; [email protected] * Correspondence: [email protected] or [email protected] Abstract: Piper betle (L) is a popular medicinal plant in Asia. Plant leaves have been used as a tradi- tional medicine to treat various health conditions. It is highly abundant and inexpensive, therefore promoting further research and industrialization development, including in the food and pharma- ceutical industries. Articles published from 2010 to 2020 were reviewed in detail to show recent updates on the antibacterial and antifungal properties of betel leaves. This current review showed that betel leaves extract, essential oil, preparations, and isolates could inhibit microbial growth and kill various Gram-negative and Gram-positive bacteria as well as fungal species, including those that Citation: Nayaka, N.M.D.M.W.; are multidrug-resistant and cause serious infectious diseases. P. betle leaves displayed high efficiency Sasadara, M.M.V.; Sanjaya, D.A.; on Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, Gram-positive bacteria Yuda, P.E.S.K.; Dewi, N.L.K.A.A.; such as Staphylococcus aureus, and Candida albicans.
    [Show full text]
  • Enzyme-Mediated Regioselective Acylations of Flavonoid Glycosides
    FABAD j. P/ıarrıı. Sci., 20, 55-59, 1995 RESEARCH AR.TICLES /BİLİMSEL ARAŞTIRMALAR Enzyme-Mediated Regioselective Acylations of Flavonoid Glycosides Ihsan ÇALIŞ*t, Meltem ÖZİPEK*, Mcvlüt ERTAN**, Petcr RÜEDI*** Abstract: Flavonoid glycosides, xaııtlıorlıanınins B, C, a11d ru­ Flavouoit Glikozitlerirıiu Eıızinıatik Açilleunıesi tin lıaı~ been acylated by the catalytic actioıı of the protense sııbtilisi11 in aıılrydrous pyridine. The acylatioıı occııred ıoitlı Özet: Flavonoit glikozitlerinden ksantornnınin B, C ve rutin, lıiglı yield roitlı rutin giving a single monoester 011 its glııcose anlıidr piridinde proteaz subtilisin ile açillenmiştir. rııoicty Reaksiyo11 slıoıoing excellent selectivity. But it occııred witlı loıv 011 yield the galactose moiety of tJıe two flavonoid triglycosides. sonucunda, glukoz üzerinden rutinin nıonoesteri yüksek vcrinı­ Ie elde edilirken, galaktoz üzerinden flavonoit triglikozitleriııiıı Key words : Acylated f!avonoid glycosides, enzyrnatic acy- esterleri çok düşük verirnle elde edilmiştir. lation. Received : 29.6.1994 Anahtar kelinıeler : Ester flavonoit glikozit/er, enzhnatik Accepted : 19.1.1995 açillenıe Introduction the regioselective acylation of polyhydroxylated cornpounds3.4. Flavonoid glycosides are widely distributed in na­ ture and often found as esters with different acids at We now report on the substilisin-catalyzed esterifica­ specific positions of their sugar moieties. Besides tion of two flavonoid triglycosides isolated from these esters, the cinnamoyl, p-coumaroyl and feru­ Rhamnus petiolaris
    [Show full text]
  • Thioglycolic Acid
    Thioglycolic acid sc-251234 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Thioglycolic acid STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY1 HEALTH4 HAZARD INSTABILITY2 SUPPLIER Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 PRODUCT USE Used as a sensitive reagent for iron, molybdenum, silver, tin. Used in the manufacture of thioglycolates. The ammonium and sodium salts are commonly used for cold waving and the calcium salt is a depilatory. Used in the manufacture of pharmaceuticals. SYNONYMS C2-H4-O2-S, HSCH2COOH, "2-thioglycolic acid", "2-thioglycolic acid", mercaptoacetate, "alpha-mercaptoacetic acid", "2- mercaptoacetic acid", "2-mercaptoacetic acid", "thioglycollic acid", "thiovanic acid", "glycolic acid, thio-", "glycolic acid, 2-thio-", "glycolic acid, 2-thio-" Section 2 - HAZARDS IDENTIFICATION CANADIAN WHMIS SYMBOLS EMERGENCY OVERVIEW RISK Contact with acids liberates very toxic gas. Causes burns. Risk of serious damage to eyes. Toxic by inhalation, in contact with skin and if swallowed. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. ■ Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 gram may be fatal or may produce serious damage to the health of the individual.
    [Show full text]
  • Kosmetischer Stift Auf Basis Einer Öl-In-Wasser-Dispersion/Emulsion
    *DE102008028822A120090219* (19) (10) Bundesrepublik Deutschland DE 10 2008 028 822 A1 2009.02.19 Deutsches Patent- und Markenamt (12) Offenlegungsschrift (21) Aktenzeichen: 10 2008 028 822.5 (51) Int Cl.8: A61K 8/92 (2006.01) (22) Anmeldetag: 19.06.2008 A61Q 19/00 (2006.01) (43) Offenlegungstag: 19.02.2009 A61Q 17/04 (2006.01) A61Q 15/00 (2006.01) (66) Innere Priorität: (72) Erfinder: 10 2007 028 819.2 20.06.2007 Banowski, Bernhard, 40597 Düsseldorf, DE; Claas, Marcus, 40723 Hilden, DE; Buse, Nadine, (71) Anmelder: 40721 Hilden, DE Henkel AG & Co. KGaA, 40589 Düsseldorf, DE Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen (54) Bezeichnung: Kosmetischer Stift auf Basis einer Öl-in-Wasser-Dispersion/Emulsion mit einem Hydrogelbildner (57) Zusammenfassung: Die Anmeldung betrifft kosmeti- sche Stifte auf Basis einer Öl-in-Wasser-Dispersion/Emul- sion zur Applikation auf die Haut. 1/79 DE 10 2008 028 822 A1 2009.02.19 Beschreibung [0001] Die Erfindung betrifft kosmetische Stifte auf Basis einer Öl-in-Wasser-Dispersion/Emulsion mit einem Hydrogelbildner zur Applikation kosmetischer Wirkstoffe auf die Haut. [0002] Handelsübliche kosmetische Zusammensetzungen werden meistens als Cremes oder Lotionen kon- fektioniert, die einem Tiegel, einer Tube, einer Flasche oder einem Pumpspender entnommen werden; dane- ben gibt es Roll-on-Präparate, Sprays und (Kompakt-)Puder im Markt. Bei den Verbrauchern erfreuen sich Stiftpräparate zur Anwendung sowohl dekorativer als auch pflegender Kosmetik hoher Beliebtheit. Sie sind handlich, transportstabil und bequem aufzutragen. Zunehmend besteht bei den Konsumenten das Bedürfnis nach Zusammensetzungen, die neben der Basisfunktion, also z. B. dem Abdecken von Hautunreinheiten oder dem Mattieren fettglänzender Haut, noch weitere Pflege- und Behandlungseffekte, z.
    [Show full text]
  • Chemistry of Natural Products
    IHMMR CHEMISTRY OF NATURAL PRODUCTS DISSERTATION SUBMITTED IN PARTIAL FULFILMENT FOR THE DEGREE OF MASTER OF PHILOSOPHY IN CHEMISTRY ALIGARH MUSLIM UNIVERSITY, ALIGARH 1987 KALIM JAVED INSTITUTE OF HISTORY OF MEDICINE AND MEDICAL RESEARCH NEW DELHI (INDIA) ^ 2 m 1918 x^^ Cottvo .<> -^y .-0^ DS1127 643 9686 Phones: 643 9690 643 3685 Grams : EOURES IHMMR INSTITUTE OF HISTORY OF MEDICINE & MEDICAL RESEARCH P.O. HAMDARD NAGAR. NEW DELHI-110062 Ref. No Dated....^.:..'.f......(1.^.7. Chis is to certifa that the dissertation entitled 'Chanistry o£ Natural Products' is the original i»ork of the candidate and is suitable for partial fulfil­ ment of the requirements for the degree of Master of Philosophy in Chemistry. PRCF. ni.^.y. KHAN (Supervisor) ACKNOWLEDGEMENT It g-ivei, me a Qfiaat ptta^aKd to ficcofid my deep 4en4C of^ g^'icLt-ttudc to P^o^. M.S. y. Khan andeA MhoAZ ahtd quidcuict and i,apQJw-ii>-ijon, I could be, abln to COAAIJ out alZ tivu n.zi>zaAch wo^fe. I condtdM. it a Qficat phlvtttge to e.xpn.eM my pfio{,oand 4ett6e o;$ Qfiatitudu and tnde.btQjdn(ii>6 tjo kthaj HofexLm Abdul Hamttd Salitb, Pfiei-Ldcnt o;5 ti^e. Institute 0|) HtitoAy of^ Me.dtctm and Me.dA,cal Re^eoAc/t, Hamda/id Maga/L, New Vtlht ^on lu,i> alZ encou-iagemdnt and gQ,nQAoai> pfio\)i^ion oi all avoAJiabtn {^acAlyitiz^ ioK. tko, smooth pn.ogfi(iAi> o{, thU, Mohk and awoAd o{^ a ^eZton)'i>lu.p. H-oi, constant tnteAz^t tn tlvu> wonk woi alixaip a .iou,ice oi iiUp-iAatJjon.
    [Show full text]
  • Betel-Like-Scented Piper Plants As Diverse Sources of Industrial and Medicinal Aromatic Chemicals
    Chiang Mai J. Sci. 2014; 41(5.1) 1171 Chiang Mai J. Sci. 2014; 41(5.1) : 1171-1181 http://epg.science.cmu.ac.th/ejournal/ Contributed Paper Betel-like-scented Piper Plants as Diverse Sources of Industrial and Medicinal Aromatic Chemicals Arisa Sanubol [a], Arunrat Chaveerach*[a], Runglawan Sudmoon [a], Tawatchai Tanee [b], Kowit Noikotr [c] and Chattong Chuachan [d] [a] Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand. [b] Faculty of Environment and Resource Studies, Mahasarakham University, Mahasarakham 44000, Thailand. [c] Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand. [d] Garden and Development Department, Queen Sirikit Botanic Garden, The Botanical Garden Organization, Chiang Mai 50180, Thailand. *Author for correspondence; e-mail: [email protected] Received: 21 May 2013 Accepted: 10 August 2013 ABSTRACT Piper betle (Piperaceae) or betel leaf, known locally as “Phlu” has been used by people in Thailand for chewing for a long time. Additionally, the leaves are used for traditional remedies and folk customs, such as for weddings and housewarming ceremonies. More recently, the aromatic oil industry has used the leaves for oil distillation. Moreover, the oils are used in several household products. Over the past 12 years of our research on Piper species, we found that among the more than 43 species recorded, there are some plants other than P. betle that possess a betel-like scent, viz. P. betloides, P. crocatum, P. maculaphyllum, P. rubroglandulosum, P. semiimmersum, P. submultinerve, P. tricolor, and P. yinkiangense. As it was expected that these plants would contain similar useful chemicals, their extracts were screened for the chemical contents by GC-MS.
    [Show full text]
  • Ionization Constants and Reactivity of Isomers of Eugenol G
    JOURNAL OF RESEARCH of the National Bureau ot Standards-A. Physics and Chemistry Vol. 68A, No.6, November- December 1964 Ionization Constants and Reactivity of Isomers of Eugenol G. M. Brauer/ H. Argentar, and G. Durany (July 15, 1964) To det.ermine the scop e of the rc~ction of zinc oxide with iso mers of eugenol, t he effect of change~ I.n the posltl<;ln of the substltuents in the benzene ring on the ionization co nstants and reactivity of these Isomers has been studied. The ionization .const~nts of eugenol i ~o mer s as well as those of newly synthesized all yl­ and pTopenylbenz.Ole aCids ",.ere determined by spectrophotometric and potentiometric techl1lques. The ll1fiuence of ll1ductive, resonance and stcric effects of t he substituents on the io,nization constants has been discussed and the substituent constant for the Hammett equatIOn pJ(o- pJ( = up has been calculated. For the 4- and 5- substituted allyl and propenyl derivatives, the Hammett equation is valid. Vicinal trisubstituted isomers do not harden readily with zinc oxide due to the sterie hindrance of the side chain. The unsymmetrically trisubstituted derivatives react rapidly III the presen?e of Zll1~ acetate. BeSides the stenc effects of ths substituent groups the rate o~ the chelatIOn reactIOn IS to a lesser degree dependent on the ionization constants as in­ dicated. by the shorter setting time of chavibetol-zinc oxide slurries cOITlpared to those eontallllng eugenol. 1. Introduction penylbenzoic acids were synthesized from p-dibromo­ benzene through a series of reactions described by Mixtures of zinc oxide and 4-allyl-2-methoxy­ Quelet [5, 6].
    [Show full text]
  • Download Download
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Malaysian Journal of Applied Sciences (Journal of UniSZA - Universiti Sultan Zainal... Malaysian Journal of Applied Sciences 2018, Vol 3(1): 1-8 © Universiti Sultan Zainal Abidin eISSN 0127-9246 (Online) Malaysian Journal of Applied Sciences REVIEW ARTICLE Chemical Composition and The Potential Biological Activities of Piper Betel – A Review Rabiatul Adawiyah Umar a, Nurul 'Adani Sanusi a, Mohd Nizam Zahary b, Mohd Adzim Khalili Rohin c, Salwani Ismail a aFaculty of Medicine, Medical Campus, Universiti Sultan Zainal Abidin (UniSZA), 20400 Kuala Terengganu, Terengganu, Malaysia. bSchool of Diagnostic and Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), 21300 Kuala Terengganu, Terengganu, Malaysia. cSchool of Nutrition and Dietetics, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), 21300 Kuala Terengganu, Terengganu, Malaysia. *Corresponding author: [email protected] Received: 16/04/2017, Accepted: 28/01/2018 Abstract Piper betel is a member of the family Piperaceae, commonly known as Sirih (Malaysia and Indonesia), Paan (India and Bangladesh), Betel (English) and Phlu (Thailand). It is widely found and grown in India, Sri Lanka, Malaysia, Indonesia, Philippines, other Southeast Asian and East African countries. Piper betel is widely used throughout the world even in modern days due to its known medicinal properties. Betel plant contains various biologically active compounds, which are responsible for its numerous pharmacological actions. The therapeutic profile reveals Piper betel to have a high potential for treating many diseases and conditions such as chronic renal disease, atherosclerosis, and diabetes mellitus. Further studies of betel plant are recommended to focus on the variety of metabolic activities in human, thus, improving its usage medically that will be beneficial to humanity.
    [Show full text]