Maintenance Valine, Isoleucine, and Tryptophan Requirements for Poultry

Total Page:16

File Type:pdf, Size:1020Kb

Maintenance Valine, Isoleucine, and Tryptophan Requirements for Poultry Maintenance valine, isoleucine, and tryptophan requirements for poultry M. B. de Lima,∗,1 N. K. Sakomura,∗ J. C. P Dorigam,∗ E. P. da Silva,∗ N. T. Ferreira,∗ and J. B. K. Fernandes† ∗Department of Animal Science, College of Agrarian and Veterinary Sciences, University Estadual Paulista, Jaboticabal, S˜ao Paulo, Brazil, 14884–900; and †Aquaculture Center of University Estadual Paulista 14884–900, Jaboticabal, S˜ao Paulo, Brazil ABSTRACT Poultry maintenance requirements for analyzed. For each amino acid, a linear regression be- Downloaded from https://academic.oup.com/ps/article-abstract/95/4/842/2563670 by guest on 13 February 2019 valine, isoleucine, and tryptophan were measured by tween nitrogen retention (NR) and amino acid intake nitrogen balance using different unit systems. The ni- was performed. The equations from linear regression trogen balance trial lasted 5 d with 48 h of fasting (with were: NR = −98.6 (±10.1) + 2.4 (±0.2) × Val, NR = roosters receiving only water + sucrose) and the last −46.9 (±7.1) + 2.3 (±0.1) × Ile, NR = −39.5 (±7.7) + 72 h for feeding and excreta collection. Forty grams of 7.3 (±0.4) × Trp;whereVal,Ile,andTrparetheintakes each diet first-limiting in valine, isoleucine, or trypto- of valine, isoleucine, and tryptophan in mg/kg body phan was fed by tube each day (3 d) to give a range of weight per d, respectively. The valine, isoleucine, and intakes from 0 to 101, 0 to 119, and 0 to 34 mg/kg BW tryptophan required to maintain the body at zero NR d of valine, isoleucine, and tryptophan, respectively. A were calculated to be 41, 20, and 5 mg/kg body weight nitrogen-free diet containing energy, vitamins, and min- per d, respectively. For the system unit mg per kg of erals, meeting the rooster requirements, was offered ad metabolic weight, the intake of valine, isoleucine, and libitum during these three d. To confirm that the amino tryptophan was 59, 32, and 9, respectively. Considering acids studied were limiting, a treatment was added the degree of maturity of the animal and body protein 0.73 with a control diet formulated by adding 0.24 g/kg of content (BPm × u), the amounts of valine, isoleucine, L-valine, 0.21 g/kg of L-isoleucine, and 0.10 g/kg of and tryptophan required for maintenance were calcu- L-tryptophan to the diets with lower amino acid level. lated to be 247, 134, and 37 mg per unit of maintenance 0.73 Excreta were collected during the last 3 d of the bal- protein (BPm × u) per d. Maintenance requirement ance period and the nitrogen content of the excreta was is more adequately expressed as body protein content. Key words: amino acids, breeder roosters, dilution technique, nitrogen retention, regression equation 2016 Poultry Science 95:842–850 http://dx.doi.org/10.3382/ps/pev380 INTRODUCTION (Bonato et al., 2011), lysine (Bonato et al., 2011), and threonine (Nonis and Gous, 2008). For the amino Determining the ideal amino acid intake in poul- acids valine, isoleucine, and tryptophan few studies try husbandry, considering the specific requirements have been conducted and the requirements obtained for maintenance and for egg production, has been sug- are outdated (Leveille and Fisher, 1959, 1960; Leveille gested for more than seven decades (Heuser, 1941). et al., 1960; Ishibashi, 1973; Burnham and Gous, 1992). Leveille and Fisher (1959) first tested and defined the The studies published to date determining the amino maintenance concept as providing a minimal amount acid requirements for maintenance in poultry have gen- of amino acid to replace inevitable losses and main- erated conflicting results (Leveille and Fisher, 1960; tain a constant nitrogen balance. Since then there has Ishibashi, 1973; Burnham and Gous, 1992, Baker et al., been little improvement in the methodologies to deter- 1996). This divergence may reflect variations in the ap- mine maintenance values although the concept of main- proaches these studies used, such as poultry of different tenance has been extensively studied (Fisher, 2013). physiological stages (growth and maturity) and differ- Several studies have established the maintenance re- ent methodologies (nitrogen balance and comparative quirements for the most limiting amino acids in prac- slaughter). tical diets for poultry, such as methionine + cysteine Most studies on the maintenance requirement express as mg of amino per kg of body weight or mg per kg of metabolic weight (Leveille and Fisher 1960; Baker et al., C 2016 Poultry Science Association Inc. 1996; Edwards et al., 1997; Burnham and Gous, 1992; Received February 3, 2015. Accepted October 29, 2015. Sakomura and Coon, 2003). Nonetheless, because of 1Corresponding author: [email protected] the differences in body composition of birds especially 842 AMINO ACID MAINTENANCE REQUIREMENTS OF POULTRY 843 regarding the fat content, the ideal would be to express Isoleucine Trial amino acid maintenance requirement on the basis of protein weight of the bird, which would allow compar- In the isoleucine trial, 54 roosters were used, dis- isons between studies (Burnham and Gous, 1992;Mar- tributed into eight treatments and six replicates each, tin et al., 1994; Nonis and Gous, 2008; Bonato et al., with an average weight of 5.69 ± 0.48 kg, and one addi- 2011). Thus, there is still a need to investigate how the tional treatment was added (control diet), in the same poultry respond to the intake of the amino acids valine, way as described the valine trial. A summit diet was for- isoleucine, and tryptophan in maintenance, to gener- mulated containing 18.18 g/kg of digestible isoleucine ate values that adequately represent the requirements and a nitrogen-free diet was also formulated (Table 1). of these amino acids in this state. The isoleucine levels ranged from 0 and 1.818% of the Therefore, the aim of this study was to determine diet. The experimental levels were obtained with the the specific requirements of digestible valine, isoleucine, dilution technique. For the control diet 0.21 g/kg of and tryptophan for maintenance by different unit sys- L-isoleucine was added to the diets with lower amino Downloaded from https://academic.oup.com/ps/article-abstract/95/4/842/2563670 by guest on 13 February 2019 tems using Cobb 500 breeder roosters as an animal acid level (I2) up to the second amino acid level in the model. Knowledge about the specific requirements of diet (I3). these amino acids at maintenance will contribute to fu- ture studies aiming to improve the productivity of the poultry industry. Tryptophan Trial In the tryptophan trial 48 birds were used, dis- MATERIALS AND METHODS tributed into seven treatments and six replicates each with an average weight of 6.11 ± 0.38 kg. In this The trials were conducted at the Poultry Science study, a control diet was also added. A summit diet Laboratory of the S˜ao Paulo State University, UNESP was formulated containing 5.70 g/kg of digestible Jaboticabal, S˜ao Paulo, Brazil. The Animal Ethics and tryptophan and a nitrogen-free diet was also for- Welfare Committee of UNESP (CEUA) approved all mulated (Table 1). The experimental levels of the experimental procedures used in the research under the amino acids were obtained from the dilution tech- Protocol number 9999/14. nique (Fisher and Morris, 1970) and had the fol- lowing proportions in summit and nitrogen-free di- ets: 0:100, 22:78, 33:67, 44:56, 56:44, 67:33, 78:22, Birds and Housing and 100:0. The tryptophan levels ranged from 0 to 0.570% of the diet. For the control diet 0.10 g/kg of Three nitrogen balance studies were performed and L-tryptophan was added to the diets with lower amino 144 Cobb 500 breeder roosters were housed individu- acid level (T2) up to the second amino acid level in the ally. The roosters were housed in metabolic cages with diet (T3). individual feeder and nipple-type drinkers. During the experimental period, light was provided 24 h per d. Experimental Diets Valine Trial Based on the recommendations of Rostagno et al. (2011) the requirement for the amino acid tested was In the valine trial 42 roosters were used, distributed multiplied by 0.4 and 0.8 for other amino acids, creat- into six treatments and six replicates, with an average ing a minimum relative deficiency of 40% between the weight of 4.15 ± 0.55 kg. To confirm that the amino acid test amino acid and other amino acids, as suggested by studied was indeed limiting and that responses were due Siqueira et al. (2011) and Bonato et al. (2013). Based on to the limitation of the test amino acid and not pro- the ideal profile of amino acid/lysine, summit diets with tein, we performed one more treatment consisting of high protein content were formulated (Table 1), meet- a control diet. A summit diet was formulated contain- ing the requirements for energy, minerals, and other ing 11.75 g/kg of digestible valine and a nitrogen-free nutrients proposed by Rostagno et al. (2011). In all di- diet was formulated based on corn starch and rice husk ets, the minimum contents of potassium, calcium, avail- considering the same nutritional levels as in the sum- able phosphorus, and sodium were 7.50, 6.50, 3.00, and mit diet, except for protein and amino acids (Table 1). 2.30 g/kg, respectively. The experimental levels of the amino acids were ob- tained from the dilution technique (Fisher and Morris, 1970) and had the following proportions in summit and Experimental Procedure nitrogen-free diets: 0:100, 20:80, 40:60, 60:40, 80:20, and and Data Collection 100:0.
Recommended publications
  • Effect of Peptide Histidine Isoleucine on Water and Electrolyte Transport in the Human Jejunum
    Gut: first published as 10.1136/gut.25.6.624 on 1 June 1984. Downloaded from Gut, 1984, 25, 624-628 Alimentary tract and pancreas Effect of peptide histidine isoleucine on water and electrolyte transport in the human jejunum K J MORIARTY, J E HEGARTY, K TATEMOTO, V MUTT, N D CHRISTOFIDES, S R BLOOM, AND J R WOOD From the Department of Gastroenterology, St Bartholomew's Hospital, London, The Liver Unit, King's College Hospital, London, Department ofMedicine, Hammersmith Hospital, London, and Department of Biochemistry, Karolinska Institute, Stockholm, Sweden SUMMARY Peptide histidine isoleucine, a 27 amino acid peptide with close amino acid sequence homology to vasoactive intestinal peptide and secretin, is distributed throughout the mammalian intestinal tract, where it has been localised to intramural neurones. An intestinal perfusion technique has been used to study the effect of intravenous peptide histidine isoleucine (44.5 pmol/kg/min) on water and electrolyte transport from a plasma like electrolyte solution in human jejunum in vivo. Peptide histidine isoleucine infusion produced peak plasma peptide histidine isoleucine concentrations in the range 2000-3000 pmolIl, flushing, tachycardia and a reduction in diastolic blood pressure. Peptide histidine isoleucine caused a significant inhibition of net absorption of water, sodium, potassium and bicarbonate and induced a net secretion of chloride, these changes being completely reversed during the post-peptide histidine isoleucine period. These findings suggest that endogenous peptide histidine isoleucine may participate in the neurohumoral regulation of water and electrolyte transport in the human jejunum. http://gut.bmj.com/ Peptide histidine isoleucine, isolated originally from INTESTINAL PERFUSION mammalian small intestine, is a 27-amino acid After an eight hour fast, each subject swallowed a peptide having close amino acid sequence homology double lumen intestinal perfusion tube, incorpo- to vasoactive intestinal peptide and secretin.
    [Show full text]
  • Isoleucine, an Essential Amino Acid, Prevents Liver Metastases of Colon Cancer by Antiangiogenesis Kazumoto Murata1 and Masami Moriyama2
    Research Article Isoleucine, an Essential Amino Acid, Prevents Liver Metastases of Colon Cancer by Antiangiogenesis Kazumoto Murata1 and Masami Moriyama2 1The First Department of Internal Medicine, Mie University School of Medicine, Tsu, Mie, Japan and 2Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan Abstract infection in the airways of cystic fibrosis (8), and susceptibility to salmonella infection in mouse intestinal tracts (9). In addition to In spite of recent advances in the treatment of colon cancer, h multiple liver metastases of colon cancer are still difficult to their direct antimicrobial activities, -defensins are strong treat. Some chemotherapeutic regimens have been reported to chemotactic factors for memory T cells and dendritic cells, be efficient, but there is a high risk of side effects associated suggesting that they also play an important role in acquired immunity (10–12). h-defensins are also inducible by inflammatory with these. Here, we show that isoleucine, an essential amino a h acid, prevents liver metastases in a mouse colon cancer cytokines, such as tumor necrosis factor- and interleukin-1 (13, 14). Recently, Fehlbaum et al. (15) reported that isoleucine metastatic model. Because isoleucine is a strong inducer of h B-defensin, we first hypothesized that it prevented liver and its analogues are highly specific inducers of -defensins. We thus originally hypothesized that isoleucine may contribute to metastases via the accumulation of dendritic cells or memory B tumor immunity through both innate and acquired immunity by T cells through up-regulation of -defensin. However, neither h B-defensin nor immunologic responses were induced by induction of -defensins.
    [Show full text]
  • Workshop 1 – Biochemistry (Chem 160)
    Workshop 1 – Biochemistry (Chem 160) 1. Draw the following peptide at pH = 7 and make sure to include the overall charge, label the N- and C-terminus, the peptide bond and the -carbon. AVDKY Give the overall charge of the peptide at pH = 3 and 12. 2. Draw a titration curve for Arg, make sure to label the different points. Determine the pI for Arg. 3. Nonpolar solute + water = solution a. What is the S of the universe, system and surroundings? The S of the universe would decrease this is why it is not spontaneous, the S of the system would increase but to a lesser extent to which the S of the surrounding would decrease S universe = S system + S surroundings 4. What is the hydrophobic effect and explain why it is thermodynamically favorable. The hydrophobic effect is when hydrophobic molecules tend to clump together burying them and placing hydrophilic molecules on the outside. The reason this is thermodynamically favorable is because it frees caged water molecules when burying clumping the hydrophobic molecules together. 5. Urea dissolves very readily in water, but the solution becomes very cold as the urea dissolves. How is this possible? Urea dissolves in water because when dissolving there is a net increase in entropy of the universe. The heat exchange, getting colder only reflects the enthalpy (H) component of the total energy change. The entropy change is high enough to offset the enthalpy component and to add up to an overall -G 6. A mutation that changes an alanine residue in the interior of a protein to valine is found to lead to a loss of activity.
    [Show full text]
  • The Optimum Isoleucine:Lysine Ratio in Starter Diets to Maximize Growth Performance of the Early-Weaned Pig
    Kansas Agricultural Experiment Station Research Reports Volume 0 Issue 10 Swine Day (1968-2014) Article 837 2000 The optimum isoleucine:lysine ratio in starter diets to maximize growth performance of the early-weaned pig B W. James Robert D. Goodband Michael D. Tokach See next page for additional authors Follow this and additional works at: https://newprairiepress.org/kaesrr Part of the Other Animal Sciences Commons Recommended Citation James, B W.; Goodband, Robert D.; Tokach, Michael D.; Nelssen, Jim L.; and DeRouchey, Joel M. (2000) "The optimum isoleucine:lysine ratio in starter diets to maximize growth performance of the early-weaned pig," Kansas Agricultural Experiment Station Research Reports: Vol. 0: Iss. 10. https://doi.org/10.4148/ 2378-5977.6677 This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2000 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer. The optimum isoleucine:lysine ratio in starter diets to maximize growth performance of the early-weaned pig Abstract A total of 360 weanling pigs (initially 12.3 lb BW and approximately 18 d of age) was used in a 14-d growth assay to determine the optimal isoleucine:lysine ratio to maximize growth performance.
    [Show full text]
  • Amino Acid Chemistry
    Handout 4 Amino Acid and Protein Chemistry ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES Amino Acid Chemistry I. Chemistry of amino acids A. General amino acid structure + HN3- 1. All amino acids are carboxylic acids, i.e., they have a –COOH group at the #1 carbon. 2. All amino acids contain an amino group at the #2 carbon (may amino acids have a second amino group). 3. All amino acids are zwitterions – they contain both positive and negative charges at physiological pH. II. Essential and nonessential amino acids A. Nonessential amino acids: can make the carbon skeleton 1. From glycolysis. 2. From the TCA cycle. B. Nonessential if it can be made from an essential amino acid. 1. Amino acid "sparing". 2. May still be essential under some conditions. C. Essential amino acids 1. Branched chain amino acids (isoleucine, leucine and valine) 2. Lysine 3. Methionine 4. Phenyalanine 5. Threonine 6. Tryptophan 1 Handout 4 Amino Acid and Protein Chemistry D. Essential during rapid growth or for optimal health 1. Arginine 2. Histidine E. Nonessential amino acids 1. Alanine (from pyruvate) 2. Aspartate, asparagine (from oxaloacetate) 3. Cysteine (from serine and methionine) 4. Glutamate, glutamine (from α-ketoglutarate) 5. Glycine (from serine) 6. Proline (from glutamate) 7. Serine (from 3-phosphoglycerate) 8. Tyrosine (from phenylalanine) E. Nonessential and not required for protein synthesis 1. Hydroxyproline (made postranslationally from proline) 2. Hydroxylysine (made postranslationally from lysine) III. Acidic, basic, polar, and hydrophobic amino acids A. Acidic amino acids: amino acids that can donate a hydrogen ion (proton) and thereby decrease pH in an aqueous solution 1.
    [Show full text]
  • Nucleotide Base Coding and Am1ino Acid Replacemients in Proteins* by Emil L
    VOL. 48, 1962 BIOCHEMISTRY: E. L. SAIITH 677 18 Britten, R. J., and R. B. Roberts, Science, 131, 32 (1960). '9 Crestfield, A. M., K. C. Smith, and F. WV. Allen, J. Biol. Chem., 216, 185 (1955). 20 Gamow, G., Nature, 173, 318 (1954). 21 Brenner, S., these PROCEEDINGS, 43, 687 (1957). 22 Nirenberg, M. WV., J. H. Matthaei, and 0. WV. Jones, unpublished data. 23 Crick, F. H. C., L. Barnett, S. Brenner, and R. J. Watts-Tobin, Nature, 192, 1227 (1961). 24 Levene, P. A., and R. S. Tipson, J. Biol. Ch-nn., 111, 313 (1935). 25 Gierer, A., and K. W. Mundry, Nature, 182, 1437 (1958). 2' Tsugita, A., and H. Fraenkel-Conrat, J. Mllot. Biol., in press. 27 Tsugita, A., and H. Fraenkel-Conrat, personal communication. 28 Wittmann, H. G., Naturwissenschaften, 48, 729 (1961). 29 Freese, E., in Structure and Function of Genetic Elements, Brookhaven Symposia in Biology, no. 12 (1959), p. 63. NUCLEOTIDE BASE CODING AND AM1INO ACID REPLACEMIENTS IN PROTEINS* BY EMIL L. SMITHt LABORATORY FOR STUDY OF HEREDITARY AND METABOLIC DISORDERS AND THE DEPARTMENTS OF BIOLOGICAL CHEMISTRY AND MEDICINE, UNIVERSITY OF UTAH COLLEGE OF MEDICINE Communicated by Severo Ochoa, February 14, 1962 The problem of which bases of messenger or template RNA' specify the coding of amino acids in proteins has been largely elucidated by the use of synthetic polyri- bonucleotides.2-7 For these triplet nucleotide compositions (Table 1), it is of in- terest to examine some of the presently known cases of amino acid substitutions in polypeptides or proteins of known structure.
    [Show full text]
  • The Role of Reduced Methionine in Mediating the Metabolic Responses to Protein Restriction Using Different Sources of Protein
    nutrients Article The Role of Reduced Methionine in Mediating the Metabolic Responses to Protein Restriction Using Different Sources of Protein Han Fang 1 , Kirsten P. Stone 1 , Sujoy Ghosh 2,3 , Laura A. Forney 4 and Thomas W. Gettys 1,* 1 Laboratory of Nutrient Sensing & Adipocyte Signaling, 6400 Perkins Road, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; [email protected] (H.F.); [email protected] (K.P.S.) 2 Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; [email protected] 3 Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore 4 Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA; [email protected] * Correspondence: [email protected] Abstract: Dietary protein restriction and dietary methionine restriction (MR) produce a comparable series of behavioral, physiological, biochemical, and transcriptional responses. Both dietary regimens produce a similar reduction in intake of sulfur amino acids (e.g., methionine and cystine), and both diets increase expression and release of hepatic FGF21. Given that FGF21 is an essential mediator of the metabolic phenotype produced by both diets, an important unresolved question is whether dietary protein restriction represents de facto methionine restriction. Using diets formulated from either casein or soy protein with matched reductions in sulfur amino acids, we compared the ability Citation: Fang, H.; Stone, K.P.; of the respective diets to recapitulate the metabolic phenotype produced by methionine restriction Ghosh, S.; Forney, L.A.; Gettys, T.W.
    [Show full text]
  • Recent Progress in the Microbial Production of Pyruvic Acid
    fermentation Review Recent Progress in the Microbial Production of Pyruvic Acid Neda Maleki 1 and Mark A. Eiteman 2,* 1 Department of Food Science, Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran; [email protected] 2 School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA * Correspondence: [email protected]; Tel.: +1-706-542-0833 Academic Editor: Gunnar Lidén Received: 10 January 2017; Accepted: 6 February 2017; Published: 13 February 2017 Abstract: Pyruvic acid (pyruvate) is a cellular metabolite found at the biochemical junction of glycolysis and the tricarboxylic acid cycle. Pyruvate is used in food, cosmetics, pharmaceutical and agricultural applications. Microbial production of pyruvate from either yeast or bacteria relies on restricting the natural catabolism of pyruvate, while also limiting the accumulation of the numerous potential by-products. In this review we describe research to improve pyruvate formation which has targeted both strain development and process development. Strain development requires an understanding of carbohydrate metabolism and the many competing enzymes which use pyruvate as a substrate, and it often combines classical mutation/isolation approaches with modern metabolic engineering strategies. Process development requires an understanding of operational modes and their differing effects on microbial growth and product formation. Keywords: auxotrophy; Candida glabrata; Escherichia coli; fed-batch; metabolic engineering; pyruvate; pyruvate dehydrogenase 1. Introduction Pyruvic acid (pyruvate at neutral pH) is a three carbon oxo-monocarboxylic acid, also known as 2-oxopropanoic acid, 2-ketopropionic acid or acetylformic acid. Pyruvate is biochemically located at the end of glycolysis and entry into the tricarboxylic acid (TCA) cycle (Figure1).
    [Show full text]
  • Radhakrishnan, Iii 4
    NATURE OF THE GENETIC BLOCKS IN THE ISOLEUCINE-VALINE MUTANTS OF SALMONELLA R. P. WAGNER AND ARLOA BERGQUIST The Genetics Laboratory of the Department of Zoology, The Uniuersity of Texas, Austin, Texas Received April 26, 1960 HE metabolic pathways leading to the biosynthesis of isoleucine and valine are now sufficiently well understood, as a result of the work of a number of investigators ( STRASSMAN,THOMAS and WEINHOUSE1955; STRASSMAN,THOMAS, LOCKEand WEINHOUSE1956; STRASSMAN,SHATTON, CORSEY and WEINHOUSE 1958; UMBARGER1958a,b; ADELBERG1955; WAGNER,RADHAKRISHNAN and SNELL1958; RADHAKRISHNAN,WAGNER and SNELL1960; and RADHAKRISHNAN and SNELL1960) to make it possible to investigate the nature of the genetic blocks in mutant organisms requiring isoleucine and valine. This communication describes the results of the investigation of a series of mutants of Salmonella typhimurium originally isolated in the laboratory of DR. M. DEMEREC,The Carnegie Institute of Washington, Cold Spring Harbor, New York. It is limited to the purely biochemical aspects of these mutants, but is ,preceded by a com- munication from GLANVILLEand DEMEREC1960, which describes the linkage studies made with these mutants, and correlates the genetic with the biochemical 3ata. The biosynthesis of isoleucine and valine is believed to occur as shown in Figure 1. In the work to be described here only the steps proceeding from the 3-keto acids, a-acetolactic acid and a-aceto-P-hydroxybutyricacid, have been :onsidered in detail. The following abbreviations are used in Figure I and in mbsequent parts of this communication: AHB = a-aceto-a-hydroxybutyric acid; CHa C Ha CHa CHa I 1 I I c*o CHa-C-OH CHfC-OH CHI-C-H 1 I TPNH 1 I c.0 ~ *Valine I COOH COOH I COOH I COOH (PYRUVIC ACID) (ALI I (HKVI I (DHV) I I I I I I I I + Pyruvic Acid Step1 StepII Stepm Step H 4 I I I I cn3 CH, I CH3 I I I I I CHZ C=O I CH~CH~C-OH Threonine-GO I ~CH3CH2-~-OH-C=0I+! I I I I COOH COOH COOH COOH COOH (U-kmtobutyric acid1 (AH01 (HKII (DUI) (KI) FIGURE1 .-The biosynthetic pathway leading to isoleucine and valine.
    [Show full text]
  • Determination of Branched-Chain Keto Acids in Serum and Muscles Using High Performance Liquid Chromatography-Quadrupole Time-Of-Flight Mass Spectrometry
    molecules Article Determination of Branched-Chain Keto Acids in Serum and Muscles Using High Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry You Zhang, Bingjie Yin, Runxian Li and Pingli He * State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; [email protected] (Y.Z.); [email protected] (B.Y.); [email protected] (R.L.) * Correspondence: [email protected]; Tel.: +86-10-6273-3688 Received: 4 December 2017; Accepted: 8 January 2018; Published: 11 January 2018 Abstract: Branched-chain keto acids (BCKAs) are derivatives from the first step in the metabolism of branched-chain amino acids (BCAAs) and can provide important information on animal health and disease. Here, a simple, reliable and effective method was developed for the determination of three BCKAs (α-ketoisocaproate, α-keto-β-methylvalerate and α-ketoisovalerate) in serum and muscle samples using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS). The samples were extracted using methanol and separated on a 1.8 µm Eclipse Plus C18 column within 10 min. The mobile phase was 10 mmol L−1 ammonium acetate aqueous solution and acetonitrile. The results showed that recoveries for the three BCKAs ranged from 78.4% to 114.3% with relative standard deviation (RSD) less than 9.7%. The limit of quantitation (LOQ) were 0.06~0.23 µmol L−1 and 0.09~0.27 nmol g−1 for serum and muscle samples, respectively. The proposed method can be applied to the determination of three BCKAs in animal serum and muscle samples.
    [Show full text]
  • The Isoleucine-Valine Biosynthesis Pathway in Staphylococcus Aureus David Lee Bronson Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 The isoleucine-valine biosynthesis pathway in Staphylococcus aureus David Lee Bronson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Microbiology Commons Recommended Citation Bronson, David Lee, "The isoleucine-valine biosynthesis pathway in Staphylococcus aureus " (1969). Retrospective Theses and Dissertations. 3631. https://lib.dr.iastate.edu/rtd/3631 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 70-7679 BRONSON, David Lee, 1936- THE ISOLEUCINE-VALINE BIOSYNTHESIS PATHWAY IN STAPHYLOCOCCUS AUREUS. Iowa State University, Ph.D., 1969 Bacteriology University Microfilms, Inc., Ann Arbor, Michigan THE ISOLEUCINE-VALINE BIOSYNTHESIS PATHWAY IN STAPHYLOCOCCUS AUREUS by David Lee Bronson A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Bacteriology Approved: Signature was redacted for privacy. In Ch of Major Work Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University
    [Show full text]
  • Omega-3 Fatty Acids Correlate with Gut Microbiome Diversity And
    Omega-3 fatty acids correlate with gut microbiome diversity and production of N- carbamylglutamate in middle aged and elderly women Cristina Mennia, Jonas Zierera, Tess Pallistera, Matthew A Jacksona, Tao Longb, Robert P Mohneyc, Claire J Stevesa, Tim D Spectora, Ana M Valdesa,d,e a Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK. b Sanford Burnham Prebys, USA cMetabolon Inc., Raleigh-Durham, NC 27709, USA. dSchool of Medicine , Nottingham City Hospital, Hucknall Road, Nottingham, UK. e NIHR Nottingham Biomedical Research Centre, Nottingham, UK. Corresponding author: Dr Ana M Valdes School of Medicine Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK Phone number: +44 (0)115 823 1954; Fax number:+44(0) 115 823 1757 email: [email protected] Supplementary Table 1. List of faecal metabolites significantly associated to DHA circulating levels (FDR<0.05)adjusting for age, BMI and family relatedness. Super Pathway Sub pathway Metabolite BETA SE P Q Lipid Polyunsaturated Fatty Acid (n3 and n6) eicosapentaenoate (EPA; 20:5n3) 0.15 0.04 4.35x10-5 0.01 Xenobiotics Carbamylated aminoacid N-carbamylglutamate 0.15 0.04 1.21x10-4 0.02 Peptide Dipeptide Derivative anserine 0.13 0.04 5.39x10-4 0.04 Supplementary Table 2. Associations between five measures of microbiome diversity and circulating levels of PUFA adjusting for age, BMI fibre intake and family relatedness SHANNON DIVERSITY CHAO1 OBSERVED Phylogenetic Diversity SIMPSON SPECIES Beta SE P Beta SE P Beta SE P Beta SE P Beta SE P DHA 0.13 0.04 0.002 0.12 0.04 0.003 0.14 0.04 0.001 0.12 0.04 0.01 0.09 0.04 0.02 FAW3 0.12 0.04 0.005 0.13 0.04 0.003 0.13 0.04 0.002 0.12 0.05 0.01 0.08 0.04 0.05 LA 0.10 0.05 0.02 0.10 0.05 0.03 0.10 0.05 0.03 0.10 0.05 0.03 0.09 0.04 0.04 (18:2) FAW6 0.09 0.04 0.02 0.10 0.04 0.01 0.10 0.04 0.01 0.10 0.04 0.02 0.08 0.04 0.05 DHA=22:6 docosahexaenoic acid;, FAW3= Omega-3 fatty acids; 18:2, LA= linoleic acid;; FAW6=omega-6 fatty acids Supplementary Table 3.
    [Show full text]