Biochemical and Genetic Analysis of Leucine-, Isoleucine- and Valine-Dependent Mutants of Staphylococcus Aureus Creed Delaney Smith Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Biochemical and Genetic Analysis of Leucine-, Isoleucine- and Valine-Dependent Mutants of Staphylococcus Aureus Creed Delaney Smith Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1966 Biochemical and genetic analysis of leucine-, isoleucine- and valine-dependent mutants of Staphylococcus aureus Creed DeLaney Smith Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Microbiology Commons Recommended Citation Smith, Creed DeLaney, "Biochemical and genetic analysis of leucine-, isoleucine- and valine-dependent mutants of Staphylococcus aureus " (1966). Retrospective Theses and Dissertations. 5336. https://lib.dr.iastate.edu/rtd/5336 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation, has been microfihned exactly as received 67-2094 SMITH, Creed DeLaney, 1928- BIOCHEMICAL AND GENETIC ANALYSIS OF LEUCINE-, ISOLEUCINE- AND VALINE-DEPENDENT MUTANTS OF STAPHYLOCOCCUS AUREUS. Iowa State University of Science and Technology, Ph.D„ 1966 Bacteriology University Microfilms, Inc., Ann Arbor, Michigan BIOCHEMICAL AND GENETIC ANALYSIS OP LEUCINE-, ISOLEUCINE- AND VALINE-DEPENDENT MUTANTS OP STAPHYLOCOCCUS AUREUS by Creed DeLaney Smith A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OP PHILOSOPHY Major Subject: Bacteriology ) Approved: Signature was redacted for privacy. In „or Work Signature was redacted for privacy. Heaa or Major Department Signature was redacted for privacy. uate College Iowa State University Of Science and Technology Ames, Iowa 1966 il TABLE OP CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW 3 MATERIALS AND METHODS 19 Media 19 Bacterial Strains 19 Bacteriophages 21 Isolation of Mutants 23 Biochemical Studies Zk Transduction 28 RESULTS 30 Growth Requirements of Strain 655 30 Selection of Mutants 33 Biochemical Studies 33 Genetic Studies kZ DISCUSSION 53 SUMMARY 63 ACKNOWLEDGEMENTS 65 LITERATURE CITED 66 1 INTSOEUCTION Methods of biochemical and genetic analyses were long believed to be Inapplicable to microorganisms in general, and to bacteria in particular. The small size of bacteria made them unsuitable for cytological studies. Because of their low degree of organization, no distinction between genotype and phenotype could be established. Consequently, it was long believed that the differences, both genetic and physiological, between higher organisms and microorganisms were of a funda­ mental nature, and that the laws valid for the former could not be applied to the latter. Because of their small size and rapid growth, bacteria quickly produce an enormous population in a very small volume of culture medium. These conditions are highly favorable for the appearance of variant forms and their study. Therefore, the very characters that originally seemed to exclude biochemical and genetic analyses of bacteria, in fact, make them the objects of choice for the study of variation, and it was from such studies that bacterial genetics was born. It has been shown that biochemical mutants deficient in their ability to synthesize essential metabolites have each lost a function under the control of a specific genetic determinant. The Interruption, at a definite point, of the chain of reactions leading to the biosynthesis of a specific essential metabolite is related to the absence of a specific 2 enzyme. Consequently, there is a olose relationship between genes and enzymes, eaoh gene determining the amino acid sequence of a particular enzyme. Problems of genetic control of enzyme synthesis are not, of course, confined to micro­ organisms. There is no reason to believe that most of the basic mechanisms Involved do not apply universally to living systems. However, because of their ease of manipulation, and, particularly, because of their suitability for fine structure genetic analysis, microorganisms, at present, almost monopolize research in this area of biochemical genetics. This study is concerned with the genetics and biosyn­ thesis of isoleucine, valine and leucine, in Staphylococcus aureus. aureus was chosen for this study because it is a pathogen of man and animals, unlike most previous experimental material used in the study of biochemical genetics. Further­ more, the necessary techniques for biochemical and genetic studies in this bacterium were available. Initially, the bio­ synthesis of isoleucine and valine, and the genetic control of the process was chosen for study. However, because of the close relationship of these pathways to the leucine biosyn- thetic pathway, it became necessary to broaden the scope of this study to include the effect of this amino acid as well. 3 LITERATURE REVIEW One of the basio questions that investigators in the field of genetics seek to answer is that of gene function, i.e.; how do genes control the properties of living cells and of complex, multicellular organsims? Prior to 1941, most investigators in the field of genetics concerned them­ selves with the genetic control of rather gross properties, such as wing shape in Drosophila, or the formation of conidia by Ascomycetes, Phenotypic traits were regarded simply as convenient genetic markers, because these investigators were primarily interested in studying genes as units of mutation and of recombination. However, a few investigators did exam­ ine the effect of gene mutation on discrete chemical activi­ ties of the cell and recognized that some genes have as their functions the governing of the activity of specific enzymes. For example, the earliest clear formulation of the concepts of biochemical genetics was made by the British physician. Sir Archibald Garrod, In 19O8, as a result of his studies on cer­ tain hereditary errors of human metabolism (Hayes, 1964). He pointed out that in man the enzymes concerned with the degra­ dation of the aromatic amino acids tyrosine and phenylalanine are under genetic control and that a gene mutation is re­ sponsible for the failure of one of these enzymes in the con­ genital diseases alkaptonuria and phenylketonuria (the cause of mental retardation in children). In subsequent years the 4 relationship between genetics and biochemistry became In­ creasingly apparent. Another early example of the effect of gene mutation on discrete chemical activities of the cell resulted from the studies of Beadle and Taturn (1941). In their studies with Drosophila, they succeeded in relating eye-color changes to mutationally produced blocks in the biosynthesis of eye pig­ ments, Though their experimental system was limited, from the results of their studies they hypothesized that genes control phenotypic properties by governing the formation of the enzymes of the metabolic pathways of eye pigments. They proposed that each of the constituents of the cell is synthesized by a series of biosynthetlc reactions and that each enzyme in the series is under the control of a single gene. If this were true, they reasoned, it should be possible to induce mutations, any one of which result in the failure of production of certain enzymes, thereby blocking that particular biosynthetlc pathway. In the case of microorganisms, if the end product of the blocked pathway could be supplied in the growth medium, then the mutant would be able to grow but would have a growth-factor requirement not shared by the wild-type. To prove this hypo­ thesis, Beadle and Tatum (1941) performed a series of experi­ ments on the biosynthetlc pathway of the amino acid arglnine in Neurospora erassa. They chose Neurospora as their new experi­ mental organism for two reasons: first. Its life cycle and genetics had been sufficiently studied so that any mutations 5 produced in it could be readily mapped on the chromosomes, and second; Neurospora was known to grow on a simple medium con­ taining a few inorganic salts together with a sugar as the carbon source. Following treatment of wild-type Neurospora with various mutagens, several thousand isolates were tested for their ability to grow on a nutritionally complete medium but not on a synthetic minimal medium adjusted, for growth of wild-type Neurospora, Large"numbers of mutants were isolated which were found to require one or another of almost every naturally occurring amino acid, vitamin, purine, and pyrimidine, as well as several new compounds previously not suspected to be essential for growth. Genetic analysis revealed in every case that a single gene had mutated, and in every case the nutritional deficiency could be ascribed to a specific block in a biosynthetic pathway. After determining the nature of the blocked reaction in a mutant, it became possible to compare mutant and wild-type for the presence of a particular enzyme. In every mutant a single enzyme present in the wild-type was found to be either lost or altered as a result of the single gene mutation. The work of Beadle and Tatum was extended to other microorganisms, particularly bacteria, and in a broad sense the "one gene-one enzyme" concept was substantiated. This relationship is not restricted to enzymes of biosyn­ thetic pathways. In the early studies of Garrod In I908 (Hayes, 1964) and the early studies of Beadle and Tatum (19^1), it is pointed out that it should also be possible to screen 6 for mutants blocked in degradatlve pathways. Most of the nutritional mutants
Recommended publications
  • Effect of Peptide Histidine Isoleucine on Water and Electrolyte Transport in the Human Jejunum
    Gut: first published as 10.1136/gut.25.6.624 on 1 June 1984. Downloaded from Gut, 1984, 25, 624-628 Alimentary tract and pancreas Effect of peptide histidine isoleucine on water and electrolyte transport in the human jejunum K J MORIARTY, J E HEGARTY, K TATEMOTO, V MUTT, N D CHRISTOFIDES, S R BLOOM, AND J R WOOD From the Department of Gastroenterology, St Bartholomew's Hospital, London, The Liver Unit, King's College Hospital, London, Department ofMedicine, Hammersmith Hospital, London, and Department of Biochemistry, Karolinska Institute, Stockholm, Sweden SUMMARY Peptide histidine isoleucine, a 27 amino acid peptide with close amino acid sequence homology to vasoactive intestinal peptide and secretin, is distributed throughout the mammalian intestinal tract, where it has been localised to intramural neurones. An intestinal perfusion technique has been used to study the effect of intravenous peptide histidine isoleucine (44.5 pmol/kg/min) on water and electrolyte transport from a plasma like electrolyte solution in human jejunum in vivo. Peptide histidine isoleucine infusion produced peak plasma peptide histidine isoleucine concentrations in the range 2000-3000 pmolIl, flushing, tachycardia and a reduction in diastolic blood pressure. Peptide histidine isoleucine caused a significant inhibition of net absorption of water, sodium, potassium and bicarbonate and induced a net secretion of chloride, these changes being completely reversed during the post-peptide histidine isoleucine period. These findings suggest that endogenous peptide histidine isoleucine may participate in the neurohumoral regulation of water and electrolyte transport in the human jejunum. http://gut.bmj.com/ Peptide histidine isoleucine, isolated originally from INTESTINAL PERFUSION mammalian small intestine, is a 27-amino acid After an eight hour fast, each subject swallowed a peptide having close amino acid sequence homology double lumen intestinal perfusion tube, incorpo- to vasoactive intestinal peptide and secretin.
    [Show full text]
  • Isoleucine, an Essential Amino Acid, Prevents Liver Metastases of Colon Cancer by Antiangiogenesis Kazumoto Murata1 and Masami Moriyama2
    Research Article Isoleucine, an Essential Amino Acid, Prevents Liver Metastases of Colon Cancer by Antiangiogenesis Kazumoto Murata1 and Masami Moriyama2 1The First Department of Internal Medicine, Mie University School of Medicine, Tsu, Mie, Japan and 2Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan Abstract infection in the airways of cystic fibrosis (8), and susceptibility to salmonella infection in mouse intestinal tracts (9). In addition to In spite of recent advances in the treatment of colon cancer, h multiple liver metastases of colon cancer are still difficult to their direct antimicrobial activities, -defensins are strong treat. Some chemotherapeutic regimens have been reported to chemotactic factors for memory T cells and dendritic cells, be efficient, but there is a high risk of side effects associated suggesting that they also play an important role in acquired immunity (10–12). h-defensins are also inducible by inflammatory with these. Here, we show that isoleucine, an essential amino a h acid, prevents liver metastases in a mouse colon cancer cytokines, such as tumor necrosis factor- and interleukin-1 (13, 14). Recently, Fehlbaum et al. (15) reported that isoleucine metastatic model. Because isoleucine is a strong inducer of h B-defensin, we first hypothesized that it prevented liver and its analogues are highly specific inducers of -defensins. We thus originally hypothesized that isoleucine may contribute to metastases via the accumulation of dendritic cells or memory B tumor immunity through both innate and acquired immunity by T cells through up-regulation of -defensin. However, neither h B-defensin nor immunologic responses were induced by induction of -defensins.
    [Show full text]
  • Workshop 1 – Biochemistry (Chem 160)
    Workshop 1 – Biochemistry (Chem 160) 1. Draw the following peptide at pH = 7 and make sure to include the overall charge, label the N- and C-terminus, the peptide bond and the -carbon. AVDKY Give the overall charge of the peptide at pH = 3 and 12. 2. Draw a titration curve for Arg, make sure to label the different points. Determine the pI for Arg. 3. Nonpolar solute + water = solution a. What is the S of the universe, system and surroundings? The S of the universe would decrease this is why it is not spontaneous, the S of the system would increase but to a lesser extent to which the S of the surrounding would decrease S universe = S system + S surroundings 4. What is the hydrophobic effect and explain why it is thermodynamically favorable. The hydrophobic effect is when hydrophobic molecules tend to clump together burying them and placing hydrophilic molecules on the outside. The reason this is thermodynamically favorable is because it frees caged water molecules when burying clumping the hydrophobic molecules together. 5. Urea dissolves very readily in water, but the solution becomes very cold as the urea dissolves. How is this possible? Urea dissolves in water because when dissolving there is a net increase in entropy of the universe. The heat exchange, getting colder only reflects the enthalpy (H) component of the total energy change. The entropy change is high enough to offset the enthalpy component and to add up to an overall -G 6. A mutation that changes an alanine residue in the interior of a protein to valine is found to lead to a loss of activity.
    [Show full text]
  • The Optimum Isoleucine:Lysine Ratio in Starter Diets to Maximize Growth Performance of the Early-Weaned Pig
    Kansas Agricultural Experiment Station Research Reports Volume 0 Issue 10 Swine Day (1968-2014) Article 837 2000 The optimum isoleucine:lysine ratio in starter diets to maximize growth performance of the early-weaned pig B W. James Robert D. Goodband Michael D. Tokach See next page for additional authors Follow this and additional works at: https://newprairiepress.org/kaesrr Part of the Other Animal Sciences Commons Recommended Citation James, B W.; Goodband, Robert D.; Tokach, Michael D.; Nelssen, Jim L.; and DeRouchey, Joel M. (2000) "The optimum isoleucine:lysine ratio in starter diets to maximize growth performance of the early-weaned pig," Kansas Agricultural Experiment Station Research Reports: Vol. 0: Iss. 10. https://doi.org/10.4148/ 2378-5977.6677 This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2000 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer. The optimum isoleucine:lysine ratio in starter diets to maximize growth performance of the early-weaned pig Abstract A total of 360 weanling pigs (initially 12.3 lb BW and approximately 18 d of age) was used in a 14-d growth assay to determine the optimal isoleucine:lysine ratio to maximize growth performance.
    [Show full text]
  • Chemical Methods for the Characterization of Proteolysis in Cheese During Ripening Plh Mcsweeney, Pf Fox
    Chemical methods for the characterization of proteolysis in cheese during ripening Plh Mcsweeney, Pf Fox To cite this version: Plh Mcsweeney, Pf Fox. Chemical methods for the characterization of proteolysis in cheese during ripening. Le Lait, INRA Editions, 1997, 77 (1), pp.41-76. hal-00929515 HAL Id: hal-00929515 https://hal.archives-ouvertes.fr/hal-00929515 Submitted on 1 Jan 1997 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lait (1997) 77, 41-76 41 © ElseviernNRA Review Chemical methods for the characterization of proteolysis in cheese during ripening PLH McSweeney, PF Fox Department of Food Chemistry, University College, Cork, Ireland Summary - Proteolysis is the principal and most complex biochemical event which occurs during the maturation of most cheese varieties. Proteolysis has been the subject of much study and a range of analytieal techniques has been developed to assess its extent and nature. Methods for assessing pro- teolysis can he c1assified under two broad headings: non-specifie and specifie techniques, both of which are reviewed. Non-specifie techniques include the quantitation of nitrogen soluble in various extrac- tants or precipitants and the Iiberation of reactive groups.
    [Show full text]
  • Amino Acid Chemistry
    Handout 4 Amino Acid and Protein Chemistry ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES Amino Acid Chemistry I. Chemistry of amino acids A. General amino acid structure + HN3- 1. All amino acids are carboxylic acids, i.e., they have a –COOH group at the #1 carbon. 2. All amino acids contain an amino group at the #2 carbon (may amino acids have a second amino group). 3. All amino acids are zwitterions – they contain both positive and negative charges at physiological pH. II. Essential and nonessential amino acids A. Nonessential amino acids: can make the carbon skeleton 1. From glycolysis. 2. From the TCA cycle. B. Nonessential if it can be made from an essential amino acid. 1. Amino acid "sparing". 2. May still be essential under some conditions. C. Essential amino acids 1. Branched chain amino acids (isoleucine, leucine and valine) 2. Lysine 3. Methionine 4. Phenyalanine 5. Threonine 6. Tryptophan 1 Handout 4 Amino Acid and Protein Chemistry D. Essential during rapid growth or for optimal health 1. Arginine 2. Histidine E. Nonessential amino acids 1. Alanine (from pyruvate) 2. Aspartate, asparagine (from oxaloacetate) 3. Cysteine (from serine and methionine) 4. Glutamate, glutamine (from α-ketoglutarate) 5. Glycine (from serine) 6. Proline (from glutamate) 7. Serine (from 3-phosphoglycerate) 8. Tyrosine (from phenylalanine) E. Nonessential and not required for protein synthesis 1. Hydroxyproline (made postranslationally from proline) 2. Hydroxylysine (made postranslationally from lysine) III. Acidic, basic, polar, and hydrophobic amino acids A. Acidic amino acids: amino acids that can donate a hydrogen ion (proton) and thereby decrease pH in an aqueous solution 1.
    [Show full text]
  • Designing Peptidomimetics
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UPCommons. Portal del coneixement obert de la UPC DESIGNING PEPTIDOMIMETICS Juan J. Perez Dept. of Chemical Engineering ETS d’Enginyeria Industrial Av. Diagonal, 647 08028 Barcelona, Spain 1 Abstract The concept of a peptidomimetic was coined about forty years ago. Since then, an enormous effort and interest has been devoted to mimic the properties of peptides with small molecules or pseudopeptides. The present report aims to review different approaches described in the past to succeed in this goal. Basically, there are two different approaches to design peptidomimetics: a medicinal chemistry approach, where parts of the peptide are successively replaced by non-peptide moieties until getting a non-peptide molecule and a biophysical approach, where a hypothesis of the bioactive form of the peptide is sketched and peptidomimetics are designed based on hanging the appropriate chemical moieties on diverse scaffolds. Although both approaches have been used in the past, the former has been more widely used to design peptidomimetics of secretory peptides, whereas the latter is nowadays getting momentum with the recent interest in designing protein-protein interaction inhibitors. The present report summarizes the relevance of the information gathered from structure-activity studies, together with a short review on the strategies used to design new peptide analogs and surrogates. In a following section there is a short discussion on the characterization of the bioactive conformation of a peptide, to continue describing the process of designing conformationally constrained analogs producing first and second generation peptidomimetics. Finally, there is a section devoted to review the use of organic scaffolds to design peptidomimetics based on the information available on the bioactive conformation of the peptide.
    [Show full text]
  • Ratio of Phosphate to Amino Acids
    National Institute for Health and Care Excellence Final Neonatal parenteral nutrition [D10] Ratio of phosphate to amino acids NICE guideline NG154 Evidence reviews February 2020 Final These evidence reviews were developed by the National Guideline Alliance which is part of the Royal College of Obstetricians and Gynaecologists FINAL Error! No text of specified style in document. Disclaimer The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian. Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties. NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the Welsh Government, Scottish Government, and Northern Ireland Executive.
    [Show full text]
  • Enzymatic Aminoacylation of Trna with Unnatural Amino Acids
    Enzymatic aminoacylation of tRNA with unnatural amino acids Matthew C. T. Hartman, Kristopher Josephson, and Jack W. Szostak* Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 Edited by Peter G. Schultz, The Scripps Research Institute, La Jolla, CA, and approved January 24, 2006 (received for review October 21, 2005) The biochemical flexibility of the cellular translation apparatus applicable to screening large numbers of unnatural amino acids. offers, in principle, a simple route to the synthesis of drug-like The commonly used ATP-PPi exchange assay, although very modified peptides and novel biopolymers. However, only Ϸ75 sensitive, does not actually measure the formation of the AA- unnatural building blocks are known to be fully compatible with tRNA product (13). A powerful assay developed by Wolfson and enzymatic tRNA acylation and subsequent ribosomal synthesis of Uhlenbeck (14) allows the observation of AA-tRNA synthesis modified peptides. Although the translation system can reject even with unnatural amino acids through the use of tRNA which substrate analogs at several steps along the pathway to peptide is 32P-labeled at the terminal C-p-A phosphodiester linkage (4, synthesis, much of the specificity resides at the level of the 15). Because the assay is based on the separation of AMP and aminoacyl-tRNA synthetase (AARS) enzymes that are responsible esterified AA-AMP by TLC, each amino acid analog must be for charging tRNAs with amino acids. We have developed an AARS tested in a separate assay mixture; moreover, this assay cannot assay based on mass spectrometry that can be used to rapidly generally distinguish between tRNA charged with the desired identify unnatural monomers that can be enzymatically charged unnatural amino acid or with contaminating natural amino acid.
    [Show full text]
  • Design and Synthesis of Novel Prodrugs to Modulate Gaba Receptors in Cancer Hui Zhang
    DESIGN AND SYNTHESIS OF NOVEL PRODRUGS TO MODULATE GABA RECEPTORS IN CANCER HUI ZHANG Thesis submitted in partial fulfilment of the requirements of Edinburgh Napier University for the degree of Doctor of Philosophy March 2017 Declaration It is hereby declared that this thesis and the research work upon which it is based were conducted by the author, Hui Zhang. Hui Zhang Abstract of Thesis GABA (gamma-amino butanoic acid) is the main inhibitory neurotransmitter in the mammalian central nervous system. GABA has been found to play an inhibitory role in some cancers, including colon carcinoma, cholangiocarcinoma, and lung adenocarcinoma. Growing evidence shows that GABAB receptors are involved in tumour development. The expression level of GABAB receptors was found to be upregulated in some human tumours, including the pancreas, and cancer cell lines, suggesting that GABAB receptors may be potential targets for cancer therapy and diagnosis. In this research programme, several diverse series of potential anticancer prodrugs of GABA and GABA receptor-targeting agents have been rationally designed and synthesised for selective activation in the tumour microenvironment. In one approach, a series of oligopeptide conjugate prodrugs have been synthesised as protease-activatable substrates for either the extracellular matrix metalloproteinase MMP-9 or the lysosomal endoprotease legumain; each of which are overexpressed in the tumour environment and are effectors of tumour growth and metastasis. Specifically, a novel fluorogenic, oligopeptide FRET substrate prodrug of legumain HZ101 (Rho-Pro-Ala-Asn~GABA-spacer-AQ) has been characterised and shown to have theranostic potential. Proof of principle has been demonstrated using recombinant human legumain for which HZ101 is an efficient substrate and is latently quenched until cleaved.
    [Show full text]
  • Recent Progress in the Microbial Production of Pyruvic Acid
    fermentation Review Recent Progress in the Microbial Production of Pyruvic Acid Neda Maleki 1 and Mark A. Eiteman 2,* 1 Department of Food Science, Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran; [email protected] 2 School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA * Correspondence: [email protected]; Tel.: +1-706-542-0833 Academic Editor: Gunnar Lidén Received: 10 January 2017; Accepted: 6 February 2017; Published: 13 February 2017 Abstract: Pyruvic acid (pyruvate) is a cellular metabolite found at the biochemical junction of glycolysis and the tricarboxylic acid cycle. Pyruvate is used in food, cosmetics, pharmaceutical and agricultural applications. Microbial production of pyruvate from either yeast or bacteria relies on restricting the natural catabolism of pyruvate, while also limiting the accumulation of the numerous potential by-products. In this review we describe research to improve pyruvate formation which has targeted both strain development and process development. Strain development requires an understanding of carbohydrate metabolism and the many competing enzymes which use pyruvate as a substrate, and it often combines classical mutation/isolation approaches with modern metabolic engineering strategies. Process development requires an understanding of operational modes and their differing effects on microbial growth and product formation. Keywords: auxotrophy; Candida glabrata; Escherichia coli; fed-batch; metabolic engineering; pyruvate; pyruvate dehydrogenase 1. Introduction Pyruvic acid (pyruvate at neutral pH) is a three carbon oxo-monocarboxylic acid, also known as 2-oxopropanoic acid, 2-ketopropionic acid or acetylformic acid. Pyruvate is biochemically located at the end of glycolysis and entry into the tricarboxylic acid (TCA) cycle (Figure1).
    [Show full text]
  • Radhakrishnan, Iii 4
    NATURE OF THE GENETIC BLOCKS IN THE ISOLEUCINE-VALINE MUTANTS OF SALMONELLA R. P. WAGNER AND ARLOA BERGQUIST The Genetics Laboratory of the Department of Zoology, The Uniuersity of Texas, Austin, Texas Received April 26, 1960 HE metabolic pathways leading to the biosynthesis of isoleucine and valine are now sufficiently well understood, as a result of the work of a number of investigators ( STRASSMAN,THOMAS and WEINHOUSE1955; STRASSMAN,THOMAS, LOCKEand WEINHOUSE1956; STRASSMAN,SHATTON, CORSEY and WEINHOUSE 1958; UMBARGER1958a,b; ADELBERG1955; WAGNER,RADHAKRISHNAN and SNELL1958; RADHAKRISHNAN,WAGNER and SNELL1960; and RADHAKRISHNAN and SNELL1960) to make it possible to investigate the nature of the genetic blocks in mutant organisms requiring isoleucine and valine. This communication describes the results of the investigation of a series of mutants of Salmonella typhimurium originally isolated in the laboratory of DR. M. DEMEREC,The Carnegie Institute of Washington, Cold Spring Harbor, New York. It is limited to the purely biochemical aspects of these mutants, but is ,preceded by a com- munication from GLANVILLEand DEMEREC1960, which describes the linkage studies made with these mutants, and correlates the genetic with the biochemical 3ata. The biosynthesis of isoleucine and valine is believed to occur as shown in Figure 1. In the work to be described here only the steps proceeding from the 3-keto acids, a-acetolactic acid and a-aceto-P-hydroxybutyricacid, have been :onsidered in detail. The following abbreviations are used in Figure I and in mbsequent parts of this communication: AHB = a-aceto-a-hydroxybutyric acid; CHa C Ha CHa CHa I 1 I I c*o CHa-C-OH CHfC-OH CHI-C-H 1 I TPNH 1 I c.0 ~ *Valine I COOH COOH I COOH I COOH (PYRUVIC ACID) (ALI I (HKVI I (DHV) I I I I I I I I + Pyruvic Acid Step1 StepII Stepm Step H 4 I I I I cn3 CH, I CH3 I I I I I CHZ C=O I CH~CH~C-OH Threonine-GO I ~CH3CH2-~-OH-C=0I+! I I I I COOH COOH COOH COOH COOH (U-kmtobutyric acid1 (AH01 (HKII (DUI) (KI) FIGURE1 .-The biosynthetic pathway leading to isoleucine and valine.
    [Show full text]