Update on Mechanisms of Plant Cell Wall Biosynthesis: How Plants Make Cellulose and 1 Other (1/4)-B-D-Glycans

Total Page:16

File Type:pdf, Size:1020Kb

Update on Mechanisms of Plant Cell Wall Biosynthesis: How Plants Make Cellulose and 1 Other (1/4)-B-D-Glycans UpdateonMechanismsofPlantCellWallBiosynthesis Update on Mechanisms of Plant Cell Wall Biosynthesis: How Plants Make Cellulose and 1 Other (1/4)-b-D-Glycans Nicholas C. Carpita* Department of Botany and Plant Pathology, and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907–2054 The discovery of a gene that encodes a cotton ences between plants with type I walls and those of the (Gossypium hirsutum) cellulose synthase (Pear et al., grasses with type II walls (Fig. 1A; Penning et al., 1996) revolutionized and invigorated the plant cell 2009). For CesA genes and certain Csl genes, establish- wall community to find the genes that encode the ment of specific function for the synthases they en- machinery of cell wall polysaccharide synthesis. The code comes from the analysis of mutants lacking a landscape was framed by the completion of the ge- particular function and, in some specific examples, nome sequence of Arabidopsis (Arabidopsis thaliana; by heterologous expression. However, genetic ap- Arabidopsis Genome Initiative, 2000), which gave a proaches alone do not inform us about the biological complete gene inventory for a model plant species, but mechanism of synthesis. The knowledge gained from one with many genes yet to be annotated for function. molecular genetic approaches now needs to be aug- An estimated 10% of the plant genome, about 2,500 mented by biochemical and cell biological approaches genes, is devoted to construction, dynamic architec- to achieve a greater understanding of proteins and ture, sensing functions, and metabolism of the plant their interactions within a synthase complex, their cell wall. Based largely on prior discoveries of function organization at membranes, and their dynamics. This in prokaryotic organisms, most of the tentatively an- Update focuses on the biochemical mechanisms of the notated genes are organized into gene families for synthesis of a single type of linkage, the (1/4)-b-D substrate generation, glycosyl transfer, targeting and linkage, in which one sugar is inverted nearly 180° trafficking, cell wall rearrangement, and modification with respect to each neighboring sugar in the chain. by hydrolases, esterases, and lyases (Yong et al., 2005; This linkage presents a unique steric problem for Penning et al., 2009). However, the biochemical activ- processive catalysis that all living organisms have ities of most enzymes involved in glycosyl transfer solved but we are still struggling to understand. within these families remain to be verified, and an This Update reviews our present state of knowledge additional 40% of the genome encodes genes whose of the biochemical mechanisms of polysaccharide functions are not known. As many of these proteins synthesis, including some classic discoveries, and contain secretory signal peptides (Arabidopsis Ge- presents an alternative hypothesis on the biochemical nome Initiative, 2000), it is reasonable to infer that mechanisms and organization of complexes involved some have roles in cell wall construction. in synthase reactions that yield (1/4)-b-D linkages. The Arabidopsis cellulose synthase/cellulose synthase- like (CesA/Csl) gene superfamily, which includes 10 CesA genes and 29 Csl genes in six distinct groups, was one CELLULOSE SYNTHESIS of the first large families to be described (Richmond and Somerville, 2000), and comparative analyses of a In flowering plants, cellulose is a para-crystalline reference dicot, Arabidopsis, with a reference grass, array of about two to three dozen (1/4)-b-D-glucan rice (Oryza sativa), revealed substantive differences in chains. Microfibrils of 36 glucan chains have a theo- family structures, adding two groups not seen in the retical diameter of 3.8 nm, but x-ray scattering and dicot genome (Hazen et al., 2002). Extension of these NMR spectroscopy indicate that some microfibril di- annotations to compare all cell wall-related gene fam- ameters could be as small as 2.4 nm, or about two ilies of the grasses with those of the dicots reveals dozen chains (Kennedy et al., 2007). The microfibrils some correlation of family structure with the differ- are synthesized at the plasma membrane by terminal complexes of six-membered “particle rosettes” that produce a single microfibril (Giddings et al., 1980; 1 This work supported by the Center for Direct Catalytic Conver- sion of Biomass to Biofuels, an Energy Frontier Research Center Mueller and Brown, 1980). Thus, each of the six funded by the U.S. Department of Energy, Office of Science, Office of components of the particle rosette is expected to Basic Energy Sciences (award no. DE–SC0000997). synthesize four to six of the glucan chains, and 24 to * E-mail [email protected]. 36 chains are then assembled into a functional micro- www.plantphysiol.org/cgi/doi/10.1104/pp.110.163360 fibril (Doblin et al., 2002). In freeze fracture, the par- Ò Plant Physiology , January 2011, Vol. 155, pp. 171–184, www.plantphysiol.org Ó 2010 American Society of Plant Biologists 171 Carpita estimated to be 50 nm wide and extend 35 nm into the cytoplasm (Bowling and Brown, 2008), a feature that has escaped consideration in many published models of the rosette structure (Fig. 2, B and C). Cellulose synthase is an ancient enzyme (Nobles et al., 2001), and cellulose synthase genes in green algae are homologous to those of flowering plants (Roberts et al., 2002). The deduced amino acid sequences of CesAs share regions of similarity with the bacterial CesA proteins, namely the four catalytic motifs con- taining the D, DxD, D, Q/RxxRW that are highly conserved among those that synthesize several kinds of (1/4)-b-D-glycans (Saxena et al., 1995). The higher plant CesA genes are predicted to encode polypeptides of about 110 kD, each with a large, cytoplasmic N-terminal region containing zinc-finger (ZnF) domains, and eight membrane spans sandwiching the four U motifs of the catalytic domain (Fig. 1B; Delmer, 1999). Further evidence for the functions of plant CesA genes in cellulose synthesis came from Arabidopsis mutants of three of the CesA genes involved in pri- mary wall synthesis: the temperature-sensitive radial Figure 1. The CesA/Csl gene superfamily. A, Of the 10 Arabidopsis swelling mutant rsw1 (AtCesA1; Arioli et al., 1998), CesA genes, at least three are coexpressed during primary wall forma- the dwarf-hypocotyl procuste mutant prc1 (AtCesA6; tion, and mutations in each of them, AtCesA1 (RSW1; At4g32410), Fagard et al., 2000), and a stunted root phenotype AtCesA6 (PRC1; At5g64740), and AtCesA3 (CEV1 and ELI1; with altered jasmonate and ethylene signaling (cev1) At5g05170), result in cellulose deficiencies, indicating that each is and ectopic lignification (eli1) mutant alleles (AtCesA3; essential for cellulose synthesis. The irx mutants AtCesA8 (IRX1; Ellis and Turner, 2001; Can˜o-Delgado et al., 2003). At4g18780), AtCesA7 (IRX3; At5g17420), and AtCesA4 (IRX5; Despite coexpression in the same cells and an expec- At5g44030) are deficient in cellulose synthesis specifically in secondary tation of redundancy, cellulose synthesis is impaired in walls. Seven additional subgroups were identified that are the likely / each mutant. The same was observed with the irregular synthases for noncellulosic polysaccharides with backbones of (1 4)- xylem mutants irx1, irx3, and irx5, which display a b-D-glycans. Whereas the CesA genes of Arabidopsis, rice, and maize appear to be orthologous, the Csl genes are divergent between dicots phenotype of collapsed mature xylem cells as a result and grasses, species that make two distinct kinds of walls. From mutants of lowered cellulose content during secondary cell and heterologous expression studies, members of the CslA group encode wall deposition (Taylor et al., 2000, 2003). A widely the synthases of (gluco)mannans, members of the CslC group are likely accepted hypothesis is that the AtCesA1, AtCesA3, to encode the glucan backbone of xyloglucans, and the rice- and maize- and AtCesA6 proteins assemble to function in primary only members of CslH and CslF encode the synthases of the mixed- wall cellulose synthesis, while the AtCesA4, AtCesA7, linkage (1/3),(1/4)-b-D-glucans found only in grasses (after Penning and AtCesA8 proteins assemble to make secondary et al., 2009). B, Domain model and class-specific regions (CSRs) for wall cellulose (Fig. 1A), with each member of the trio three CesAs known to function in primary cell wall cellulose synthesis. performing a nonredundant function in the complex Two ZnF domains (in yellow) are found in the N terminus before the first (Taylor, 2008). Lack of one CesA prevents incorpora- membrane-spanning domain (in blue). Eight transmembrane helices, two upstream and six downstream of the catalytic domain, are predicted tion of the other two into the plasma membrane to interact to form a channel through which a single b-glucan chain is (Gardiner et al., 2003). However, at least some of the secreted to the cell wall. The large central catalytic domain contains four subunits are potentially interchangeable, as inferred highly conserved “U motifs” of D, DxD, D, and QxxRW, important for by the dominant-negative inhibition of growth and substrate binding and catalysis. Once thought to be a hypervariable primary wall thickness caused by constitutive expres- region (Pear et al., 1996), the class-specific regions are conserved among sion of a mutated fra5 (irx3 allele) transgene (Zhong orthologs of the same subclade and vary in the number of upstream et al., 2003) and by the semi-dominant-negative phe- conserved Cys residues, the number of consecutive basic amino acids, notype observed in the heterozygous AtCesA3 mutant Lys and Arg, and the number of consecutive acidic amino acids, Asp and (Daras et al., 2009). AtCesA1 is essential for cellulose Glu, downstream from the basic residues (after Carpita and Vergara, synthesis (Beeckman et al., 2002), whereas knockouts 1998; Vergara and Carpita, 2001). of AtCesA3 (Ellis and Turner, 2001; Can˜o-Delgado et al., 2003) and AtCes6 (Fagard et al., 2000) result in ticle rosettes, found only on the P-face of the mem- partially impaired synthesis but not in total inhibition.
Recommended publications
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • XAX1 from Glycosyltransferase Family 61 Mediates Xylosyltransfer to Rice Xylan
    XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan Dawn Chiniquya,b, Vaishali Sharmab, Alex Schultinkc,d, Edward E. Baidoob,e, Carsten Rautengartenb, Kun Chengc,d, Andrew Carrollb, Peter Ulvskovf, Jesper Harholtf, Jay D. Keaslingb,e,g, Markus Paulyc,d, Henrik V. Schellerb,c,e, and Pamela C. Ronalda,b,h,1 aDepartment of Plant Pathology and the Genome Center, University of California, Davis, CA 95616; bJoint BioEnergy Institute, Emeryville, CA 94608; cDepartment of Plant and Microbial Biology, dEnergy Biosciences Institute, and gDepartment of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, CA 94720; ePhysical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; fDepartment of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; and hDepartment of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea Edited by Diter von Wettstein, Washington State University, Pullman, WA, and approved August 31, 2012 (received for review February 6, 2012) Xylan is the second most abundant polysaccharide on Earth and Caulerpa that has β-1,3-D-xylan in place of cellulose, and the red represents an immense quantity of stored energy for biofuel pro- seaweeds Palmariales and Nemaliales that have a mixed linkage duction. Despite its importance, most of the enzymes that synthe- β-(1,3-1,4)-D-xylose backbone (8). Xylans of embryophytes have size xylan have yet to be identified. Xylans have a backbone of a β-1,4–linked xylose backbone. Xylans found in dicots are mostly β-1,4–linked xylose residues with substitutions that include α-(1→2)– restricted to the secondary cell walls, and hence a main component linked glucuronosyl, 4-O-methyl glucuronosyl, and α-1,2- and α-1,3- of wood.
    [Show full text]
  • Arnt Proteins That Catalyse the Glycosylation of Lipopolysaccharide Share Common Features with Bacterial N-Oligosaccharyltransferases
    ArnT proteins that catalyse the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases Tavares-Carreón, F., Mohamed, Y. F., Andrade, A., & Valvano, M. A. (2016). ArnT proteins that catalyse the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases. Glycobiology, 26(3), 286-300. https://doi.org/10.1093/glycob/cwv095 Published in: Glycobiology Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © [2015] Oxford University Press This is a pre-copyedited, author-produced PDF of an article accepted for publication in Glycobiology following peer review. The version of record Tavares-Carreón, F, Mohamed, YF, Andrade, A & Valvano, MA 2016, 'ArnT proteins that catalyse the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases' Glycobiology, vol 26, no. 3, pp. 286-300. is available online at:http://glycob.oxfordjournals.org/content/26/3/286 General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected].
    [Show full text]
  • Discovery of an O-Mannosylation Pathway Selectively Serving Cadherins and Protocadherins
    Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins Ida Signe Bohse Larsena,1, Yoshiki Narimatsua,1, Hiren Jitendra Joshia,1, Lina Siukstaitea, Oliver J. Harrisonb, Julia Braschb, Kerry M. Goodmanb, Lars Hansena, Lawrence Shapirob,c,d, Barry Honigb,c,d,e, Sergey Y. Vakhrusheva, Henrik Clausena, and Adnan Halima,2,3 aDepartment of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, DK-2200 Copenhagen, Denmark; bDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032; cZuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032; dDepartment of Systems Biology, Columbia University, New York, NY 10032; and eHoward Hughes Medical Institute, Columbia University, New York, NY 10032 Edited by Stuart A. Kornfeld, Washington University School of Medicine, St. Louis, MO, and approved September 6, 2017 (received for review May 22, 2017) The cadherin (cdh) superfamily of adhesion molecules carry muscular dystrophies that have been designated α-dystroglyca- O-linked mannose (O-Man) glycans at highly conserved sites nopathies because deficient O-Man glycosylation of α-DG dis- localized to specific β-strands of their extracellular cdh (EC) domains. rupts the interaction between the dystrophin glycoprotein complex These O-Man glycans do not appear to be elongated like O-Man and the ECM (7–9). Several studies have also implicated de- glycans found on α-dystroglycan (α-DG), and we recently demon- ficiency of POMT2 with E-cdh dysfunction (10–12), although di- strated that initiation of cdh/protocadherin (pcdh) O-Man glycosyl- rect evidence for a role in glycosylation of cdhs and pcdhs is ation is not dependent on the evolutionary conserved POMT1/ missing.
    [Show full text]
  • Identification and Evolution of a Plant Cell Wall Specific Glycoprotein
    www.nature.com/scientificreports OPEN Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD Received: 09 November 2016 Svenning Rune Møller1, Xueying Yi1, Silvia Melina Velásquez2,3,†, Sascha Gille4,‡, Accepted: 27 February 2017 Pernille Louise Munke Hansen1, Christian P. Poulsen1,5, Carl Erik Olsen1, Martin Rejzek6, Published: 30 March 2017 Harriet Parsons1,#, Zhang Yang7, Hans H. Wandall7, Henrik Clausen7, Robert A. Field6, Markus Pauly4, Jose M. Estevez2,3, Jesper Harholt5, Peter Ulvskov1 & Bent Larsen Petersen1 Extensins are plant cell wall glycoproteins that act as scaffolds for the deposition of the main wall carbohydrate polymers, which are interlocked into the supramolecular wall structure through intra- and inter-molecular iso-di-tyrosine crosslinks within the extensin backbone. In the conserved canonical extensin repeat, Ser-Hyp4, serine and the consecutive C4-hydroxyprolines (Hyps) are substituted with an α-galactose and 1–5 β- or α-linked arabinofuranoses (Arafs), respectively. These modifications are required for correct extended structure and function of the extensin network. Here, we identified a single Arabidopsis thaliana gene, At3g57630, in clade E of the inverting Glycosyltransferase family GT47 as a candidate for the transfer of Araf to Hyp-arabinofuranotriose (Hyp-β1,4Araf-β1,2Araf-β1,2Araf) side chains in an α-linkage, to yield Hyp-Araf4 which is exclusively found in extensins. T-DNA knock- out mutants of At3g57630 showed a truncated root hair phenotype, as seen for mutants of all hitherto characterized extensin glycosylation enzymes; both root hair and glycan phenotypes were restored upon reintroduction of At3g57630. At3g57630 was named Extensin Arabinose Deficient transferase, ExAD, accordingly.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Polysaccharide-Synthesizing Glycosyltransferases and Carbohydrate Bind- Ing Modules: the Case of Starch Synthase III
    Send Orders of Reprints at [email protected] Protein & Peptide Letters, 2013, 20, 0000-0000 1 Polysaccharide-synthesizing Glycosyltransferases and Carbohydrate Bind- ing Modules: the case of Starch Synthase III Diego F. Gomez-Casati1,2*, Mariana Martín1 and María V. Busi1,2 1Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina; 2IIB- Universidad Nacional de General San Martín (UNSAM), 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina Abstract: Glycosyltransferases (GTs) are a ubiquitous group of enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Nucleotide-sugars, lipid phosphate sugars and phosphate sugars can act as activated donor molecules while acceptor substrates involve carbohy- drates, proteins, lipids, DNA and also, numerous small molecules (i. e. antibiotics, flavonols, steroids). GTs enzyme fami- lies are very ancient. They are founded in all the three domains of life and display three different folds (named GT-A, GT- B and GT-C) which are a variant of a common / scaffold. In addition, several GTs contain an associated non-catalytic carbohydrate binding module (CBM) that could be critical for enzyme activity. This work reviews the current knowledge on the GTs structures and functions and highlights those enzymes that contain CBMs, particularly starch binding domains (SBDs). In addition, we also focus on A. thaliana starch synthase III enzyme, from the GT-5 family. This protein has a GT-B fold, and contains in its N-terminal region three in tandem SBDs, which are essential for the regulation of enzyme activity.
    [Show full text]
  • A Cascade of Arabinosyltransferases Controls Shoot Meristem Size in Tomato
    ARTICLES A cascade of arabinosyltransferases controls shoot meristem size in tomato Cao Xu1,9, Katie L Liberatore1,2,8,9, Cora A MacAlister1,8, Zejun Huang3,8, Yi-Hsuan Chu3, Ke Jiang1,8, Christopher Brooks1, Mari Ogawa-Ohnishi4, Guangyan Xiong5,8, Markus Pauly5,6, Joyce Van Eck7, Yoshikatsu Matsubayashi4, Esther van der Knaap3 & Zachary B Lippman1,2 Shoot meristems of plants are composed of stem cells that are continuously replenished through a classical feedback circuit involving the homeobox WUSCHEL (WUS) gene and the CLAVATA (CLV) gene signaling pathway. In CLV signaling, the CLV1 receptor complex is bound by CLV3, a secreted peptide modified with sugars. However, the pathway responsible for modifying CLV3 and its relevance for CLV signaling are unknown. Here we show that tomato inflorescence branching mutants with extra flower and fruit organs due to enlarged meristems are defective in arabinosyltransferase genes. The most extreme mutant is disrupted in a hydroxyproline O-arabinosyltransferase and can be rescued with arabinosylated CLV3. Weaker mutants are defective in arabinosyltransferases that extend arabinose chains, indicating that CLV3 must be fully arabinosylated to maintain meristem size. Finally, we show that a mutation in CLV3 increased fruit size during domestication. Our findings uncover a new layer of complexity in the control of plant stem cell proliferation. A wide range of inflorescence architectures exist among closely phenotypes in maize and rice have shown that the CLV pathway related plants1, and this variation can be explained in part by the is conserved in dicots and monocots12. However, little is known rate at which meristems terminate in flowers and initiate new branch about the genes and molecular mechanisms underlying stem cell meristems from which new flowers will form2,3.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Maria Doyle Ron Caspi James I Macrae An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Eleanor C Saunders Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. LeishCyc: Leishmania major strain Friedlin Cellular Overview Connections between pathways are omitted for legibility. Malcolm J Mcconville D-fructose D-fructose D-fructose hypoxanthine inosine 1-alkyl-2-acyl-phosphatidylcholine D-galactose D-galactose D-fructose D-galactose xanthine spermidine guanosine a phosphatidylcholine myo-inositol D-mannose D-mannose D-mannose D-mannose adenine arg arg putrescine D-glucose D-glucose D-glucose D-glucose guanine xanthosine myo-inositol/ ABC polyamine glucose glucose hexose glucose nucleobase proton transporter transporter transporter transporter transporter transporter transporter AAP3 AAP3 NT2 symporter (ABCG4) (POT1) (GT3) (GT1) (GT4) (GT2) (NT3) (MIT) 1-alkyl-2-acyl-phosphatidylcholine inosine arg arg a phosphatidylcholine spermidine D-fructose D-fructose D-fructose D-fructose hypoxanthine guanosine putrescine myo-inositol D-galactose D-galactose D-mannose D-galactose xanthine xanthosine D-mannose D-mannose D-glucose D-mannose adenine D-glucose D-glucose D-glucose guanine Fatty Acid
    [Show full text]
  • Genome-Wide Identification of Essential Genes in Mycobacterium
    www.nature.com/scientificreports OPEN Genome-wide identifcation of essential genes in Mycobacterium intracellulare by transposon sequencing — Implication for metabolic remodeling Yoshitaka Tateishi 1*, Yusuke Minato 2, Anthony D. Baughn 2, Hiroaki Ohnishi3, Akihito Nishiyama1, Yuriko Ozeki1 & Sohkichi Matsumoto1 The global incidence of the human nontuberculous mycobacteria (NTM) disease is rapidly increasing. However, knowledge of gene essentiality under optimal growth conditions and conditions relevant to the natural ecology of NTM, such as hypoxia, is lacking. In this study, we utilized transposon sequencing to comprehensively identify genes essential for growth in Mycobacterium intracellulare. Of 5126 genes of M. intracellulare ATCC13950, 506 genes were identifed as essential genes, of which 280 and 158 genes were shared with essential genes of M. tuberculosis and M. marinum, respectively. The shared genes included target genes of existing antituberculous drugs including SQ109, which targets the trehalose monomycolate transporter MmpL3. From 175 genes showing decreased ftness as conditionally essential under hypoxia, preferential carbohydrate metabolism including gluconeogenesis, glyoxylate cycle and succinate production was suggested under hypoxia. Virulence- associated genes including proteasome system and mycothiol redox system were also identifed as conditionally essential under hypoxia, which was further supported by the higher efective suppression of bacterial growth under hypoxia compared to aerobic conditions in the presence of these inhibitors. This study has comprehensively identifed functions essential for growth of M. intracellulare under conditions relevant to the host environment. These fndings provide critical functional genomic information for drug discovery. As highlighted by research on the origin of tuberculosis, mycobacterial infections have been one of the greatest threats to humans over the past 70,000 years1.
    [Show full text]
  • Dissertation Mycobacterial Arabinan Biosynthesis
    DISSERTATION MYCOBACTERIAL ARABINAN BIOSYNTHESIS: CHARACTERIZATION OF AftB AND AftC ARABINOSYLTRANSFERASE ACTIVITY USING SYNTHETIC SUBSTRATES Submitted by Shiva kumar Angala Department of Microbiology, Immunology and Pathology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Fall 2011 Doctoral Committee: Advisor: Delphi Chatterjee Co-Advisor: Dean C. Crick Herbert P. Schweizer Norman P. Curthoys ABSTRACT MYCOBACTERIAL ARABINAN BIOSYNTHESIS: CHARACTERIZATION OF AftB AND AftC ARABINOSYLTRANSFERASE ACTIVITY USING SYNTHETIC SUBSTRATES Tuberculosis (TB) is a chronic infectious disease caused by M. tuberculosis (Mtb). Treatment of TB is prolonged, and multidrug resistant (MDR-TB) and extensively drug resistant TB (XDR-TB) cases are ever increasing. Efforts to discover and develop new drugs have increased in recent years so improvement of the existing therapies is urgently needed. The cell wall of Mtb with its unique physiological properties has historically been an important and valid drug target. Mycobacterial arabinosyltransferases are membrane bound glycosyltransferases involved in the biosynthesis of the arabinan portion of two major polysaccharides, arabinogalactan (AG) and lipoarabinomannan (LAM), associated with the cell wall. In this work, M. smegmatis was used as a model organism to study arabinosyltransferases and the biosynthesis of cell wall arabinofuran— the main constituent of AG and LAM. This dissertation addresses the development of a cell free arabinosyltransferase assay for AftB and AftC glycosyltransferases. Since it was not possible to express AftB transmembrane protein, we probed AftB transferase activity from the crude membranes using a synthetic arabinose disaccharide acceptor. In this study, a robust cell free ii radioactive arabinosyltransferase assay was developed using a linkage specific synthetic disaccharide acceptor.
    [Show full text]
  • Investigation of Glycosyltransferases from Oat
    Investigation of glycosyltransferases from oat Thomas LOUVEAU A thesis submitted to the University of East Anglia for the degree of Doctor of Philosophy University of East Anglia John Innes Centre Norwich, the United Kingdoms © October 2013 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there-from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. I Abstract Plants produce a diversity of secondary metabolites crucial for their survival into specific ecological niches. Many of these compounds are glycosides generated by the action of family one UDP-dependant glycosyltransferases (UGTs). Glycosylated products of UGTs are known to be essential for reproductive fitness, defence against pathogens, and signalling; UGTs also have a role in the detoxification of xenobiotics. To date, little is known about monocot UGTs compare to their dicot counterparts, despite their potential role in defence and modification of health-promoting component of cereals essential to human diet. This thesis focuses on identification and functional investigation of UGTs expressed in in the diploid oat species Avena strigosa. Chapters 1 and 2 consist of the General Introduction and Material and Methods, respectively. In chapter 3, a systematic analysis of root-expressed UGTs was carried out using transcriptomic and proteomic approaches. A subset of UGTs was then selected for biochemical analysis. Of particular interest were candidates for glycosylation of avenacin, an antimicrobial triterpenoid glycoside that protects oat against fungi infection.
    [Show full text]