Dissertation Mycobacterial Arabinan Biosynthesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility. -
XAX1 from Glycosyltransferase Family 61 Mediates Xylosyltransfer to Rice Xylan
XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan Dawn Chiniquya,b, Vaishali Sharmab, Alex Schultinkc,d, Edward E. Baidoob,e, Carsten Rautengartenb, Kun Chengc,d, Andrew Carrollb, Peter Ulvskovf, Jesper Harholtf, Jay D. Keaslingb,e,g, Markus Paulyc,d, Henrik V. Schellerb,c,e, and Pamela C. Ronalda,b,h,1 aDepartment of Plant Pathology and the Genome Center, University of California, Davis, CA 95616; bJoint BioEnergy Institute, Emeryville, CA 94608; cDepartment of Plant and Microbial Biology, dEnergy Biosciences Institute, and gDepartment of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, CA 94720; ePhysical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; fDepartment of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; and hDepartment of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea Edited by Diter von Wettstein, Washington State University, Pullman, WA, and approved August 31, 2012 (received for review February 6, 2012) Xylan is the second most abundant polysaccharide on Earth and Caulerpa that has β-1,3-D-xylan in place of cellulose, and the red represents an immense quantity of stored energy for biofuel pro- seaweeds Palmariales and Nemaliales that have a mixed linkage duction. Despite its importance, most of the enzymes that synthe- β-(1,3-1,4)-D-xylose backbone (8). Xylans of embryophytes have size xylan have yet to be identified. Xylans have a backbone of a β-1,4–linked xylose backbone. Xylans found in dicots are mostly β-1,4–linked xylose residues with substitutions that include α-(1→2)– restricted to the secondary cell walls, and hence a main component linked glucuronosyl, 4-O-methyl glucuronosyl, and α-1,2- and α-1,3- of wood. -
SQ109 for the Treatment of Tuberculosis Clinical Development Status: Phase 2
SQ109 for the Treatment of Tuberculosis Clinical Development Status: Phase 2 Since 2000, Sequella has applied its scientific expertise in tuberculosis (TB) research to develop SQ109, a promising drug candidate that was discovered in partnership with the National Institutes of Health in a screen for activity against M. tuberculosis (Mtb). SQ109 was selected as best in class from a 63,000 compound library of diamines and underwent extensive preclinical studies in rats, dogs, keys and mon . It was safe and well-‐tolerated in three Phase 1 clinical trials, and a Phase 2 clinical trial was completed in late . 2011 TB is a public health crisis and unmet medical need. TB is the cause of the largest number of human deaths attributable to a single etiologic agent, killing nearly 2 million people each year. The poor efficacy of existing TB drugs requires that they be administered in a multidrug regimen for at least six months. This results in poor patient compliance and leads to development of multidrug-‐ resistant TB (MDR-‐TB) and extremely drug-‐resistant TB (XDR-‐TB). MDR-‐TB and XDR-‐TB are even more difficult to treat (5-‐8 drugs for up to 24 months) and have significantly higher mortality. Decades of misuse of existing antibiotics and poor ance compli have created an epidemic of drug resistance that threatens TB control programs worldwide. New drugs and treatment regimens with activity against drug-‐susceptible and drug-‐resistant TB are desperately needed to manage this public health crisis. SQ109 has promising activity against drug-‐susceptible and drug-‐resistant Me Me TB. -
Arnt Proteins That Catalyse the Glycosylation of Lipopolysaccharide Share Common Features with Bacterial N-Oligosaccharyltransferases
ArnT proteins that catalyse the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases Tavares-Carreón, F., Mohamed, Y. F., Andrade, A., & Valvano, M. A. (2016). ArnT proteins that catalyse the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases. Glycobiology, 26(3), 286-300. https://doi.org/10.1093/glycob/cwv095 Published in: Glycobiology Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © [2015] Oxford University Press This is a pre-copyedited, author-produced PDF of an article accepted for publication in Glycobiology following peer review. The version of record Tavares-Carreón, F, Mohamed, YF, Andrade, A & Valvano, MA 2016, 'ArnT proteins that catalyse the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases' Glycobiology, vol 26, no. 3, pp. 286-300. is available online at:http://glycob.oxfordjournals.org/content/26/3/286 General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. -
Pathway Is Defined (CPTR) : • Preclinical Studies
Shorter TB regimens What is in de pipeline? Martin Boeree, Associate Professor Radboudumc, Nijmegen, the Netherlands Tuesday, 23 September, 2014 Disclosures • Clinical trials and studies funded by EDCTP, BMG, NWO, NACCAP, KNCV • Advisory board Janssen Cilag • Clinical trial drugs donated by Sanofi Outline • Introduction, why shorter treatment? • Resistance • What is in the pipeline? • Repurposed drugs • New drugs • Combinations, trials and expectations • Conclusion Introduction • Shorter treatment is top priority in research • Increases adherence • Decreases emergence of drug resistance • Decrease costs and logistical challenges • For the first time in 40-45 years new drugs are introduced • A clinical pathway is defined (CPTR) : • Preclinical studies. • Animal models (mainly murine), • Phase I, incl MTD studies • Phase II with early bactericidal activity, and 2-3 months to evaluate bacterial response • Finally phase III Ma et al., Lancet, 2010 • The coming years will bring us many phase II and III trials • In this talk an update until today • Problem is the lack of surrogate markers: • Predictors for outcome • Treatment failure • Relapse • Current phase III trials will bring us more knowledge Who are performing clinical trials in TB? • Largest institution to coordinate: GATB = Global Alliance for TB drug Development • www.tballiance.org Other consortia • PanACEA (Pan African Consortium for the Evaluation of AntiTB Antibiotics) ->Europe/Africa • TBTC (TB Trial Consortium) -> USA • ACTG (AIDS Clinical Trial Group) -> USA • InterTB -> UK -
Discovery of an O-Mannosylation Pathway Selectively Serving Cadherins and Protocadherins
Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins Ida Signe Bohse Larsena,1, Yoshiki Narimatsua,1, Hiren Jitendra Joshia,1, Lina Siukstaitea, Oliver J. Harrisonb, Julia Braschb, Kerry M. Goodmanb, Lars Hansena, Lawrence Shapirob,c,d, Barry Honigb,c,d,e, Sergey Y. Vakhrusheva, Henrik Clausena, and Adnan Halima,2,3 aDepartment of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, DK-2200 Copenhagen, Denmark; bDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032; cZuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032; dDepartment of Systems Biology, Columbia University, New York, NY 10032; and eHoward Hughes Medical Institute, Columbia University, New York, NY 10032 Edited by Stuart A. Kornfeld, Washington University School of Medicine, St. Louis, MO, and approved September 6, 2017 (received for review May 22, 2017) The cadherin (cdh) superfamily of adhesion molecules carry muscular dystrophies that have been designated α-dystroglyca- O-linked mannose (O-Man) glycans at highly conserved sites nopathies because deficient O-Man glycosylation of α-DG dis- localized to specific β-strands of their extracellular cdh (EC) domains. rupts the interaction between the dystrophin glycoprotein complex These O-Man glycans do not appear to be elongated like O-Man and the ECM (7–9). Several studies have also implicated de- glycans found on α-dystroglycan (α-DG), and we recently demon- ficiency of POMT2 with E-cdh dysfunction (10–12), although di- strated that initiation of cdh/protocadherin (pcdh) O-Man glycosyl- rect evidence for a role in glycosylation of cdhs and pcdhs is ation is not dependent on the evolutionary conserved POMT1/ missing. -
Hydroxylation of Antitubercular Drug Candidate, SQ109, by Mycobacterial Cytochrome P450
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.27.269936; this version posted August 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Hydroxylation of antitubercular drug candidate, SQ109, by mycobacterial cytochrome P450 a,1 b,1 b a b Sergey Bukhdruker , Tatsiana Varaksa , Irina Grabovec , Egor Marin , Polina Shabunya , Maria Kadukovaa,c, Sergei Grudininc, Anton Kavaleuskib, Anastasiia Gusacha , Andrei Gilepb,d,e, Valentin Borshchevskiya,f,g,2, Natallia Strushkevichb,h,2 aResearch Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. bInstitute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus. c Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France. dInstitute of Biomedical Chemistry, Moscow, Russia. eMT-Medicals LLC, Moscow, Russia. fInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany. gJuStruct: Jülich Center for Structural Biology, Research Center Jülich, Jülich, Germany. hSkolkovo Institute of Science and Technology, Moscow, Russia. 1these authors contributed equally to this work 2corresponding authors: [email protected]; [email protected] Keywords: cytochrome P450, crystal structure, Mycobacterium tuberculosis, SQ109, CYP124 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.27.269936; this version posted August 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Spreading of the multidrug-resistant (MDR) strains of the deadliest pathogen Mycobacterium tuberculosis (Mtb) generates the need for new effective drugs. -
Sequella Initiates Phase I Clinical Trial for Sq109
Sequella, Inc. 9610 Medical Center Drive Rockville, MD 20850 Tele: 301-762-7776 www.sequella.com NEWS RELEASE October 3, 2006 SEQUELLA INITIATES PHASE I CLINICAL TRIAL FOR SQ109 Patient Dosed with Company’s First Clinical Drug Candidate ROCKVILLE, MD – Sequella, Inc., a clinical-stage biopharmaceutical company focused on commercializing improved treatment paradigms for diseases of epidemic potential announced today it has initiated a Phase I clinical trial for SQ109, the Company’s lead drug candidate for the treatment of tuberculosis (TB). With a mechanism of action distinct from other antibiotics used in TB therapy (including Isoniazid, Ethambutol and Ethionamide), SQ109 inhibits cell wall synthesis in a select group of microorganisms with excellent in vitro activity against both drug susceptible and drug resistant TB bacteria, including XDR-TB. The first clinical trial dose of SQ109 was administered at the Quintiles Clinical Pharmacology Unit in Lenexa, Kansas. “We believe that SQ109 may establish a new therapeutic standard-of-care for patients with TB,” said Dr. Carol A. Nacy, CEO of Sequella. “Based on preclinical data, SQ109 has the potential to improve outcome and shorten the current treatment regimen when combined with several first- line TB drugs. SQ109 – with more accurate diagnosis provided by Sequella TB Patch – may represent an important step forward in quickly detecting active TB, more effectively treating infected patients, and ultimately reducing the spread of disease.” This Phase 1 dose-escalation study is enrolling 46 healthy normal volunteers. The patients will be divided into five ascending dose groups of eight, plus an additional group of six in an effect of food group, to evaluate the safety and pharmacokinetics of SQ109. -
Mycobacterium Tuberculosis Drug Resistance
Output-driven feedback system control platform optimizes combinatorial therapy of tuberculosis using a macrophage cell culture model Aleidy Silvaa,1, Bai-Yu Leeb,1, Daniel L. Clemensb,1, Theodore Keec, Xianting Dingd, Chih-Ming Hoa,c,2, and Marcus A. Horwitzb,2 aDepartment of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095; bDivision of Infectious Diseases, Department of Medicine, University of California, Los Angeles, CA 90095; cDepartment of Bioengineering, University of California, Los Angeles, CA 90095; and dMed-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China Edited by Barry R. Bloom, Harvard School of Public Health, Boston, MA, and approved February 23, 2016 (received for review January 22, 2016) Tuberculosis (TB) remains a major global public health problem, and potential drug combinations. The first effective TB drug, strep- improved treatments are needed to shorten duration of therapy, tomycin (STR), was introduced in 1944, but used as monotherapy, decrease disease burden, improve compliance, and combat emer- resistance to it developed readily. Combination therapy with gence of drug resistance. Ideally, the most effective regimen would additional drugs, such as isoniazid (INH), para-aminosalicylic be identified by a systematic and comprehensive combinatorial search acid (PAS), and ethambutol (EMB), reduced the problem of of large numbers of TB drugs. However, optimization of regimens drug resistance, but lengthy treatments of 18–24 mo were re- by standard methods is challenging, especially as the number of drugs quired. In the 1970s, the addition of rifampicin (RIF) to the increases, because of the extremely large number of drug–dose com- regimen of STR, INH, and EMB allowed a shortening of binations requiring testing. -
MULTI-TARGET DRUG DISCOVERY AGAINST STAPHYLOCOCCUS AUREUS and TRYPANOSOMA BRUCEI INFECTIONS by YANG WANG DISSERTATION Submitted
MULTI-TARGET DRUG DISCOVERY AGAINST STAPHYLOCOCCUS AUREUS AND TRYPANOSOMA BRUCEI INFECTIONS BY YANG WANG DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Doctoral Committee: Professor Eric Oldfield, Chair Professor Robert B. Gennis Professor Paul J. Hergenrother Professor Steven C. Zimmerman Abstract The drug resistance has become a big threat to human health, and there is currently a dearth of new antibiotics being introduced. In order to find novel potent antibiotics against Staphylococcus aureus, a series of amidine and bisamidine compounds were synthesized and investigated against Staphylococcus aureus. The most active compounds are potent inhibitors against undecaprenyl diphosphate synthase (UPPS), an essential enzyme involved in cell wall biosynthesis pathway. Besides, they bound to an AT-rich DNA dodecamer (CGCGAATTCGCG)2 and were found to increase the melting transition by up to 24 °C using differential scanning calorimetry (DSC). Good correlations (R2 = 0.89, S. aureus) were found between experimental and predicted cell growth inhibition by using DNA ΔTm and UPPS IC50 experimental results together with one computed descriptor. We also solved the structures of three bisamidines binding to DNA as well as three UPPS structures. Overall, the results are of general interest in the context of the development of resistance-resistant antibiotics that involve multi-targeting. To extend the potential utility of this class of amidine compound, we tested them against Trypanosoma brucei, the causative agent of human African trypanosomiasis. The most active compound was a biphenyldiamidine which had an EC50 of 7.7 nM against bloodstream form parasites. -
Global Tuberculosis Drug Development Pipeline: the Need and the Reality
Series Tuberculosis 5 Global tuberculosis drug development pipeline: the need and the reality Zhenkun Ma, Christian Lienhardt, Helen McIlleron, Andrew J Nunn, Xiexiu Wang Drugs for tuberculosis are inadequate to address the many inherent and emerging challenges of treatment. In the past Published Online decade, ten compounds have progressed into the clinical development pipeline, including six new compounds May 19, 2010 DOI:10.1016/S0140- specifically developed for tuberculosis. Despite this progress, the global drug pipeline for tuberculosis is still insufficient 6736(10)60359-9 to address the unmet needs of treatment. Additional and sustainable efforts, and funding are needed to further improve This is the fifth in a Series of the pipeline. The key challenges in the development of new treatments are the needs for novel drug combinations, new eight papers about tuberculosis trial designs, studies in paediatric populations, increased clinical trial capacity, clear regulatory guidelines, and Global Alliance for TB Drug biomarkers for prediction of long-term outcome. Despite substantial progress in efforts to control tuberculosis, the Development, New York, NY, global burden of this disease remains high. To eliminate tuberculosis as a public health concern by 2050, all responsible USA (Z Ma PhD); Stop TB parties need to work together to strengthen the global antituberculosis drug pipeline and support the development of Partnership Secretariat, Stop TB Department, WHO, Geneva, new antituberculosis drug regimens. Switzerland (C Lienhardt PhD); Division of Clinical Introduction this study suggest that the combination of a 2-month Pharmacology, Department of Rifampicin, discovered 40 years ago, represents the last treatment regimen that cures 95% of MDR tuberculosis, Medicine, University of Cape Town, Cape Town, South Africa novel class of antibiotics introduced for the first-line a generalised nucleic acid amplification test, and a joint (H McIlleron PhD); Medical treatment of tuberculosis. -
Public Health Reviews
Public Health Reviews Treatment of tuberculosis: present status and future prospects Philip Onyebujoh,1 Alimuddin Zumla,2 Isabella Ribeiro,1 Roxana Rustomjee,3 Peter Mwaba,4 Melba Gomes,1 & John M. Grange 2 Abstract Over recent years, tuberculosis (TB) and disease caused by human immunodeficiency virus (HIV) have merged in a synergistic pandemic. The number of new cases of TB is stabilizing and declining, except in countries with a high prevalence of HIV infection. In these countries, where HIV is driving an increase in the TB burden, the capacity of the current tools and strategies to reduce the burden has been exceeded. This paper summarizes the current status of TB management and describes recent thinking and strategy adjustments required for the control of TB in settings of high HIV prevalence. We review the information on anti-TB drugs that is available in the public domain and highlight the need for continued and concerted efforts (including financial, human and infrastructural investments) for the development of new strategies and anti-TB agents. Keywords Tuberculosis, Multidrug-resistant/drug therapy; Antitubercular agents/administration and dosage/adverse effects; Directly observed therapy; Drug therapy/trends; Drug combinations; Quinolones; Quinoline; Nitroimidazoles; Quinolizines; HIV infections/drug therapy; Evaluation studies (source: MeSH, NLM). Mots clés Tuberculose résistante à la polychimiothérapie /chimiothérapie; Antituberculeux/administration et posologie/effets indésirables; Thérapie sous observation directe; Chimiothérapie/orientations;