Plants That Can Be Poisonous for Cows. a Review

Total Page:16

File Type:pdf, Size:1020Kb

Plants That Can Be Poisonous for Cows. a Review REVIEW ARTICLES Plants that can be Poisonous for Cows. A Review * 1 2 2 Cristina EL MAHDY *, Silvana POPESCU *, Cristin BORDA 1 Department of Fundamental Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj2 - Napoca, Romania Department II Animal Production and Food Safety, University of Agricultural Sciences and Veterinary Medicine,* Cluj-Napoca, Romania Corresponding author, e-mail: [email protected] Bulletin UASVM Animal Science and Biotechnologies 74(2)/ 2017 Print ISSN 1843-5262; Electronic ISSN 1843-536X DOI:10.15835/buasvmcn-asb: 0019 ABSTRACT Romania is blessed with a rich spontaneous flora, but some of the plants are toxic by their consumption in cattle, affecting Plantthe health, action isproductions not similar. Taxusand endangering Buccata, Eupatorium consumer spp. safety. (E. rugosum, Sometimes E. urticaefolium, even the consumption E. ogeratoides of) aresmall cardiotoxic amounts causesplants, poisoningbut, Eupatorium with a sppbroad extension: from mild, moderate to severe and with chronic orDatura acute stramoniummanifestations. Solanum spp. Atropa belladonna are plants with cholinergic blocking; haemolytic anemia is caused by .Pteridium also acts throughaquilinum depression of the centralEquisetum nervous system; The poisoning (Jimson weed), (nightshades),Sorghum spp (belladonna), Elderberry consumption, Senecio spp. and Hypericum (St John’s wort) induces liver toxicity. (Bracken fern) and (horsetail). with cyanogenic principles: Lupinus occurs spp., Nicotiana at spp, Conium (Johnson maculatum, grass, sudan Veratrum grass); album. Plants containing alkaloids outside their toxicity also have teratogenic action However, some of theseKeywords: plants can ethnoveterinary,be used in certain plants, cows’ poisonous, treatments. symptoms INTRODUCTION It is true that there are a number of factors Grazing, although it has many advantages, that contribute to poisoning: the season and the can expose the animals to a series of illnesses weather conditions the animals are subjected to: and accidents (Drăghici, 1991), especially when transport,et al.handling, when they are not regularly the green mass is reducedet quantitativelyal and fed and fed and the quality of the pasture is poor qualitatively, favoring the consumption of plants (Panter , 2011). that cause intoxication (Voia ., 2009). It is necessary for the animals to receive In the choice of plant species or parts of appropriate and good quality feed which allows them, responses to chemical stimuli received the animals to avoid the consumption of toxic by the animal through, smell, taste or touch andet plants, otherwise the cows, fed up with the same althe existing components: carbohydrates, organic diet are tempted to consume ettoxic al plants which acids, tannins or alkaloids present (Arnold grow along the pasture and the fence, although and.,1981) the smell is the seems secret to weapon complement in selecting the taste forage. that have low palatability (Baldwin ., 2011). Ruminants use all the senses in selecting plants, As a rule, poisoning occurs through the consumption of the whole plant or parts of it which remains the primaryet al., factor. Unpalatable or non- is toxic, depending on the amount consumed, the swallowable feeds are discarded before being period of the year and the stage of maturity of the swallowed (Lyons 2000). plant, the quantity of water in the feed, the state of 70 et al. EL MAHDY et al. et al health of theet animals, al their age and weight (www. in cardiac glycosides (Pushner , 2003, Chaney, co.lancaster.pa.us, 2010), physiological state 2015, Zanoschi ., 1981).Lupinus spp, Equisetum (Cortinovis ., 2015), the nature of the toxic spp.,Consumer Aconitum safetyspp., Atropa is endangered belladona, if milk Euphorbia comes principles, the environmental conditions in which spp.,from Pteridium poisoned aquilinumcows with: ( the plants live (Bosworth, 2006). Although poisoning can occur throughout theet POISONING WITH PLANTSRasnoveanu, 2013). alyear, because some plants by drying and present CONTAINING VARIOUS TOXIC in the hay do not lose their toxicity (Puschner PRINCIPLES ., 2003), grazing the early pasture inet the al. spring when the toxic plants make their first appearance, Poisoning with plants containing represent danger of poisoning (Panter , 2011). alkaloids In general, plantet al., toxins are perceived by the brain in an interval of 4-12 hours after ingestion of the feed (Arnold G.W. 1981), but the identification of Lupine can tolerateet.al less fertile soils, due to the causes is hard to analyze, which is why the the massive root system, which is why it hasLupinus wide detection of toxic plants, the understanding of luteus,spread L.albus, area (Markéta L.angustifolius, ., 2005). L. perennis) lupinine the symptoms,et al the recognition of problem areas The alkaloids present in lupine ( represent the strategy for minimizing the hazards (Hart ., 2001). and sparteine are found in large quantities. The toxic principles in plants are multiples: Spartulatine, L. angustifoliuslupanine, hidroxilupanine et alare other alkaloids, glycosides, cyanogenic glycosides,Colchicum alkaloids present in lupine plants, but, especially autumnaletoxalbumin, but, most cases ofConium poisoning maculatum in cows in variety (Zanoschi ., 1981). are due to plants containingDatura stramoniumalkaloids: The plant is evaluated as having a moderate / high Equisetum(meadow palustre saffron), degree of toxicity (Glen, 2008). Senecio(poison spp.hemlock), Taxus baccata (jimson Disorders of: nervous system, liver weed), et al. (marsh horsetail), degeneration, heart, kidneys and ( muscles occur (ragwort), (European mainly by eating before the flowering ofPhomopsis the plant yew) after Cortinovis (2015). A number of leptostromiformisand then, by eating lupine seeds El Mahdy, 2015). plants whose parts are toxic are generally avoided LupinusIntoxication, luteus caused by by animals,Atropa belladonabut not whenConium they maculatum, are found Daturain the L., fungus, albus and called L. Angustifoliuslupinosis, attacks stramonium,hay. The most Euphorbia common toxicspp. plantsVeratrum present album in seeds and grows saprofit along Colchicumhay: autumnale, ( with theet al. species ; the , , symptoms manifestingby high hepatotoxicity http://agriculturaonline. (Bhat , 2010). blogspot.ro, 2011). Some of the clinicalLupinus signs spp., of Signs of poisoning: changes in behavior, Nicotianapoisoning spp,in cows Veratrum are similar, album, Coniumthe manifestations maculatum spasms, vomiting, abdominal pain, tremors, being nervouset al., and reproductive: excitement, et al.,head pressure, difficulty). breathing, loss of coordination, salivation, convulsions (Forero 2011). Calf birth defects manifested (Baldwin 2011; Chaney, 2015 by malformations of the legs, spine and throat as The reproductive sphere is also affected by well as palate cleft are caused by the consumptionConium cows’ consumption of certain lupine varieties, maculatum,of toxic plants Lupinus during the gestationNicotiana period spp of. because, not all species are equally toxic, and, the cows in the range of 55-75 days ( bitter varieties that containet al quite large amounts Equisetum,); 45-75 daysPteridium aquilinum of alkaloids should not be administered as feed (Panter, 1999). for animals (Baldwin ., 2011). The negative Plants such as: , repercussions on future newborn calves are has the same antivitamin B1: thiaminase factor, manifested through obtaining calves with multiple withDigitalis similar but sp alsoAdonis distinct vernalis,symptoms Convallaria depending congenital deformationset al (D’Mello, 2002). Due majalis,on the other causes principles cardiac disorders (Bosworth, due 2006). to its content to another present alkaloid, et.alby quinolizidine can , type (Dąbrowski ., 2005) - anagyrin, with Bulletin UASVM Animal Science and Biotechnologies 74(2) / 2017 teratogenic effects (Markéta ., 2005), 71 Plants that can be Poisonous for Cows. A Review affect pregnant cows fed on lupine in the first delirium (www.envbop.govt.nz, 2003), the cattle 40-70 days of gestation can calving, calves, Conium with appear to be hallucinating, have convulsions, deformations known as “crooked calf syndrome”, become comatose, and possibly die (Fishel,et al., 2001). similar to those caused by consumption of Poisoning occurs etat al. the consumption of 0.250- (Glen, 2008). Contamination of milk is possible 0.453 Kg of green plant (Zanoschi 1981), when large amounts of lupine are consumed and, after Boyd (https://www.uaex.edu/), (Meriçli, http://docs.neu.edu.tr,). Datura ingestion ofDatura an amount stramonium of seed betweenand Colchicum 0.06 to stramonium autumnale0.09 % of animal weight can be fatal in cows. Jimsonweed, thornapple ( Both, ), is an annual plant which we find it cause dysphagia, toxic dystrophyet al in uncultivated or cultivated places, in the field, of the liver and sometimes cardiac lesions, especially among soy and corn crops. The plant cardiopulmonary collapse (Mezzasalma ., prefers rich soils (www.co.lancaster.pa.us, 2010). 2016). Milk from poisoned cows is contaminated Due to the fact that, fresh plant, has strong smell (Jonker,Nicotiana 2015). tabacum N. and unpleasant taste is not consumed by animals, rustica just in case they are hungry or pastures has low et al. (lowland region), value and infested with Jimsonweed (http://www. (higher areas in the northern region of the welchproperty.com/,). In this case, poisoning country) (Zanoschi , 1981), contains especially occurs within
Recommended publications
  • Leprosy and Other Skin Disorders
    Copyright by Robert Joseph Gallagher 2014 The report committee for Robert Joseph Gallagher Certifies that this is the approved version of the following report: An Annotated Translation of Chapter 7 of the Carakasaṃhitā Cikitsāsthāna: Leprosy and Other Skin Disorders APPROVED BY SUPERVISING COMMITTEE: Supervisor: __________________________________ Donald R. Davis _________________________________ Joel Brereton An Annotated Translation of Chapter 7 of the Carakasaṃhitā Cikitsāsthāna: Leprosy and Other Skin Disorders by Robert Joseph Gallagher, B.A., M.A. Report Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment for the degree of Master of Arts University of Texas at Austin May 2014 Dedication To my wife Virginia and our two daughters Michelle and Amy, who showed patience and understanding during my long hours of absence from their lives, while I worked on mastering the intricacies of the complex but very rewarding language of Sanskrit. In addition, extra kudos are in order for thirteen year-old Michelle for her technical support in preparing this report. Acknowledgements I wish to thank all the members of the South Asia team at UT Austin, including Prof. Joel Brereton, Merry Burlingham, Prof. Don Davis, Prof. Oliver Freiberger, Prof. Edeltraud Harzer, Prof. Patrick Olivelle, Mary Rader, Prof. Martha Selby and Jennifer Tipton. Each one has helped me along this path to completion of the M.A. degree. At the time of my last serious academic research, I used a typewriter to put my thoughts on paper. The transition from white-out to pdf has been challenging for me at times, and I appreciate all the help given to me by the members of the South Asia team.
    [Show full text]
  • A Medical-Historical Examination of the Death of Alexander the Great
    A MEDICAL-HISTORICAL EXAMINATION OF THE DEATH OF ALEXANDER THE GREAT Abstract: Alexander the Great’s cause of death has been contentious since antiquity. Historians and physicians alike have proposed a multitude of hypotheses. However, neither party is without their analytical flaws. The historians often neglect obvious medical refutations. Meanwhile, the physicians often err by forsaking disciplined historical methodology. Therefore, the authors of this paper subject these prior hypotheses to both Nathan Gamble medical and historical criticism, in order to provide a multidisciplinary University of Toronto, Toronto, Canada approach to a longstanding mystery. Some hypotheses have more weight St. Mary’s University, Twickenham, London than others, as is discussed. The most probable of the poisoning hypotheses, [email protected] which aligns with the Vulgate tradition of Alexander’s death, cites the use of Veratrum album, a plant derived bane. When the Court tradition is considered, Edmund F. Bloedow i.e. that no foul play occurred, acute pancreatitis induced by alcohol abuse holds greatest credence as a hypothesis. It is hoped that the approach used Augustine College, Ottawa, Ontario will not only increase clarity regarding Alexander’s death and challenge weak [email protected] ideas but also provide an approach by which speculation about other medical diagnoses in history may be tempered and critiqued. Keywords: Alexander the Great, Retrospective Diagnosis, Regicide, Murder, Death DOI: 10.14795/j.v4i3.269 ISSN 2360 – 266X ISSN–L 2360 – 266X ACKNOWLEDGMENTS: The authors would like to thank Joel Gamble and Jonathan Madany for the kind help in reviewing and preparing the manuscript for publication.
    [Show full text]
  • Natural Resources Section of the Resources Management Plan
    NATURAL RESOURCES SECTION OF THE RESOURCES MANAGEMENT PLAN GOLDEN GATE NATIONAL RECREATION AREA Prepared by Golden Gate National Recreation Area National Park Service Department of the Interior December 20, 1999 Prepared by: ___________________________________ Date:_____________ Division of Natural Resource Management and Research Approved by: ___________________________________ Date:_____________ General Superintendent, Golden Gate National Recreation Area NATURAL RESOURCES SECTION OF THE RESOURCES MANAGEMENT PLAN TABLE OF CONTENTS Page 1 INTRODUCTION 1 1.1 Purpose of Park Establishment 1 1.2 Purpose of the Plan 1 1.3 Compliance/National Environmental Policy Act 2 2 NATURAL RESOURCES VALUES 3 2.1 Geography, Geology and Minerals 3 2.2 Water Resources 4 2.3 Plant Resources 4 2.4 Rare and Endangered Species 4 2.5 Wildlife Resources 5 2.6 Marine Resources 15 2.7 Air Resources and Night Sky 16 3 CONDITIONS AND THREATS TO NATURAL RESOURCES 19 3.1 Geologic and Mineral Resources 19 3.2 Water Resources 20 3.3 Plant Resources 22 3.4 Rare and Endangered Species 24 3.5 Wildlife Resources 31 3.6 Marine Resources 34 3.7 Air Resources and Night Sky 36 4 GGNRA NATURAL RESOURCE PROGRAM 37 4.1 Objectives of the Natural Resource Program 37 4.2 Inventory and Monitoring (Vital Signs) — an Integrated Program 38 4.3 Restoration — an Integrated Program 38 4.4 Wildlife Program 41 4.5 Integrated Pest Management (IPM) 55 4.6 Vegetation Program 55 4.7 Forestry Program 65 4.8 Range Inventory and Management 67 4.9 Prescribed Fire Management 67 4.10 Aquatic/Hydrology
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Poisonous Plants
    Dr. Sharon M. Douglas Department of Plant Pathology and Ecology The Connecticut Agricultural Experiment Station 123 Huntington Street, P. O. Box 1106 New Haven, CT 06504 Phone: (203) 974-8601 Fax: (203) 974-8502 Founded in 1875 Email: [email protected] Putting science to work for society Website: www.ct.gov/caes POISONOUS PLANTS INTRODUCTION only attractive but also tastes sweet. The Poisonous plants have always been part of situation of plant poisoning of children is daily life. In the nineteenth century, quite different than with adults since poisonings due to plants reached near- children have great curiosity and will often epidemic levels as people often foraged for chew on anything within their reach, sources of food from natural plantings. especially attractive berries or fruit. Today, potentially dangerous plants can still Children are also less likely than adults to be found all around us. Poisonous plants are spit out unpleasant-tasting substances. frequently part of interiorscapes in homes as Since much smaller quantities are necessary well as in landscape plantings outdoors. to produce a toxic reaction in children, the This has become increasingly problematic as risks of poisoning due to ingestion are much more and more cultivated, exotic plants greater than for adults. However, regardless from throughout the world are introduced of age, reactions to poisonous plants vary into the landscape. Recent studies have with the individual and can be influenced by estimated that 3.5% of all poisonings in the diet, metabolism, and medications being United States are due to plants. taken. All types of native and introduced plants can The term “poisonous” designates many be poisonous including ferns, herbaceous kinds of reactions or effects.
    [Show full text]
  • Nightshade”—A Hierarchical Classification Approach to T Identification of Hallucinogenic Solanaceae Spp
    Talanta 204 (2019) 739–746 Contents lists available at ScienceDirect Talanta journal homepage: www.elsevier.com/locate/talanta Call it a “nightshade”—A hierarchical classification approach to T identification of hallucinogenic Solanaceae spp. using DART-HRMS-derived chemical signatures ∗ Samira Beyramysoltan, Nana-Hawwa Abdul-Rahman, Rabi A. Musah Department of Chemistry, State University of New York at Albany, 1400 Washington Ave, Albany, NY, 12222, USA ARTICLE INFO ABSTRACT Keywords: Plants that produce atropine and scopolamine fall under several genera within the nightshade family. Both Hierarchical classification atropine and scopolamine are used clinically, but they are also important in a forensics context because they are Psychoactive plants abused recreationally for their psychoactive properties. The accurate species attribution of these plants, which Seed species identifiction are related taxonomically, and which all contain the same characteristic biomarkers, is a challenging problem in Metabolome profiling both forensics and horticulture, as the plants are not only mind-altering, but are also important in landscaping as Direct analysis in real time-mass spectrometry ornamentals. Ambient ionization mass spectrometry in combination with a hierarchical classification workflow Chemometrics is shown to enable species identification of these plants. The hierarchical classification simplifies the classifi- cation problem to primarily consider the subset of models that account for the hierarchy taxonomy, instead of having it be based on discrimination between species using a single flat classification model. Accordingly, the seeds of 24 nightshade plant species spanning 5 genera (i.e. Atropa, Brugmansia, Datura, Hyocyamus and Mandragora), were analyzed by direct analysis in real time-high resolution mass spectrometry (DART-HRMS) with minimal sample preparation required.
    [Show full text]
  • The Mandrake and the Ancient World,” the Evangelical Quarterly 28.2 (1956): 87-92
    R.K. Harrison, “The Mandrake And The Ancient World,” The Evangelical Quarterly 28.2 (1956): 87-92. The Mandrake and the Ancient World R.K. Harrison [p.87] Professor Harrison, of the Department of Old Testament in Huron College, University of Western Ontario, has already shown by articles in THE EVANGELICAL QUARTERLY his interest and competence in the natural history of the Bible. Here he examines one of the more curious Biblical plants. The mandrake is one of the plants which still grows widely in the Middle East, and which has claimed magical associations from a very remote period. It is generally assigned the botanical name of Mandragora officinarum L..1 and is a perennial of the order Solanaceae. It claims affinity with the potato and eggplant, and is closely allied to the Atropa belladonna L.,2 with which it is not infrequently confused by some writers. The modern Arab knows it by a number of names, including Tuffah£ el Majanin (‘Madmen’s Apple) and Beid el Jinn (Eggs of the Jinn), apparently a reference to the ability of the plant to invigorate and stimulate the senses even to the point of mental imbalance. The former name may perhaps be a survival of the belief found in Oriental folk-lore regarding the magical herb Baaras, with which the mandrake is identified by some authorities.3 According to the legends associated with this plant, it was highly esteemed amongst the ancients on account of its pronounced magical properties. But because of the potency of these attributes it was an extremely hazardous undertaking for anyone to gather the plant, and many who attempted it were supposed to have paid for their daring with [p.88] sickness and death.4 Once the herb had been gathered, however, it availed for a number of diseases, and in antiquity it was most reputed for its ability to cure depression and general disorders of the mind.
    [Show full text]
  • FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
    ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1.
    [Show full text]
  • La Cicuta: Poison Hemlock
    ALERTA DE MALA HIERBA NOCIVA EN EL CONDADO DE KING Cicuta Mala hierba nociva no regulada de Clase B: Poison Hemlock Control recomendado Conium maculatum Familia Apiaceae Cómo identificarla • Bienal que alcanza de 8 (2.4 m) a 10 pies (3 m) de altura el segundo año. • Hojas color verde encendido tipo helecho con un fuerte olor a moho • El primer año, las plantas forman rosetas basales de hojas muy divididas y tallos rojizos con motas • El segundo año, los tallos son fuertes, huecos, sin pelos, con nervaduras y con motas/rayas rojizas o púrpuras • Plantas con flores cubiertas con numerosos racimos pequeños con forma de paraguas de diminutas flores blancas de cinco pétalos • Las semillas se forman en cápsulas verdes y acanaladas que con el tiempo La cicuta tiene hojas de color verde se vuelven marrones brillante, tipo helecho con olor a moho. Biología Se reproduce por semilla. El primer año crece en forma de roseta; el segundo, desarrolla tallos altos y flores. Crece rápidamente entre marzo y mayo; florece a finales de la primavera. Cada planta produce hasta 40,000 semillas. Las semillas caen cerca de la planta y se desplazan por la erosión, los animales, la lluvia y la actividad humana. Las semillas son viables hasta por 6 años y germinan durante la temporada de crecimiento; no requieren un periodo de letargo. Impacto Altamente tóxica para el ser humano, el ganado y la vida silvestre; causa Los tallos gruesos y sin pelos tienen la muerte por parálisis respiratoria tras su ingestión. El crecimiento manchas o vetas de color púrpura o rojizo.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Plants for CONIINE
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Plants for CONIINE Plant Part Low PPM High PPM StdDev Reference Aloe ortholopha Leaf Nash, R. J., Beaumont, J., Veitch, N. C., Reynolds, T., Benner, J., Hughes, C. N. G., Dring, J. V., Bennett, R. N., Dellar, J. E. 1992. Phenylethylamine and Piperidine Alkaloids in Aloe Species. Planta Medica, 581: 84-87. Aloe descoingsii Leaf Nash, R. J., Beaumont, J., Veitch, N. C., Reynolds, T., Benner, J., Hughes, C. N. G., Dring, J. V., Bennett, R. N., Dellar, J. E. 1992. Phenylethylamine and Piperidine Alkaloids in Aloe Species. Planta Medica, 581: 84-87. Aloe krapohliana Leaf Nash, R. J., Beaumont, J., Veitch, N. C., Reynolds, T., Benner, J., Hughes, C. N. G., Dring, J. V., Bennett, R. N., Dellar, J. E. 1992. Phenylethylamine and Piperidine Alkaloids in Aloe Species. Planta Medica, 581: 84-87. Aloe viguieri Leaf Nash, R. J., Beaumont, J., Veitch, N. C., Reynolds, T., Benner, J., Hughes, C. N. G., Dring, J. V., Bennett, R. N., Dellar, J. E. 1992. Phenylethylamine and Piperidine Alkaloids in Aloe Species. Planta Medica, 581: 84-87. Aloe globuligemma Leaf Nash, R. J., Beaumont, J., Veitch, N. C., Reynolds, T., Benner, J., Hughes, C. N. G., Dring, J. V., Bennett, R. N., Dellar, J. E. 1992. Phenylethylamine and Piperidine Alkaloids in Aloe Species. Planta Medica, 581: 84-87. Amorphophallus konjac Plant Willaman, J. J., Schubert, B. G. 1961. Alkaloid Bearing Plants and their Contained Alkaloids. ARS, USDA, Tech. Bull. 1234, Supt. Doc., Washington D.C. Arisarum vulgare Plant Willaman, J. J., Schubert, B.
    [Show full text]
  • Paton, Anne Elizabeth (2015) an Examination of the Evidence for the Existence of Leprosy and Hansen’S Disease in Medieval Ireland
    Paton, Anne Elizabeth (2015) An examination of the evidence for the existence of leprosy and Hansen’s disease in medieval Ireland. PhD thesis. https://theses.gla.ac.uk/6427/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] AN EXAMINATION OF THE EVIDENCE FOR THE EXISTENCE OF LEPROSY AND HANSEN’S DISEASE IN MEDIEVAL IRELAND ANNE ELIZABETH PATON M.A. (Hons.), M.Sc. Submitted in fulfillment of the requirements for the Degree of Ph.D. School of Humanities College of Arts University of Glasgow August 2014 Abstract Much concerning the disease termed leprosy is accepted as received knowledge, without thought to time and place, but there were many differences in how leprosy sufferers were treated across regions and eras, and so diversity should be regarded as normal. This thesis will examine what was meant by the term leprosy during primarily the medieval period between the sixth and fifteenth centuries in Ireland in order to see if this equates with the disease called Hansen’s Disease in the twenty-first century.
    [Show full text]
  • Poison-Hemlock (Conium Maculatum L.)1
    Weed Technology. 1998. Volume 12:194-197 Intriguing World of Weeds iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii.iii Poison-Hemlock (Conium maculatum L.) 1 LARRY W. MIT1CH2 "He that bites on every weed must needs light on poison." Comp/eat Collection of English Proverbs. John Ray, 1742 INTRODUCTION AND ETYMOLOGY has been used to designate this plant since the Anglo­ Saxon period (Le Strange 1977). The genus Conium is comprised of two or three tem­ The Old English hymlice was a medicinal plant, prob­ perate species of biennial herbs with highly divided ably Conium, but in Modern English the plant is chiefly leaves and compound umbels of small white flowers. All referred to as a weed. The definite reference to it as parts of C. maculatum have long been recognized as poisonous appears to begin with the 16th century herb­ being highly poisonous; it was the alists. The term hemlock for Conium maculatum first plant used to kill Socrates in BC appeared in about AD 700 as hymblicae. Through the 399 (Gledhill 1985; Holm et al. centuries, spelling and pronunciation took on many 1997; Hyam and Pankhurst 1995). forms, ranging from hymlice to hymlic, hemeluc, hem­ Conium is a member of the Um­ lake, hemlocke, hemloc, and finally hemlock. William belliferae or Apiaceae, the carrot Shakespeare, in Life of Henry the Fifth, first used the family, which accommodates 300 modern spelling. Wrote the bard, "Her fallow Leas, The genera and between 2,500 and Darnell, Hemlock, and ranke Femetary, Doth root upon" 3,000 species. Umbelliferae is one (Simpson and Weiner 1989). of the best known families of flowering plants because Poison-hemlock is native to Europe, northern Africa, of its characteristic inflorescences and fruits and the dis­ and western Asia and was often introduced to new areas tinctive chemistry reflected in the odor, flavors, and even as an ornamental garden plant (Holm et al.
    [Show full text]