Veratrum Steroidal Alkaloid Toxicity Following Ingestion of Foraged

Total Page:16

File Type:pdf, Size:1020Kb

Veratrum Steroidal Alkaloid Toxicity Following Ingestion of Foraged Veratrum Steroidal Alkaloid Toxicity Following Ingestion of Foraged Veratrum Parviflorum M Anwar 1, MW Turner 2, N Farrell 3, R Kleiman 4, WB Zomlefer 5, OM McDougal 2, BW Morgan 1 1Emory University School of Medicine, Atlanta, GA; 5Boise State University, Boise, ID; 3Rhode Island Hospital, Providence, RI; 4Wellstar Kennestone Hospital, Marietta, GA; 5University of Georgia, Athens, GA BACKGROUND RESULTS DISCUSSION • Steroidal alkaloids are found in the Veratrum genus of • The specimen was identified as V. parviflorum by botanists • Steroidal alkaloids have previously been isolated and toxicity plants. at the University of Georgia . has been reported from many species of Veratrum plants. ¡ ¢ £ ¡ ¤ ¥ ¢ ¦ ¨ § • Their toxicity manifests as GI illness followed by a x107 1.0 • This is the first reported case of Veratrum toxicity from V. Bezold-Jarisch reflex: hypopnea, hypotension and 0.5 ©¨ parviflorum with identified steroidal alkaloids. bradycardia. x107 1.0 • As far as we know, there is no previous study to characterize • Some Veratrum steroidal alkaloids are also teratogens 0.5 ¨ x107 the steroidal alkaloids in V. parviflorum . interfering with the hedgehog-2 signaling pathway which 1.0 causes cyclopsia and holoprosencephaly. 0.5 ¨ • A prior study shows some cross reactivity between Veratrum x107 1.0 steroidal alkaloids and the digoxin assay but no digoxin CASE PRESENTATION 0.5 ¨ immune fab binding. x107 • A 27 year old man (patient 1) and his 25 year old wife 1.0 0.5 (patient 2) presented to the ED with nausea and 0 x107 f) vomiting after foraging and ingesting what they believed 1.0 to be wild leeks from the Appalachian Trail in Georgia, 0.5 10 USA. 0 20 30 40 50 Time [min] Figure 1. Total ion chromatograms (TIC) for (a) Patient 1 Plasma, (b) Patient 1 • The man and woman had BP 87/40, HR 53 and BP Serum, (c) Patient 2 Plasma, (d) Control serum, (e) plant extract spiked serum, and (f) V. parviflorum extract. Intensity Intensity 88/40, HR 50 respectively after antiemetics and fluid 5 5 x10 x10 a) 398.3126 b) resuscitation. They were alert and awake throughout. 1.25 1.25 1.00 1.00 • ECGs showed sinus bradycardia. 0.75 0.75 0.50 0.50 268.1232 0.25 0.25 758.3882 • 10 vials of digoxin immune Fab were given due to 0.00 0.00 0 10 20 30 40 50 60 Time [min] 100 200 300 400 500 600 700 800 900 m/z 6 6 x10 Figure 4. (L) A lamb head displaying the teratogenic effects of cyclopamine (Biins et al.). concern for cardiac glycoside toxicity with no response. x10 c) 410.3140 d) 3.00 3.00 (M) V. parviflorum. (R) Allium tricoccum - Ramps/wild leeks (UGA). • Laboratory analysis showed undetectable digoxin 2.00 2.00 concentrations in both patients. 1.00 1.00 0.00 0.00 CONCLUSIONS 0 10 20 30 40 50 60 Time [min] 100 200 300 400 500 600 700 800 900 m/z 5 5 x10 x10 • Their symptoms resolved 12 hours after arrival and they e) 412.3284 f) 2.00 2.00 • V. Parviflorum contains the steroidal alkaloids verazine, were discharged within 34 hours. 1.50 1.50 1.00 1.00 veratramine, cyclopamine, and veratridine. 0.50 0.50 141.9615 268.1230 658.3698 METHODS 0.00 0.00 0 10 20 30 40 50 60 Time [min] 100 200 300 400 500 600 700 800 900 m/z • In patients presenting with cardiotoxicity after ingestion of 4 4 x10 x10 161.0996 g) 8.00 h) • We collected and analyzed the implicated fresh plant 2.50 wild plants in the Southeastern USA, consider V. parviflorum 2.00 6.00 1.50 toxicity. material and both patients’ serum/plasma. 4.00 1.00 674.4174 0.50 2.00 • We used liquid chromatography-mass spectroscopy and 0.00 0.00 0 10 20 30 40 50 60 Time [min] 100 200 300 400 500 600 700 800 900 m/z REFERENCES high resolution electrospray ionization time of flight Figure 3. TICs and corresponding mass/spectrometry for Veratrum alkaloids Kang, et al. “Steroidal alkaloids from Veratrum nigrum enhance glucose uptake in skeletal muscle cells.” J. Nat. Prod. (2015) 78 : 803-810. tandem mass spectrometry to extract and characterize identified from the extracted biomass of V. parviflorum ; a-b: verazine (m/z Lui, et al. “Isolation, identification, and bioactivity of microbial metabolites of cyclopamine and its congeners.” Phytochemistry Letters. (2015) 12 : 203-208. 398.3125); c-d: veratramine (m/z 410.3141); e-f: cyclopamine (m/z 412.3285); Betchel LK, et al. Ingestion of false hellebore plants can cross-react with a digoxin clinical chemistry assay. Clinical Toxicology 2010;48:435- steroidal alkaloids from the foraged plant and patients’ 442 g-h: veratridine (m/z 674.4174). Grobosch T, et al. Accidental intoxication with Veratrum album. Journal of Analytical Toxicology 2008;32:768-73. serum. Froberg B, et al. Plant poisoning.Emerg Med Clin N Am 2007;25:375-433.
Recommended publications
  • Leprosy and Other Skin Disorders
    Copyright by Robert Joseph Gallagher 2014 The report committee for Robert Joseph Gallagher Certifies that this is the approved version of the following report: An Annotated Translation of Chapter 7 of the Carakasaṃhitā Cikitsāsthāna: Leprosy and Other Skin Disorders APPROVED BY SUPERVISING COMMITTEE: Supervisor: __________________________________ Donald R. Davis _________________________________ Joel Brereton An Annotated Translation of Chapter 7 of the Carakasaṃhitā Cikitsāsthāna: Leprosy and Other Skin Disorders by Robert Joseph Gallagher, B.A., M.A. Report Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment for the degree of Master of Arts University of Texas at Austin May 2014 Dedication To my wife Virginia and our two daughters Michelle and Amy, who showed patience and understanding during my long hours of absence from their lives, while I worked on mastering the intricacies of the complex but very rewarding language of Sanskrit. In addition, extra kudos are in order for thirteen year-old Michelle for her technical support in preparing this report. Acknowledgements I wish to thank all the members of the South Asia team at UT Austin, including Prof. Joel Brereton, Merry Burlingham, Prof. Don Davis, Prof. Oliver Freiberger, Prof. Edeltraud Harzer, Prof. Patrick Olivelle, Mary Rader, Prof. Martha Selby and Jennifer Tipton. Each one has helped me along this path to completion of the M.A. degree. At the time of my last serious academic research, I used a typewriter to put my thoughts on paper. The transition from white-out to pdf has been challenging for me at times, and I appreciate all the help given to me by the members of the South Asia team.
    [Show full text]
  • A Medical-Historical Examination of the Death of Alexander the Great
    A MEDICAL-HISTORICAL EXAMINATION OF THE DEATH OF ALEXANDER THE GREAT Abstract: Alexander the Great’s cause of death has been contentious since antiquity. Historians and physicians alike have proposed a multitude of hypotheses. However, neither party is without their analytical flaws. The historians often neglect obvious medical refutations. Meanwhile, the physicians often err by forsaking disciplined historical methodology. Therefore, the authors of this paper subject these prior hypotheses to both Nathan Gamble medical and historical criticism, in order to provide a multidisciplinary University of Toronto, Toronto, Canada approach to a longstanding mystery. Some hypotheses have more weight St. Mary’s University, Twickenham, London than others, as is discussed. The most probable of the poisoning hypotheses, [email protected] which aligns with the Vulgate tradition of Alexander’s death, cites the use of Veratrum album, a plant derived bane. When the Court tradition is considered, Edmund F. Bloedow i.e. that no foul play occurred, acute pancreatitis induced by alcohol abuse holds greatest credence as a hypothesis. It is hoped that the approach used Augustine College, Ottawa, Ontario will not only increase clarity regarding Alexander’s death and challenge weak [email protected] ideas but also provide an approach by which speculation about other medical diagnoses in history may be tempered and critiqued. Keywords: Alexander the Great, Retrospective Diagnosis, Regicide, Murder, Death DOI: 10.14795/j.v4i3.269 ISSN 2360 – 266X ISSN–L 2360 – 266X ACKNOWLEDGMENTS: The authors would like to thank Joel Gamble and Jonathan Madany for the kind help in reviewing and preparing the manuscript for publication.
    [Show full text]
  • Cally Plant List a ACIPHYLLA Horrida
    Cally Plant List A ACIPHYLLA horrida ACONITUM albo-violaceum albiflorum ABELIOPHYLLUM distichum ACONITUM cultivar ABUTILON vitifolium ‘Album’ ACONITUM pubiceps ‘Blue Form’ ACAENA magellanica ACONITUM pubiceps ‘White Form’ ACAENA species ACONITUM ‘Spark’s Variety’ ACAENA microphylla ‘Kupferteppich’ ACONITUM cammarum ‘Bicolor’ ACANTHUS mollis Latifolius ACONITUM cammarum ‘Franz Marc’ ACANTHUS spinosus Spinosissimus ACONITUM lycoctonum vulparia ACANTHUS ‘Summer Beauty’ ACONITUM variegatum ACANTHUS dioscoridis perringii ACONITUM alboviolaceum ACANTHUS dioscoridis ACONITUM lycoctonum neapolitanum ACANTHUS spinosus ACONITUM paniculatum ACANTHUS hungaricus ACONITUM species ex. China (Ron 291) ACANTHUS mollis ‘Long Spike’ ACONITUM japonicum ACANTHUS mollis free-flowering ACONITUM species Ex. Japan ACANTHUS mollis ‘Turkish Form’ ACONITUM episcopale ACANTHUS mollis ‘Hollard’s Gold’ ACONITUM ex. Russia ACANTHUS syriacus ACONITUM carmichaelii ‘Spätlese’ ACER japonicum ‘Aconitifolium’ ACONITUM yezoense ACER palmatum ‘Filigree’ ACONITUM carmichaelii ‘Barker’s Variety’ ACHILLEA grandifolia ACONITUM ‘Newry Blue’ ACHILLEA ptarmica ‘Perry’s White’ ACONITUM napellus ‘Bergfürst’ ACHILLEA clypeolata ACONITUM unciniatum ACIPHYLLA monroi ACONITUM napellus ‘Blue Valley’ ACIPHYLLA squarrosa ACONITUM lycoctonum ‘Russian Yellow’ ACIPHYLLA subflabellata ACONITUM japonicum subcuneatum ACONITUM meta-japonicum ADENOPHORA aurita ACONITUM napellus ‘Carneum’ ADIANTUM aleuticum ‘Japonicum’ ACONITUM arcuatum B&SWJ 774 ADIANTUM aleuticum ‘Miss Sharples’ ACORUS calamus ‘Argenteostriatus’
    [Show full text]
  • Paton, Anne Elizabeth (2015) an Examination of the Evidence for the Existence of Leprosy and Hansen’S Disease in Medieval Ireland
    Paton, Anne Elizabeth (2015) An examination of the evidence for the existence of leprosy and Hansen’s disease in medieval Ireland. PhD thesis. https://theses.gla.ac.uk/6427/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] AN EXAMINATION OF THE EVIDENCE FOR THE EXISTENCE OF LEPROSY AND HANSEN’S DISEASE IN MEDIEVAL IRELAND ANNE ELIZABETH PATON M.A. (Hons.), M.Sc. Submitted in fulfillment of the requirements for the Degree of Ph.D. School of Humanities College of Arts University of Glasgow August 2014 Abstract Much concerning the disease termed leprosy is accepted as received knowledge, without thought to time and place, but there were many differences in how leprosy sufferers were treated across regions and eras, and so diversity should be regarded as normal. This thesis will examine what was meant by the term leprosy during primarily the medieval period between the sixth and fifteenth centuries in Ireland in order to see if this equates with the disease called Hansen’s Disease in the twenty-first century.
    [Show full text]
  • Aconitum Napellus)
    Phil Rasmussen (M.Pharm., M.P.S., Dip. Herb. Med., M.N.H.A.A., M.N.I.M.H.(U.K.), M.N.Z.A.M.H.) Consultant Medical Herbalist 23 Covil Ave Te Atatu South Auckland New Zealand tel.(0064)09 378 9274 fax.(0064) 09 834 8870 email: [email protected] _____________________________________________________________________ Report on Appropriate Classification for Aconite (Aconitum napellus) Confidential May 9, 2001. Summary An assessment of safety considerations with respect to human usage of complementary medicine preparations made from the substance Aconite (any part of the plant Aconitum napella, otherwise known as Monkshood), has been undertaken. The available toxicological data was reviewed, and levels of intake of the known toxic constituents, the alkaloids aconitine, mesaconitine and jesaconitine, known to be associated with adverse effects and possible fatality in humans, were determined. From this assessment, concentration levels of the known toxic alkaloids below which no toxic effects would normally be associated with their internal ingestion or use, was determined. Levels of ingestion of these toxic components which could normally be deemed as completely safe, were then ascertained. This assessment was then applied to an evaluation of homoeopathic Aconite-containing preparations available in the marketplace, to select ‘cut off points’ below which general sales classification is deemed appropriate. These calculations were based upon both concentration levels of the toxic alkaloids, as well as the maximum recommended pack size of preparations containing them. Aconite: an introduction Aconite (a preparation made from either the roots or herb of the European shrub Aconitum napellus, or other Aconitum species ), has long been used both as a traditional herbal medicine as well as a homoeopathic remedy.
    [Show full text]
  • Dioscorides De Materia Medica Pdf
    Dioscorides de materia medica pdf Continue Herbal written in Greek Discorides in the first century This article is about the book Dioscorides. For body medical knowledge, see Materia Medica. De materia medica Cover of an early printed version of De materia medica. Lyon, 1554AuthorPediaus Dioscorides Strange plants RomeSubjectMedicinal, DrugsPublication date50-70 (50-70)Pages5 volumesTextDe materia medica in Wikisource De materia medica (Latin name for Greek work Περὶ ὕλης ἰατρικῆς, Peri hul's iatrik's, both means about medical material) is a pharmacopeia of medicinal plants and medicines that can be obtained from them. The five-volume work was written between 50 and 70 CE by Pedanius Dioscorides, a Greek physician in the Roman army. It was widely read for more than 1,500 years until it supplanted the revised herbs during the Renaissance, making it one of the longest of all natural history books. The paper describes many drugs that are known to be effective, including aconite, aloe, coloxinth, colocum, genban, opium and squirt. In all, about 600 plants are covered, along with some animals and minerals, and about 1000 medicines of them. De materia medica was distributed as illustrated manuscripts, copied by hand, in Greek, Latin and Arabic throughout the media period. From the sixteenth century, the text of the Dioscopide was translated into Italian, German, Spanish and French, and in 1655 into English. It formed the basis of herbs in these languages by such people as Leonhart Fuchs, Valery Cordus, Lobelius, Rembert Dodoens, Carolus Klusius, John Gerard and William Turner. Gradually these herbs included more and more direct observations, complementing and eventually displacing the classic text.
    [Show full text]
  • TELOPEA Publication Date: 13 October 1983 Til
    Volume 2(4): 425–452 TELOPEA Publication Date: 13 October 1983 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19834408 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea 2(4): 425-452, Fig. 1 (1983) 425 CURRENT ANATOMICAL RESEARCH IN LILIACEAE, AMARYLLIDACEAE AND IRIDACEAE* D.F. CUTLER AND MARY GREGORY (Accepted for publication 20.9.1982) ABSTRACT Cutler, D.F. and Gregory, Mary (Jodrell(Jodrel/ Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, England) 1983. Current anatomical research in Liliaceae, Amaryllidaceae and Iridaceae. Telopea 2(4): 425-452, Fig.1-An annotated bibliography is presented covering literature over the period 1968 to date. Recent research is described and areas of future work are discussed. INTRODUCTION In this article, the literature for the past twelve or so years is recorded on the anatomy of Liliaceae, AmarylIidaceae and Iridaceae and the smaller, related families, Alliaceae, Haemodoraceae, Hypoxidaceae, Ruscaceae, Smilacaceae and Trilliaceae. Subjects covered range from embryology, vegetative and floral anatomy to seed anatomy. A format is used in which references are arranged alphabetically, numbered and annotated, so that the reader can rapidly obtain an idea of the range and contents of papers on subjects of particular interest to him. The main research trends have been identified, classified, and check lists compiled for the major headings. Current systematic anatomy on the 'Anatomy of the Monocotyledons' series is reported. Comment is made on areas of research which might prove to be of future significance.
    [Show full text]
  • Plant Health Clinic News, Issue 2, 2009
    Department of Plant Pathology PLANT HEALTH Sherrie Smith CLINIC NEWS Rick Cartwright Issue 2-March 18 , 2009 This bulletin from the Cooperative Extension Plant Health Clinic (Plant Disease Clinic) is an electronic Hellebore update about diseases and other problems observed in our lab each month. Input from everybody interested in plants is welcome and appreciated. Hellebore There are fifteen species of Hellebores commonly known as Lenten Rose. Most of the genus has shiny evergreen leaves, forming attractive clumps 9-18 inches tall and 24 inches wide. Hellebores have the added attraction of being extremely deer-resistant. They are among the first perennials to bloom, starting in February in many locations and continuing until spring. The lovely flowers are in shades of purple, pink, and white. Hellebores www.avidgardeners.org require partial shade, good drainage, adequate moisture, and thrive best in nearly neutral soils. Plants are prone some years to a fungal infection caused by Coniothyrium Spruce hellebore. Symptoms are large, irregular black spots on of leaves, stems, blooms, and flower stalks. Leaf lesions It is nearly time to spray spruces for needle cast disease often run together causing yellowing and premature leaf caused by Rhizosphaera kalkhoffii. This is the most death. Infected stems may shrivel and collapse. common problem of blue spruce in the landscape. The Sanitation is the best defense. Damaged leaves should disease usually starts at the bottom (inside near the be removed from the plant immediately and destroyed. trunk) of the tree and progresses outward and upward. The needles will take on a brown or purplish color and then fall to the ground.
    [Show full text]
  • Liliaceae Lily Family
    Liliaceae lily family While there is much compelling evidence available to divide this polyphyletic family into as many as 25 families, the older classification sensu Cronquist is retained here. Page | 1222 Many are familiar as garden ornamentals and food plants such as onion, garlic, tulip and lily. The flowers are showy and mostly regular, three-merous and with a superior ovary. Key to genera A. Leaves mostly basal. B B. Flowers orange; 8–11cm long. Hemerocallis bb. Flowers not orange, much smaller. C C. Flowers solitary. Erythronium cc. Flowers several to many. D D. Leaves linear, or, absent at flowering time. E E. Flowers in an umbel, terminal, numerous; leaves Allium absent. ee. Flowers in an open cluster, or dense raceme. F F. Leaves with white stripe on midrib; flowers Ornithogalum white, 2–8 on long peduncles. ff. Leaves green; flowers greenish, in dense Triantha racemes on very short peduncles. dd. Leaves oval to elliptic, present at flowering. G G. Flowers in an umbel, 3–6, yellow. Clintonia gg. Flowers in a one-sided raceme, white. Convallaria aa. Leaves mostly cauline. H H. Leaves in one or more whorls. I I. Leaves in numerous whorls; flowers >4cm in diameter. Lilium ii. Leaves in 1–2 whorls; flowers much smaller. J J. Leaves 3 in a single whorl; flowers white or purple. Trillium jj. Leaves in 2 whorls, or 5–9 leaves; flowers yellow, small. Medeola hh. Leaves alternate. K K. Flowers numerous in a terminal inflorescence. L L. Plants delicate, glabrous; leaves 1–2 petiolate. Maianthemum ll. Plant coarse, robust; stems pubescent; leaves many, clasping Veratrum stem.
    [Show full text]
  • 4. VERATRUM Linnaeus, Sp. Pl. 2: 1044. 1753
    Flora of China 24: 82–85. 2000. 4. VERATRUM Linnaeus, Sp. Pl. 2: 1044. 1753. 藜芦属 li lu shu Chen Xinqi (陈心启 Chen Sing-chi); Hiroshi Takahashi1 Herbs perennial, usually andropolygamous, with short, thick rhizomes and stout, slightly fleshy roots. Stems erect, terete, stout, usually pubescent, leafy, usually enclosed basally by fibers or reticulate fibers formed from disintegrated sheaths. Leaves alternate, sheathed and clasping, broad to narrow, strongly plicately veined, basally usually narrowed. Inflorescence usually a terminal panicle, many flowered. Flowers shortly pedicellate or subsessile, white, yellowish, green, or dark purple-brown, funnelform, cupular to opening flat. Tepals 6, usually free, spreading, persistent in fruit. Stamens 6, inserted at base of tepals; anthers reniform to cordate- orbicular, with locules confluent and dehiscent by an apical valve. Ovary 3-loculed, slightly 3-lobed apically, ovules usually many. Styles 3, short, persistent, stigmatic adaxially. Fruit a septicidal capsule. Seeds several per valve, flattened, narrowly winged. About 40 species: mainly in temperate regions of the N hemisphere; 13 species (eight endemic) in China. 1a. Basal sheath of stem with only longitudinal veins, becoming fibrous when disintegrated. 2a. Leaves glabrous or sparsely pubescent .............................................................................................................. 2. V. oxysepalum 2b. Leaves densely pubescent abaxially. 3a. Leaves silvery pubescent abaxially ...............................................................................................................
    [Show full text]
  • Helleborus Niger Helleborus Niger, Commonly Called Christmas Rose Or Black Hellebore, Is an Evergreen Perennial Flowering Plant in the Buttercup Family, Ranunculaceae
    Helleborus niger Helleborus niger, commonly called Christmas rose or black hellebore, is an evergreen perennial flowering plant in the buttercup family, Ranunculaceae. It is poisonous. Although the flowers resemble wild roses (and despite its common name), Christmas rose does not belong to the rose family (Rosaceae). Taxonomy The black hellebore was described by Carl Linnaeus in volume one of his Species Plantarum in 1753.The Latin specific name niger (black) may refer to the colour of the roots. There are two subspecies: H. niger niger and H. niger macranthus, which has larger flowers (up to 3.75 in/9 cm across). In the wild, H. niger niger is generally found in mountainous areas in Switzerland, southern Germany, Austria, Slovenia, Croatia and northern Italy. Helleborus niger macranthus is found only in northern Italy and possibly adjoining parts of Slovenia. Description Helleborus niger is an evergreen plant with dark leathery pedate leaves carried on stems 9–12 in (23–30 cm) tall. The large flat flowers, borne on short stems from midwinter to early spring, are generally white, but occasionally purple or pink. The tips of the petals may be flushed pink or green, and there is a prominent central boss of yellow. Horticulture The plant is a traditional cottage garden favourite because it flowers in the depths of winter. Large- flowered cultivars are available, as are pink-flowered and double-floweredselections. It can be difficult to grow well; acid soil is unsuitable, as are poor, dry conditions and full sun. Moist, humus-rich, alkaline soil in dappled shade is preferable. Leaf-mould can be dug in to improve heavy clay or light sandy soils; lime can be added to 'sweeten' acid soils.
    [Show full text]
  • Toxic/Poisonous to Livestock Plants of Mongolian Rangelands
    Toxic/Poisonous to Livestock Plants of Mongolian Rangelands Daalkhaijav Damiran and Enkhjargal Darambazar Eastern Oregon Agricultural Research Center, Union, OR-97883, Oregon, USA Briefly about Mongolian rangelands Mongolian natural rangeland covers 128.8 million ha. There are about 2823 vascular plant species and over 662 genera and 128 families have been recorded (Gubanov, 1996). Mongolian rangeland can be divided into 4-5 zones according to locations that differ in landscape, annual and seasonal climatic conditions, species composition and growth rate: high mountains, forest-steppe, steppe, desert-steppe and desert belt. Desert-steppe and desert belt account for 44.6% of the pastureland and the main domestic herbivores are camels and goats. Forest-steppe and high mountains accounts for 27.4% and the main domestic herbivores are cattle, sheep, horse and yaks. The rest 28% of the pastureland belongs to steppe and is the main stock-raising zone for cattle, sheep, horse, camels and goats. Mongolia is the only country of Eurasia to retain huge areas of steppes vegetation (Gunin et al. 1999). Mongolian rangeland is distributed over the extremely continental climate with harsh continental and extremely unpredictable climatic conditions. North and central part of country’s isohyets of 250-300 mm annual rainfall and over the southern-desert part of the country 50 to 100 mm annual rainfall. In Mongolia, the growing season is short and very dependent on climate, particularly rainfall. New growth in the forest steppe and steppe zones begins in mid- April, whereas elsewhere it may not begin until mid-May. Growth is often very slow, and the grazing of young grass may only be possible after 30-35 days.
    [Show full text]