Habitat Suitability Assessment of Ts'ehlanyane

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Suitability Assessment of Ts'ehlanyane HABITAT SUITABILITY ASSESSMENT OF TS’EHLANYANE NATIONAL PARK, LESOTHO: VEGETATION DESCRIPTION AND RECOMMENDATIONS FOR WILDLIFE INTRODUCTIONS Compiled by ME Daemane, Charlene Bissett, Lourens de Lange & Hugo Bezuidenhout Conservation Services, Kimberley, SANParks February 2017 1 1. BACKGROUND The Ts’ehlanyane National Park (TNP) was first established by Earth Plan consultants in 1997 to be developed as a nature reserve for conserving the representative fauna and flora of the Alpine Belt. In 2000 the nature reserve was handed over to the Lesotho Highlands Development Authority and in 2005 the Government of Lesotho in the Ministry of Tourism Environment and Culture took over the management of TNP. The park is located in the northern highlands of Lesotho deep in the front range of the Maluti Mountains at the junction of the Ts’ehlanyane and Hololo rivers (Figure 1). TNP encompasses approximately 5 392 hectares of extremely rugged mountainous terrain and it is the second largest Protected Area in Lesotho (Figure 1). It has an altitude ranging from 1940 to 3112 meters above sea level and is considered mostly sub-alpine. It owes its origin to the access road to the Hlotse tunnel as part of the Lesotho Highlands Water Project. TNP has exceptional scenic, natural and wilderness features. All large mammalian fauna were extirpated from TNP in the early 1900s (Morake 2010; Boshoff & Kerley 2013). The first faunal introduction into TNP was achieved in 2008. A game fence was erected around a 426ha area within the TNP in preparation for the first faunal introductions from South Africa (Figure 2).Toward the end of 2008, South Africa donated 10 eland (Tragelaphus oryx) to TNP and a further 15 eland were introduced from South Africa in 2009 to supplement the first introduction. Figure 1: Location of Ts’ehlanyane National Park, Bokong and Sehlabathebe within Lesotho. Neighbouring South African provinces are also presented. 2 1.1. Objective for the assessment The Maluti Drakensberg Transfrontier Programme (MDTP) and stakeholders requested a team of experts from Lesotho and South Africa to undertake a habitat assessment that will assist in the decision making regarding the request for zebra (Equus quagga/Equus zebra zebra) donations to TNP. This request also follows a previous game donation by South African National Parks and Free State Economic Development, Tourism and Environmental Affairs where 25 eland were donated to TNP. 2. HABITAT ASSESSMENT A team of experts from South Africa and Lesotho led by MDTP Conservation specialist undertook a habitat assessment in TNP from the 30 January to 03 February 2017. The field work was aimed at assessing the feasibility for new game introductions by verifying the landscape features such as vegetation type, associated biomass and forage availability; size of the park; water availability; staff capacity and general challenges associated with biodiversity management. Two days were set aside for field assessments. The area covered during these field assessments are shown in Figure 2. Figure 2: The area covered during the habitat assessment in Ts’ehlanyane National Park, Lesotho. 3 2.1. Vegetation TNP falls within the Grassland Biome and is dominated by herbaceous vegetation of relatively short and simple structure, usually of the family Poaceae (Mucina & Rutherford, 2006). Woody plants are confined to specific habitats such as smaller escarpments and drainage lines. 2.1.1. Bioregions TNP falls within the Drakensberg Grassland Bioregion, consisting of three vegetation types: Drakensberg-Amathole Afromontane Fynbos (Gd 6), Lesotho Highland Basalt Shrubland (Gd 8) and Drakensberg Afroalpine Heathland (Gd 10) (Figure 2). Drakensberg-Amathole Afromontane Fynbos (Gd 6): dominated by small trees and shrubs in steep valleys and escarpment slopes, stream gullies, and depressions. Lesotho Highland Basalt Shrubland (Gd 8): the landscape consists of many plateaus and high ridges of mountains separated by deep valleys. Drakensberg Afroalpine Heathland (Gd 10): found in the highest plateaus and mountain ridges above an altitude of approximately 2900 metres above sea level (masl). The frost action is important in alpine soil formation, where the freezing and thawing of the soil heaves the soil material, resulting in gradual removal of finer soil particles downslope. Figure 3: The Drakensberg Grassland Bioregion consisting of three vegetation types in Ts’ehlanyane National Park Lesotho. Source data: Mucina & Rutherford 2006. 4 2.1.2. Delineation of plant communities A broad vegetation classification, description and mapping is useful at a broader scale, however finer refinement is still required at a local scale (i.e. park scale) to divide the park into plant communities. Vegetation sampling previously undertaken by Lesotho officials were used together with data collected in January 2017 to identify the most dominant plant communities and associated habitats. Vegetation types by Mucina & Rutherford, 2006 (Figure 3) were realigned with landscape features using Google Earth Pro for accuracy and three plant communities were identified (Figure 4). 1. Leucosidea sericea - Buddleja salviifolia Shrubland This plant community occurs in the Drakensberg-Amathole Afromontane vegetation type. The drainage lines and the footslopes are mostly dominated by Leucosidea sericea. The drier areas outside the drainage lines are dominated by Searsia divaricata, Passerina monticola, Rhamnus prinoides, Diospyros austro-africana, Artemisia afra and Buddleja loricata and Buddleja salviifolia. The bamboo reed, Thamnocalamus tessellatus occasionally occur on the footslope but are more abundant on the midslope valley. The most dominant grasses are Cymbopogon excavates, Aristida congesta subsp. barbicolis, Merxmuellera macowanii, Hyparrhenia hirta and forbs such as Helichrysum and Senecio species. Figure 4: Finer delineation of the Drakensberg Grassland Bioregion resulted into four plant communities in Ts’ehlanyane National Park. 2. Passerina montana Shrubland This plant community consists of plateaus and high ridges of mountains often separated by deep valleys in the Lesotho Highland Basalt Grassland vegetation type. Vegetation is closed, short grassland with many areas dominated by Passerina montana, Searsia pyroides and 5 Chrysocoma ciliata. The depressions are dominated by Leucosidea sericea and Buddleja loricata. Themeda triandra, Helictotrichon longifolium and Cymbopogon excavatus tend to be more dominant at the lower and middle elevations whereas Merxmuellera disticha occurs at higher elevation. 3. Themeda triandra – Festuca caprina Grassland This plant community tends to be more dominant on the middle and high elevations in the Lesotho Highland Basalt Grassland vegetation type. The middle elevations are dominated by Themeda triandra, Cymbopogon excavatus, Harpochloa falx, Elionurus muticus, Pentaschistis oreodoxa, Eragrostis chloromelas, Eragrostis racemosa and Eragrostis capensis. Leucosidea sericea is encroaching some areas in the middle elevations possibly due to lack of fire in the area. The higher altitudes are dominated by Festuca caprina, Heteropogon contortus, Pentaschistis oreodoxa, Microchloa caffra and Merxmuellera disticha. Eland seem to mainly utilize this plant community as a lot of droppings were encountered in this area. A herd of approximately 23 eland were seen utilizing these areas on the 2nd February 2017 (Figure 5). Figure 5: A herd of eland, approximately 23 individuals, utilizing the Lesotho Highlands Basalt Grassland in Ts’ehlanyane National Park. Photo: Lourens de Lange. 6 4. Helichrysum trilineatum - Chrysocoma ciliata Heathland This heathland community occupies a narrow strip at the edge of the escarpments in the Drakensberg Afroalpine Heathland vegetation type (Killick 1963). Short shrub-dominated vegetation such as Helichrysum trilineatum, Erica species and Chrysocoma ciliata are interspersed with alpine grassland such as Merxmuellera disticha, Mermuellera drakensbergensis and Festuca caprina. Cushion plant species forming low mats such as Helichrysum species are also common. 2.3 Fire Grassland is a fire-prone ecosystem and fire therefore plays a crucial role in the maintenance of vegetation structure and plant species composition (Mucina & Rutherford 2006). Fire suppression may also result in vegetation transformation such as a succession trend from an herbaceous forbland towards a shrubland structure and plant species composition. The key components of a fire regime in the grassland ecosystem are the frequency, seasonality and intensity of fires (Gill 1975). Fire in grasslands occurs every 1-4 years and, in montane grasslands, occurs mostly in late winter from July to September (Le Maitre & Midgley 1992). Fire intensity depends on fuel moisture, air temperature and wind speed. Lightening is also the primary natural source of ignition for grassland fires. Factors such as rainfall and fire regime will therefore play a major role in influencing vegetation structure and plant species composition in TNP. 2.4 Water in the landscape The park is located deep in the front range of the Maluti Mountains at the confluence of the Ts’ehlanyane and Hololo rivers. Besides these two main rivers, there are several tributaries originating from the steep, upper midslopes providing enough water for the wildlife especially during the summer season. Snow is a common feature during the winter months and this provides extra precipitation providing water during the dry season. Furthermore, an artificial waterhole has been erected by
Recommended publications
  • Tulbagh Renosterveld Project Report
    BP TULBAGH RENOSTERVELD PROJECT Introduction The Cape Floristic Region (CFR) is the smallest and richest floral kingdom of the world. In an area of approximately 90 000km² there are over 9 000 plant species found (Goldblatt & Manning 2000). The CFR is recognized as one of the 33 global biodiversity hotspots (Myers, 1990) and has recently received World Heritage Status. In 2002 the Cape Action Plan for the Environment (CAPE) programme identified the lowlands of the CFR as 100% irreplaceable, meaning that to achieve conservation targets all lowland fragments would have to be conserved and no further loss of habitat should be allowed. Renosterveld , an asteraceous shrubland that predominantly occurs in the lowland areas of the CFR, is the most threatened vegetation type in South Africa . Only five percent of this highly fragmented vegetation type still remains (Von Hase et al 2003). Most of these Renosterveld fragments occur on privately owned land making it the least represented vegetation type in the South African Protected Areas network. More importantly, because of the fragmented nature of Renosterveld it has a high proportion of plants that are threatened with extinction. The Custodians of Rare and Endangered Wildflowers (CREW) project, which works with civil society groups in the CFR to update information on threatened plants, has identified the Tulbagh valley as a high priority for conservation action. This is due to the relatively large amount of Renosterveld that remains in the valley and the high amount of plant endemism. The CAPE program has also identified areas in need of fine scale plans and the Tulbagh area falls within one of these: The Upper Breede River planning domain.
    [Show full text]
  • Comparison of Extent and Transformation of South Africa's
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by South East Academic Libraries System (SEALS) Research in Action South African Journal of Science 97, May/June 2001 179 remote sensing applications in South Comparison of extent and Africa. This is a hierarchical framework designed to suit South African conditions, transformation of South Africa’s and incorporates known land-cover types that can be identified in a consistent woodland biome from two national and repetitive manner from high- resolution satellite imagery such as Land- databases sat TM and SPOT.The ‘natural’vegetation classes are based on broad, structural M.W. Thompsona*, E.R. Vinka, D.H.K. Fairbanksb,c, A. Ballancea types only, and are not intended to be and C.M. Shackletona,d equivalent to a floristic or ecological vege- tation classification. It is important to understand that a HE RECENT COMPLETION OF THE SOUTH Fairbanks et al.5 combination of both the NLC database’s TAfrican National Land-Cover Database This paper compares the distribution ‘Woodland’ and ‘Thicket, Bushland, and the Vegetation Map of South Africa, and location of woodland and bushveld- Bush-Clump & Tall Fynbos’ land-cover Swaziland and Lesotho, allows for the first type vegetation categories defined within classes were used in the comparison with time a comparison to be made on a national scale between the current and potential the NLC data, and the equivalent the DEAT defined ‘Savanna Biome’. The distribution of ‘natural’ vegetation resources. ‘Savanna Biome’ class defined within the inclusion of the NLC’s ‘Thicket, Bushland This article compares the distribution and DEAT’s ‘VegetationMap’ data.
    [Show full text]
  • Maloti-Drakensberg Park, Lesotho & South Africa
    IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Maloti-Drakensberg Park - 2020 Conservation Outlook Assessment Maloti-Drakensberg Park 2020 Conservation Outlook Assessment SITE INFORMATION Country: Lesotho, South Africa Inscribed in: 2000 Criteria: (i) (iii) (vii) (x) The Maloti-Drakensberg Park is a transboundary site composed of the uKhahlamba Drakensberg National Park in South Africa and the Sehlathebe National Park in Lesotho. The site has exceptional natural beauty in its soaring basaltic buttresses, incisive dramatic cutbacks, and golden sandstone ramparts as well as visually spectacular sculptured arches, caves, cliffs, pillars and rock pools. The site's diversity of habitats protects a high level of endemic and globally important plants. The site harbors endangered species such as the Cape vulture (Gyps coprotheres) and the bearded vulture (Gypaetus barbatus). Lesotho’s Sehlabathebe National Park also harbors the Maloti minnow (Pseudobarbus quathlambae), a critically endangered fish species only found in this park. This spectacular natural site contains many caves and rock-shelters with the largest and most concentrated group of paintings in Africa south of the Sahara. They represent the spiritual life of the San people, who lived in this area over a period of 4,000 years. © UNESCO SUMMARY 2020 Conservation Outlook Finalised on 01 Dec 2020 SIGNIFICANT CONCERN The conservation outlook for Maloti-Drakensberg Park is of significant concern. The EKZNW management staff are highly dedicated and experienced and there is also significant appreciation for the values of the Maloti Drakensberg by communities living nearby as evidenced, for example, by the vehemently strong opposition to the possibility of oil and gas exploration in the area.
    [Show full text]
  • Ecosystem Profile Madagascar and Indian
    ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra,
    [Show full text]
  • AP ART HISTORY--Unit 5 Study Guide (Non Western Art Or Art Beyond the European Tradition) Ms
    AP ART HISTORY--Unit 5 Study Guide (Non Western Art or Art Beyond the European Tradition) Ms. Kraft BUDDHISM Important Chronology in the Study of Buddhism Gautama Sakyamuni born ca. 567 BCE Buddhism germinates in the Ganges Valley ca. 487-275 BCE Reign of King Ashoka ca. 272-232 BCE First Indian Buddha image ca. 1-200 CE First known Chinese Buddha sculpture 338 CE First known So. China Buddha image 437 CE The Four Noble Truthsi 1. Life means suffering. Life is full of suffering, full of sickness and unhappiness. Although there are passing pleasures, they vanish in time. 2. The origin of suffering is attachment. People suffer for one simple reason: they desire things. It is greed and self-centeredness that bring about suffering. Desire is never satisfied. 3. The cessation of suffering is attainable. It is possible to end suffering if one is aware of his or her own desires and puts and end to them. This awareness will open the door to lasting peace. 4. The path to the cessation of suffering. By changing one’s thinking and behavior, a new awakening can be reached by following the Eightfold Path. Holy Eightfold Pathii The principles are • Right Understanding • Right Intention • Right Speech • Right Action • Right Livelihood • Right Effort • Right Awareness • Right Concentration Following the Eightfold Path will lead to Nirvana or salvation from the cycle of rebirth. Iconography of the Buddhaiii The image of the Buddha is distinguished in various different ways. The Buddha is usually shown in a stylized pose or asana. Also important are the 32 lakshanas or special bodily features or birthmarks.
    [Show full text]
  • Lesotho Fourth National Report on Implementation of Convention on Biological Diversity
    Lesotho Fourth National Report On Implementation of Convention on Biological Diversity December 2009 LIST OF ABBREVIATIONS AND ACRONYMS ADB African Development Bank CBD Convention on Biological Diversity CCF Community Conservation Forum CITES Convention on International Trade in Endangered Species CMBSL Conserving Mountain Biodiversity in Southern Lesotho COP Conference of Parties CPA Cattle Post Areas DANCED Danish Cooperation for Environment and Development DDT Di-nitro Di-phenyl Trichloroethane EA Environmental Assessment EIA Environmental Impact Assessment EMP Environmental Management Plan ERMA Environmental Resources Management Area EMPR Environmental Management for Poverty Reduction EPAP Environmental Policy and Action Plan EU Environmental Unit (s) GA Grazing Associations GCM Global Circulation Model GEF Global Environment Facility GMO Genetically Modified Organism (s) HIV/AIDS Human Immuno Virus/Acquired Immuno-Deficiency Syndrome HNRRIEP Highlands Natural Resources and Rural Income Enhancement Project IGP Income Generation Project (s) IUCN International Union for Conservation of Nature and Natural Resources LHDA Lesotho Highlands Development Authority LMO Living Modified Organism (s) Masl Meters above sea level MDTP Maloti-Drakensberg Transfrontier Conservation and Development Project MEAs Multi-lateral Environmental Agreements MOU Memorandum Of Understanding MRA Managed Resource Area NAP National Action Plan NBF National Biosafety Framework NBSAP National Biodiversity Strategy and Action Plan NEAP National Environmental Action
    [Show full text]
  • Anti-Inflammatory Effects of Leucosidea Sericea
    Available online at www.sciencedirect.com South African Journal of Botany 80 (2012) 75–76 www.elsevier.com/locate/sajb Research note Anti-inflammatory effects of Leucosidea sericea (Rosaceae) and identification of the active constituents ⁎ J.J. Nair, A.O. Aremu, J. Van Staden Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa Received 17 August 2011; received in revised form 12 January 2012; accepted 23 February 2012 Abstract The ‘Oldwood’ tree Leucosidea sericea is the sole representative of the genus Leucosidea and as such occupies a botanically-privileged status within the Rosaceae of southern Africa. The use of the plant in the traditional medicinal practices of some of the indigenous people of the region has been known for over a hundred years. Amongst these, its use as a vermifuge and astringent medicine, as well as anti-inflammatory agent, amongst the Basuto and Zulu tribes has been recorded. Based on these observations, the plant was here examined for the underlying phytochemical principles which might corroborate these interesting traditional uses. In the process, the known cholestane triterpenoids β-sitosterol and β-sitostenone were isolated for the first time from stems of L. sericea and identified by physical and spectroscopic techniques. These findings provide insights to the traditional usage of the plant for inflammation related ailments. © 2012 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Anti-inflammatory; Leucosidea sericea; Rosaceae; β-sitostenone; β-sitosterol Despite its wide global distribution, the family Rosaceae is for over a hundred years (Harvey and Sonder, 1894).
    [Show full text]
  • Annual Report 2017
    3 CONTACT DETAILS Dean Prof Danie Vermeulen +27 51 401 2322 [email protected] MARKETING MANAGER ISSUED BY Ms Elfrieda Lötter Faculty of Natural and Agricultural Sciences +27 51 401 2531 University of the Free State [email protected] EDITORIAL COMPILATION PHYSICAL ADDRESS Ms Elfrieda Lötter Room 9A, Biology Building, Main Campus, Bloemfontein LANGUAGE REVISION Dr Cindé Greyling and Elize Gouws POSTAL ADDRESS University of the Free State REVISION OF BIBLIOGRAPHICAL DATA PO Box 339 Dr Cindé Greyling Bloemfontein DESIGN, LAYOUT South Africa )LUHÀ\3XEOLFDWLRQV 3W\ /WG 9300 PRINTING Email: [email protected] SA Printgroup )DFXOW\ZHEVLWHZZZXIVDF]DQDWDJUL 4 NATURAL AND AGRICULTURAL SCIENCES REPORT 2017 CONTENT PREFACE Message from the Dean 7 AGRICULTURAL SCIENCES Agricultural Economics 12 Animal, Wildlife and Grassland Sciences 18 Plant Sciences 26 Soil, Crop and Climate Sciences 42 BUILDING SCIENCES Architecture 50 Quantity Surveying and Construction Management 56 8UEDQDQG5HJLRQDO3ODQQLQJ NATURAL SCIENCES Chemistry 66 Computer Sciences and Informatics 80 Consumer Sciences 88 Genetics 92 Geography 100 Geology 106 Mathematical Statistics and Actuarial Science 112 Mathematics and Applied Mathematics 116 Mathematics 120 0LFURELDO%LRFKHPLFDODQG)RRG%LRWHFKQRORJ\ Physics 136 Zoology and Entomology 154 5 Academic Centres Disaster Management Training and Education Centre of Africa - DiMTEC 164 Centre for Environmental Management - CEM 170 Centre for Microscopy 180 6XVWDLQDEOH$JULFXOWXUH5XUDO'HYHORSPHQWDQG([WHQVLRQ Paradys Experimental Farm 188 Engineering Sciences 192 Institute for Groundwater Studies 194 ACADEMIC SUPPORT UNITS Electronics Division 202 Instrumentation 206 STATISTICAL DATA Statistics 208 LIST OF ACRONYMS List of Acronyms 209 6 NATURAL AND AGRICULTURAL SCIENCES REPORT 2017 0(66$*( from the '($1 ANNUAL REPORT 2016 will be remembered as one of the worst ±ZKHUHHDFKELQFRXOGFRQWDLQDXQLTXHSURGXFWDQG years for tertiary education in South Africa due once a product is there, it remains.
    [Show full text]
  • American Bamboo Society
    $5.00 AMERICAN BAMBOO SOCIETY Bamboo Species Source List No. 34 Spring 2014 This is the thirty-fourth year that the American Bamboo Several existing cultivar names are not fully in accord with Society (ABS) has compiled a Source List of bamboo plants requirements for naming cultivars. In the interests of and products. The List includes more than 510 kinds nomenclature stability, conflicts such as these are overlooked (species, subspecies, varieties, and cultivars) of bamboo to allow continued use of familiar names rather than the available in the US and Canada, and many bamboo-related creation of new ones. The Source List editors reserve the products. right to continue recognizing widely used names that may not be fully in accord with the International Code of The ABS produces the Source List as a public service. It is Nomenclature for Cultivated Plants (ICNCP) and to published on the ABS website: www.Bamboo.org . Copies are recognize identical cultivar names in different species of the sent to all ABS members and can also be ordered from ABS same genus as long as the species is stated. for $5.00 postpaid. Some ABS chapters and listed vendors also sell the Source List. Please see page 3 for ordering Many new bamboo cultivars still require naming, description, information and pages 50 and following for more information and formal publication. Growers with new cultivars should about the American Bamboo Society, its chapters, and consider publishing articles in the ABS magazine, membership application. “Bamboo.” Among other requirements, keep in mind that new cultivars must satisfy three criteria: distinctiveness, The vendor sources for plants, products, and services are uniformity, and stability.
    [Show full text]
  • 083 Genus Torynesis Butler
    14th edition (2015). Genus Torynesis Butler, 1899 Proceedings of the Zoological Society of London 1898: 903 (902-912). Type-species: Dira mintha Geyer, by monotypy. = Mintha van Son, 1955. Transvaal Museum Memoirs No. 8: 76 (1-166). Type-species: Dira mintha Geyer, by original designation. An Afrotropical genus containing five species, from South Africa and Lesotho. *Torynesis hawequas Dickson, 1973# Hawequas Widow Hawequas Widow (Torynesis hawequas) female, Franschoek Pass, Western Cape Province. Image courtesy Steve Woodhall. Torynesis hawequas Dickson, 1973. Entomologist’s Record and Journal of Variation 85: 284 (284-288). Torynesis hawequas Dickson, 1973. Dickson & Kroon, 1978. Torynesis hawequas Dickson, 1973. Pringle et al., 1994: 57. Torynesis hawequas. Male (Wingspan 47 mm). Left – upperside; right – underside. Franschhoek Pass, Western Cape Province, South Africa. 20 April 1975. I. Bampton. Images M.C.Williams ex Henning Collection. 1 Torynesis hawequas. Female (Wingspan 51 mm). Left – upperside; right – underside. Franschhoek Mountain, Western Cape Province, South Africa. 20 April 1975. I. Bampton. Images M.C.Williams ex Henning Collection. Type locality: South Africa: “Western Cape Province: Middenkrantz Berg, Fransch Hoek Mtns”. Diagnosis: Intermediate in size between Torynesis mintha and Torynesis magna. In males, especially, the postdiscal bar of the forewing upperside is lighter than in mintha, approaching that of magna and is broader than in the other two species. The ground-colour of the hindwing underside is deeper brown than in mintha. The black markings are heavier, and the silvery grey veining and markings have a purplish tone. In some specimens of hawequas the silvery grey markings are suppressed (Pringle et al., 1994).
    [Show full text]
  • The Ecology of Large Herbivores Native to the Coastal Lowlands of the Fynbos Biome in the Western Cape, South Africa
    The ecology of large herbivores native to the coastal lowlands of the Fynbos Biome in the Western Cape, South Africa by Frans Gustav Theodor Radloff Dissertation presented for the degree of Doctor of Science (Botany) at Stellenbosh University Promoter: Prof. L. Mucina Co-Promoter: Prof. W. J. Bond December 2008 DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 24 November 2008 Copyright © 2008 Stellenbosch University All rights reserved ii ABSTRACT The south-western Cape is a unique region of southern Africa with regards to generally low soil nutrient status, winter rainfall and unusually species-rich temperate vegetation. This region supported a diverse large herbivore (> 20 kg) assemblage at the time of permanent European settlement (1652). The lowlands to the west and east of the Kogelberg supported populations of African elephant, black rhino, hippopotamus, eland, Cape mountain and plain zebra, ostrich, red hartebeest, and grey rhebuck. The eastern lowlands also supported three additional ruminant grazer species - the African buffalo, bontebok, and blue antelope. The fate of these herbivores changed rapidly after European settlement. Today the few remaining species are restricted to a few reserves scattered across the lowlands. This is, however, changing with a rapid growth in the wildlife industry that is accompanied by the reintroduction of wild animals into endangered and fragmented lowland areas.
    [Show full text]
  • THE BAMBOOS of NEPAL and BHUTAN PART II: Arundinaria, Thamnocalamus , Borinda, and Yushania (Gramineae: Poaceae, Bambusoideae)
    EDINB. J. BOT. 51(2): 275–295 (1994) THE BAMBOOS OF NEPAL AND BHUTAN PART II: Arundinaria, Thamnocalamus , Borinda, and Yushania (Gramineae: Poaceae, Bambusoideae) C. M. A. S TAPLETON * This paper continues the systematic treatment of the bamboos of Nepal and Bhutan, covering four hardy temperate genera with semelauctant inflorescences and 3 stamens from the subtribe Arundinariinae Bentham. Arundinaria Michaux has leptomorph rhizomes, while Thamnocalamus Munro, Yushania Keng f., and the new genus Borinda have pachymorph rhizomes. The separation of these and related Sino-Himalayan genera is discussed. Sinarundinaria Nakai is treated as a synonym of Fargesia Franchet, a genus that is not known from the Himalayas. A new treatment of Himalayan Thamnocalamus species is given, including the description of two new subspecies of Thamnocalamus spathiflorus (Trin.) Munro, subsp . nepalensis and subsp . occidentalis, and one new variety, bhutanensis. T. aristatus is treated as a synonym of T. spathiflorus subsp. spathiflorus, and Fargesia crassinoda Yi is transferred and given new status as Thamnocalamus spathiflorus (Trin.) Munro var. crassinodus (Yi) Stapleton. Two new species of Borinda are described: B. chigar from West Nepal and B. emeryi from East Nepal. Six species of Fargesia from Tibet are transferred to Borinda, which thus comprises eight species. STATUS AND S EPARATION OF THE G ENERA Bamboos from the mountains of the Indian subcontinent and China with 3 stamens and terete culms were all placed in Arundinaria Michaux until late in the 19th century, when two genera for bamboos with spathate inflorescences were described. Munro (1868) described Thamnoca- lamus as a Himalayan genus with groups of one to four racemes at the tips of branchlets, each raceme being enclosed in a spathe.
    [Show full text]