151-170 Peruzzi

Total Page:16

File Type:pdf, Size:1020Kb

151-170 Peruzzi INFORMATORE BOTANICO ITALIANO, 42 (1) 151-170, 2010 151 Checklist dei generi e delle famiglie della flora vascolare italiana L. PERUZZI ABSTRACT - Checklist of genera and families of Italian vascular flora -A checklist of the genera and families of vascular plants occurring in Italy is presented. The families were grouped according to the main six taxonomic groups (e.g. sub- classes: Lycopodiidae, Ophioglossidae, Equisetidae, Polypodiidae, Pinidae, Magnoliidae) and put in systematic order accord- ing to the most recent criteria (e.g. APG system etc.). The genera within each family are arranged in alphabetic order and delimited through recent literature survey. 55 orders (51 native and 4 exotic) and 173 families were recorded (158 + 24), for a total of 1297 genera (1060 + 237). Families with the highest number of genera were Poaceae (126 + 23) and Asteraceae (125 + 23), followed by Apiaceae (85 + 5), Brassicaceae (64 + 5), Fabaceae (45 + 19) etc. A single genus resulted narrow endemic of Italy (Sicily): the monotypic Petagnaea (Apiaceae). Three more genera are instead endemic to Sardinia and Corse: Morisia (Brassicaceae), Castroviejoa and Nananthea (Asteraceae). Key words: classification, families, flora, genera, Italy Ricevuto il 16 Novembre 2009 Accettato il 5 Marzo 2010 INTRODUZIONE Successivamente alla “Flora d’Italia” di PIGNATTI Flora Europaea (BAGELLA, URBANI, 2006; (1982), i progressi negli studi biosistematici e filoge- BOCCHIERI, IIRITI, 2006; LASTRUCCI, RAFFAELLI, netici hanno prodotto una enorme mole di cono- 2006; ROMANO et al., 2006; MAIORCA et al., 2007; scenze circa le piante vascolari. Nella recente CORAZZI, 2008) a tentantivi di aggiormanento Checklist della flora vascolare italiana e sua integra- “misti”, basati sul totale o parziale accoglimento di zione (CONTI et al., 2005, 2007a) non vengono prese classificazioni successive, spesso non ulteriormente in considerazione le famiglie di appartenenza delle specificate (es. MOTTI, RICCIARDI, 2005; varie specie considerate, mentre per le concezioni ROMAGNOLI, FOGGI, 2005; ATTORRE et al., 2006; generiche sono stati seguiti per quanto possibile gli BARTOLUCCI, 2006; GIANGUZZI et al., 2006; LANDI, studi pubblicati sino al 2005. ANGIOLINI, 2006; MAGRINI et al., 2006; MARTINI, Facendo un rapido censimento dei lavori floristici, 2006; MOTTI, SALERNO, 2006; DE NATALE, inerenti territori italiani, apparsi negli ultimi cinque STRUMIA, 2007; FRIGNANI et al., 2007a-b; GIARDINA anni sulle riviste che più comunemente pubblicano et al., 2007; SALERNO et al., 2007; CROCE et al., questo tipo di dati (es. Flora Mediterranea, Informa- 2008; FRIGNANI et al., 2009). In alcuni casi, per sem- tore Botanico Italiano, Webbia etc.) si evince che gli plicità, è stata preferita una elencazione delle famiglie autori utilizzano i più svariati concetti tassonomici e dei generi in ordine alfabetico all’interno dei gran- per quanto riguarda le concezioni generiche e fami- di gruppi tassonomici (es. BACCHETTA et al., 2007; liari nell’ambito delle piante vascolari. Oltre a ciò, CONTI et al., 2006a, 2007c; PECCENINI et al., 2007). per quanto riguarda l’ordine da dare alle famiglie Non è forse un caso che questo tipo di soluzione sia negli elenchi floristici, si va dall’utilizzo tout-court stato adottato per i contributi del Gruppo di dell’ordinamento – ormai obsoleto – di Flora d’Italia Floristica della Società Botanica Italiana, dovendo (es. LATTANZI, TILIA, 2005; LO GIUDICE et al., 2005; evidentemente conciliare le diverse convinzioni tas- POLIZZI et al., 2005; LUCCHETTA, BRACCO, 2006; sonomiche e preferenze di un gran numero di bota- MELE et al., 2006; ROSATI et al., 2006; KLEIH, 2007; nici contemporaneamente. Abbiamo rinvenuto in MARINI, NASCIMBENE, 2007; RANFA et al., 2007; letteratura solo pochi tentativi di adeguare in toto gli FILIBECK, LATTANZI, 2008; VICIANI et al., 2008) o elenchi floristici ai più recenti inquadramenti tasso- 152 PERUZZI nomici – vedi APG II (BACCHETTA et al., 2007; I. LYCOPODIIDAE ABBATE et al., 2009; GESTRI, 2009; PIERINI et al., 2009). I.a. Lycopodiales Alla luce di questa disomogeneità di fondo, abbiamo 1) Lycopodiaceae quindi ritenuto utile elaborare una checklist, quanto a) Diphasiastrum più possibile aggiornata, dei generi presenti nella b) Huperzia flora vascolare italiana e delle famiglie cui sono rife- c) Lycopodiella ribili, nonché dell’ordine sistematico da dare ai vari d) Lycopodium taxa individuati. Riteniamo che questo lavoro potrà essere utile per uniformare i contributi floristici pub- I.b. Selaginellales blicati da studiosi italiani, anche in vista della prepa- 2) Selaginellaceae razione della nuova Flora Critica dell’Italia a) Selaginella (PIGNOTTI, 2006), che dovrà forzatamente recepire le nuove concezioni tassonomiche, e non rimanere I.c. Isoëtales ancorata a schemi tassonomici superati e – in molti 3) Isoëtaceae casi – ormai obsoleti e non più sostenibili. a) Isoëtes L’ordine delle sottoclassi all’interno del phylum Charophyta, classe Equisetopsida (vale a dire le piante II. OPHIOGLOSSIDAE terrestri, vedi CHASE, REVEAL, 2009) si è basato sugli studi filogenetici di PRYER et al. (2001). L’ordine II.a. Ophioglossales delle famiglie segue i recenti lavori di SMITH et al. 4) Ophioglossaceae (2006) per le crittogame con megafilli e di HASTON a) Botrychium et al. (2007, 2009) per le angiosperme. Per le gim- b) Ophioglossum nosperme si è tenuto conto delle recenti acquisizioni sulla filogenesi esposte da CHAW et al. (2000) che III. EQUISETIDAE non consentono, allo stato attuale delle conoscenze, una separazione dell’ordine Gnetales in una sottoclas- III.a. Equisetales se distinta dalle Pinales, al contrario di quanto sug- 5) Equisetaceae gerito da CHASE, REVEAL (2009). La circoscrizione a) Equisetum degli ordini e delle famiglie segue i criteri esposti in SMITH et al. (2006) per le crittogame vascolari con IV. POLYPODIIDAE megafilli, e quelli proposti dall’Angiosperm Phylogeny Group (STEVENS, 2008; APG III, 2009) IV.a. Osmundales per le angiosperme. 6) Osmundaceae Per quanto riguarda le circoscrizioni dei generi, ci a) Osmunda siamo basati sui lavori di SMITH et al. (2006) per le crittogame vascolari con megafilli. Per gli altri grup- IV.b. Hymenophyllales pi tassonomici ci siamo basati su CONTI et al. (2005, 7) Hymenophyllaceae 2007a) e successivi aggiornamenti pubblicati nella a) Hymenophyllum rubrica “Notulae alla checklist della flora vascolare b) Vandenboschia italiana” dell’Informatore Botanico Italiano (CONTI et al., 2006b-c, 2007b, 2008; NEPI et al., 2008a-b, IV.c. Salviniales 2009a-b, 2010), oltre ad altri lavori specifici citati di 8) Marsileaceae volta in volta, per gli altri gruppi tassonomici. a) Marsilea Consapevoli che non per tutte le famiglie sono dis- b) Pilularia ponibili studi filogenetici aggiornati basati anche sul- 9) Salviniaceae l’analisi delle sequenze di DNA, si è preferita una a) Azolla esposizione dei generi in ordine alfabetico all’interno b) Salvinia delle rispettive famiglie, in modo da poter in futuro espandere o contrarre il sistema con facilità e senza IV.d. Polypodiales eccessivi sconvolgimenti. 10) Dennstaedtiaceae Per quanto riguarda i taxa esotici, sono stati conside- a) Pteridium rati tali (simbolo “A”, come in CONTI et al., 2005) 11) Pteridaceae solo le famiglie ed i generi che presentano solo specie a) Adiantum esotiche naturalizzate e/o invasive, in almeno una b) Anogramma regione italiana (vedi anche CELESTI-GRAPOW et al., c) Cheilanthes 2009). Generi che presentavano invece almeno una d) Cosentinia specie allo stato spontaneo in Italia sono stati consi- e) Cryptogramma derati autoctoni. Le specie esotiche casuali non sono f) Paragymnopteris1 (= Notholaena auct. fl. eur.) state considerate. I generi endemici italiani sono g) Pteris indicati con il simbolo “E”. 1 vedi ROTHFELS et al. (2008) Generi e famiglie della flora vascolare italiana 153 12) Aspleniaceae b) Magnolia A a) Asplenium (incl. Ceterach, Phyllitis) 13) Thelypteridaceae VI.d. Laurales a) Cyclosorus (incl. Christella) A 28) Lauraceae b) Phegopteris a) Laurus c) Thelypteris (incl. Oreopteris) 14) Woodsiaceae VI.e. Acorales A a) Athyrium 29) Acoraceae A b) Cystopteris a) Acorus A c) Gymnocarpium d) Woodsia VI.f. Alismatales 15) Blechnaceae 30) Araceae a) Blechnum a) Ambrosina b) Woodwardia b) Arisarum 16) Onocleaceae c) Arum a) Matteuccia d) Biarum 17) Dryopteridaceae e) Colocasia A a) Cyrtomium A f) Dracunculus b) Dryopteris g) Helicodiceros c) Polystichum h) Landoltia 18) Lomariopsidaceae A i) Lemna a) Nephrolepis A j) Pistia A 19) Polypodiaceae k) Spirodela a) Polypodium l) Wolffia A m) Zantedeschia A V. PINIDAE 31) Tofieldiaceae a) Tofieldia V.a. Pinales 32) Alismataceae 20) Cupressaceae a) Alisma a) Callitropsis A b) Baldellia b) Cupressus A c) Caldesia c) Juniperus d) Damasonium d) Platycladus A e) Luronium 21) Taxaceae f) Sagittaria a) Taxus 33) Butomaceae 22) Pinaceae a) Butomus a) Abies 34) Hydrocharitaceae b) Cedrus A a) Blyxa A c) Larix b) Egeria A d) Picea c) Elodea A e) Pinus d) Halophila A e) Hydrilla A V.b. Gnetales f) Hydrocharis 23) Ephedraceae g) Lagarosiphon A a) Ephedra h) Najas i) Ottelia A VI. MAGNOLIIDAE j) Stratiotes k) Vallisneria VI.a. Nymphaeales 35) Scheuchzeriaceae 24) Nymphaeaceae a) Scheuchzeria a) Nuphar 36) Juncaginaceae b) Nymphaea a) Triglochin 37) Zosteraceae VI.b. Piperales a) Zostera 25) Saururaceae A 38) Potamogetonaceae a) Saururus A a) Althenia 26) Aristolochiaceae b) Groenlandia a) Aristolochia c) Potamogeton b) Asarum d) Zannichellia 39) Posidoniaceae VI.c. Magnoliales A a) Posidonia 27) Magnoliaceae
Recommended publications
  • Circumscribing Genera in the European Orchid Flora: a Subjective
    Ber. Arbeitskrs. Heim. Orchid. Beiheft 8; 2012: 94 - 126 Circumscribing genera in the European orchid lora: a subjective critique of recent contributions Richard M. BATEMAN Keywords: Anacamptis, Androrchis, classiication, evolutionary tree, genus circumscription, monophyly, orchid, Orchidinae, Orchis, phylogeny, taxonomy. Zusammenfassung/Summary: BATEMAN , R. M. (2012): Circumscribing genera in the European orchid lora: a subjective critique of recent contributions. – Ber. Arbeitskrs. Heim. Orch. Beiheft 8; 2012: 94 - 126. Die Abgrenzung von Gattungen oder anderen höheren Taxa erfolgt nach modernen Ansätzen weitestgehend auf der Rekonstruktion der Stammesgeschichte (Stamm- baum-Theorie), mit Hilfe von großen Daten-Matrizen. Wenngleich aufgrund des Fortschritts in der DNS-Sequenzierungstechnik immer mehr Merkmale in der DNS identiiziert werden, ist es mindestens genauso wichtig, die Anzahl der analysierten Planzen zu erhöhen, um genaue Zuordnungen zu erschließen. Die größere Vielfalt mathematischer Methoden zur Erstellung von Stammbäumen führt nicht gleichzeitig zu verbesserten Methoden zur Beurteilung der Stabilität der Zweige innerhalb der Stammbäume. Ein weiterer kontraproduktiver Trend ist die wachsende Tendenz, diverse Datengruppen mit einzelnen Matrizen zu verquicken, die besser einzeln analysiert würden, um festzustellen, ob sie ähnliche Schlussfolgerungen bezüglich der Verwandtschaftsverhältnisse liefern. Ein Stammbaum zur Abgrenzung höherer Taxa muss nicht so robust sein, wie ein Stammbaum, aus dem man Details des Evo- lutionsmusters
    [Show full text]
  • Central European Vegetation
    Plant Formations in the Central European BioProvince Peter Martin Rhind Central European Beech Woodlands Beech (Fagus sylvatica) woods form the natural climax over much of Central Europe where the soils are relatively dry and can extend well into the uplands in the more southern zones. In the north, however, around Sweden it is confined to the lowlands. Beech woodlands are often open with a poorly developed shrub layer, Characteristic ground layer species may include various helleborines such as Cephalanthera damasonium, C. longifolia and C. rubra and sedges such as Carex alba, whilst in others, grasses like Sesleria caerlea or Melica uniflora may predominate, but in some of the more acidic examples, Luzula luzuloides is likely to dominate. There are also a number of endemic ground layer species. For example, in Carpathian beech woods endemics such as Dentaria glandulosa (Brassicaceae), Symphytum cordata (Boraginaceae) and the fern Polystichum braunii (Dryopteridaceae) may be encountered. Fine examples of primeaval beech woods can be found in the limestone Alps of lower Austria including the famous ‘Rothwald’ on the southeastern slopes of Dürrentein near Lunz. These range in altitude from about 940-1480 m. Here the canopy is dominated by Fagus sylvatica together with Acer pseudoplatanus, Picea abies, Ulmus glabra, and on the more acidic soils by Abies alba. Typical shrubs include Daphne mezereum, Lonicera alpigena and Rubus hirtus. At ground level the herb layer is very rich supporting possibly up to a 100 species of vascular plants. Examples include Adenostyles alliariae, Asplenium viridis, Campanula scheuchzeri, Cardamine trifolia, Cicerbita alpina, Denteria enneaphyllos, Euphorbia amygdaloides, Galium austriacum, Homogyne alpina, Lycopodium annotinum, Mycelis muralis, Paris quadrifolia, Phyteuma spicata, Prenanthes purpurea, Senecio fuchsii, Valeriana tripteris, Veratrum album and the central European endemic Helliborus niger (Ranunculaceae).
    [Show full text]
  • A Guide to Frequent and Typical Plant Communities of the European Alps
    - Alpine Ecology and Environments A guide to frequent and typical plant communities of the European Alps Guide to the virtual excursion in lesson B1 (Alpine plant biodiversity) Peter M. Kammer and Adrian Möhl (illustrations) – Alpine Ecology and Environments B1 – Alpine plant biodiversity Preface This guide provides an overview over the most frequent, widely distributed, and characteristic plant communities of the European Alps; each of them occurring under different growth conditions. It serves as the basic document for the virtual excursion offered in lesson B1 (Alpine plant biodiversity) of the ALPECOLe course. Naturally, the guide can also be helpful for a real excursion in the field! By following the road map, that begins on page 3, you can determine the plant community you are looking at. Communities you have to know for the final test are indicated with bold frames in the road maps. On the portrait sheets you will find a short description of each plant community. Here, the names of communities you should know are underlined. The portrait sheets are structured as follows: • After the English name of the community the corresponding phytosociological units are in- dicated, i.e. the association (Ass.) and/or the alliance (All.). The names of the units follow El- lenberg (1996) and Grabherr & Mucina (1993). • The paragraph “site characteristics” provides information on the altitudinal occurrence of the community, its topographical situation, the types of substrata, specific climate conditions, the duration of snow-cover, as well as on the nature of the soil. Where appropriate, specifications on the agricultural management form are given. • In the section “stand characteristics” the horizontal and vertical structure of the community is described.
    [Show full text]
  • Significant Ant Pollination in Two Orchid Species in the Alps As Adaptation to the Climate of the Alpine Zone?
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320283162 Significant ant pollination in two orchid species in the Alps as adaptation to the climate of the alpine zone? Signifikante Bestäubung zweier Orchideenarten in den Alpen als Anpass... Article in TUEXENIA · September 2017 DOI: 10.14471/2017.37.005 CITATION READS 1 178 2 authors: Jean Claessens Bernhard Seifert Naturalis Biodiversity Center Museum für Naturkunde - Leibniz Institute for Research on Evolution and Biodiver… 70 PUBLICATIONS 204 CITATIONS 195 PUBLICATIONS 3,736 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: The invasive garden ant, Lasius neglectus, in Hungary View project Pollination videos View project All content following this page was uploaded by Jean Claessens on 09 October 2017. The user has requested enhancement of the downloaded file. Tuexenia 37: 363–374. Göttingen 2017. doi: 10.14471/2017.37.005, available online at www.tuexenia.de SHORT COMMUNICATION Significant ant pollination in two orchid species in the Alps as adaptation to the climate of the alpine zone? Signifikante Bestäubung zweier Orchideenarten in den Alpen als Anpassung an das Klima der alpinen Zone? Jean Claessens1, * & Bernhard Seifert2 1Naturalis Biodiversity Center, Vondellaan 55, 2332 AA Leiden, Netherlands; 2Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826 Görlitz, Germany *Corresponding author, e-mail: [email protected] Abstract Ants were shown to be significant pollinators of two orchid species in the alpine zone of the Alps. Repeated observations from several localities confirm the ant Formica lemani as pollinator of Chamor- chis alpina whereas Formica exsecta is reported here for the first time as pollinator of Dactylorhiza viridis.
    [Show full text]
  • State of the Arctic Terrestrial
    STATE OF THE ARCTIC TERRESTRIAL BIODIVERSITY REPORT MAY 2021 Acknowledgements CAFF Designated Agencies: • Environment and Climate Change Canada • Faroese Museum of Natural History • Finnish Ministry of the Environment • Ministry for Agriculture, Self Sufficiency, Energy and Environment, Government of Greenland • Icelandic Institute of Natural History • Norwegian Environment Agency • Ministry of Natural Resources and Environment of the Russian Federation • Swedish Environmental Protection Agency • United States Department of the Interior, Fish and Wildlife Service CAFF Permanent Participant Organizations: • Aleut International Association (AIA) • Arctic Athabaskan Council (AAC) • Gwich’in Council International (GCI) • Inuit Circumpolar Council (ICC) • Russian Association of Indigenous Peoples of the North (RAIPON) • Saami Council This report should be cited as: Aronsson, M., S. Heiðmarsson, H. Jóhannesdóttir, T. Barry, J. Braa, C.T. Burns, S.J. Coulson, C. Cuyler, K. Falk, H. Helgason, K.F. Lárusson, J.P. Lawler, P. Kulmala, D. MacNearney, E. Oberndorfer, V. Ravolainen, N.M. Schmidt, M. Soloviev, C. Coon and T. Christensen. 2021. State of the Arctic Terrestrial Biodiversity Report. Conservation of Arctic Flora and Fauna International Secretariat, Akureyri, Iceland. ISBN 978-9935-431-94-3. Editing: Mora Aronsson, Tom Barry, Starri Heiðmarsson, Hrefna Jóhannesdóttir and Trish Hayes. Authors and contributors of subchapters 3.1-3.5: 3.1: Lead authors: Virve Ravolainen, Anne D. Bjorkman. Contributing authors: Donald Walker, Howard Epstein, Gabriela Schaepman-Strub 3.2: Authors: Stephen J. Coulson, Mark A.K. Gillespie, Toke T. Høye. 3.3: Lead authors: Knud Falk, Paul A. Smith, Casey T. Burns. Contributing authors: Anthony D. Fox, Alastair Franke, Eva Fuglei, Karl O. Jacobsen, Richard B. Lanctot, James O.
    [Show full text]
  • Predicting Spatial Patterns of Plant Biodiversity: from Species to Communities
    Département d’écologie et d’évolution Predicting spatial patterns of plant biodiversity: from species to communities Thèse de doctorat ès sciences de la vie (PhD) Présentée à la Faculté de biologie et médecine de l’Université de Lausanne Par Anne Dubuis Master en biologie de l’Université de Lausanne Jury Prof. Stefan Kunz, Président Prof. Antoine Guisan, Directeur de thèse Dr. Pascal Vittoz, Expert Prof. Jean-Claude Gégout, Expert Prof. Miska Luoto, Expert Lausanne 2013 SUMMARY Understanding the distribution and composition of species assemblages and being able to predict them in space and time are highly important tasks to investigate the fate of biodiversity in the current global changes context. Species distribution models are tools that have proven useful to predict the potential distribution of species by relating their occurrences to environmental variables. Species assemblages can then be predicted by combining the prediction of individual species models. In the first part of my thesis, I tested the importance of new environmental predictors to improve species distribution prediction. I showed that edaphic variables, above all soil pH and nitrogen content could be important in species distribution models. In a second chapter, I tested the influence of different resolution of predictors on the predictive ability of species distribution models. I showed that fine resolution predictors could ameliorate the models for some species by giving a better estimation of the micro-topographic condition that species tolerate, but that fine resolution predictors for climatic factors still need to be ameliorated. The second goal of my thesis was to test the ability of empirical models to predict species assemblages’ characteristics such as species richness or functional attributes.
    [Show full text]
  • Downloaded from the Listed Tuberous
    1 DNA barcoding of tuberous Orchidoideae: A resource for identification of orchids used in Salep 2 3 Abdolbaset Ghorbani1,2, Barbara Gravendeel3,4, Sugirthini Selliah5, Shahin Zarré6, Hugo de Boer1,3,5,* 4 5 1 Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, 6 Sweden 7 2 Traditional Medicine & Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 8 Iran 9 3 Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands 10 4 University of Applied Sciences Leiden, Leiden, The Netherlands 11 5 The Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway 12 6 Department of Plant Sciences, University of Tehran, Iran 13 * Corresponding author: Hugo de Boer, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 14 Oslo, Norway. Email: [email protected] 15 16 Word count: 4286; Tables 3, Figures 3. 17 18 Keywords: CITES; Molecular identification; Overharvesting; Orchid conservation; Plant DNA barcoding; Wildlife 19 Trade. 20 21 Abstract 22 Tubers of terrestrial orchids are harvested and traded from the eastern Mediterranean to the Caspian Sea for the 23 traditional product Salep. Over-exploitation of wild populations and increased middle-class prosperity have escalated 24 prices for Salep, causing overharvesting, depletion of native populations and providing an incentive to expand 25 harvesting to untapped areas in Iran. Limited morphological distinctiveness among traded Salep tubers renders species 26 identification impossible, making it difficult to establish which species are targeted and affected the most. In this study, 27 a reference database of 490 nrITS, trnL-F spacer and matK sequences of 133 taxa was used to identify 150 individual 28 tubers from 31 batches purchased in 12 cities in Iran to assess species diversity in commerce.
    [Show full text]
  • Pdf of JHOS January 2006
    JJoouurrnnaall of the HHAARRDDYY OORRCCHHIIDD SSOOCCIIEETTYY Vol. 3 No. 1 (39) January 2006 JOURNAL of the HARDY ORCHID SOCIETY Vol. 3 No. 1 (39) January 2006 The Hardy Orchid Society Our aim is to promote interest in the study of Native European Orchids and those from similar temperate climates throughout the world. We cover such varied aspects as field study, cultivation and propagation, photography, taxonomy and systematics, and practical conservation. We welcome articles relating to any of these subjects, which will be considered for publication by the editorial committee. Please send your submissions to the Editor, and please structure your text according to the ‘Advice to Authors’ (see website, January 2004 Journal or contact the Editor). The Hardy Orchid Society Committee President: Prof. Richard Bateman, Dept. of Botany, Natural History Museum, Cromwell Road, London, SW7 5BD. Chairman: Tony Hughes, 8 Birchwood Road, Malvern, Worcs., WR14 1LD, [email protected] Vice-Chairman: David Hughes, Linmoor Cottage, Highwood, Ringwood, Hants., BH24 3LE, [email protected] Secretary: Chris Birchall, Barratts Cottage, Clyst Hydon, Collumpton, Devon, EX15 2NQ, [email protected] Treasurer: Rosemary Hill, 38 Springfield Crescent, Harpenden, Herts., AL5 4LH, [email protected] Membership Secretary: Maren Talbot, 4 Hazel Close, Marlow, Bucks., SL7 3PW, [email protected] Show Secretary: Eric Webster, 25 Highfields Drive, Loughborough, Leics., LE11 3JS, [email protected] Journal Editor: Mike Gasson, Moor End Cottage,
    [Show full text]
  • Orchid Research Newsletter No. 29
    Orchid Research Newsletter No. 71 January 2018 "All science is either physics or stamp collecting." This statement, attributed to Ernest Rutherford, is perhaps my favourite example of the either-or fallacy. Science is either physics or stamp collecting. Rather condescending towards a field like biology, isn't it? Perhaps we should be grateful that 'stamp collecting' is still allowed to hide under the Science umbrella. But nonsense is nonsense, whatever the reputation of the person who said it. For what we have here is a false dilemma. It's not a matter of either-or. 'Physics' and 'stamp collecting' are more like two extremes of a continuum (and I would suggest that pure mathematics rather than physics occupies one extremity). All science is a mixture of observation, classification, induction and deduction, in various proportions. Even Rutherford's own field of particle physics has an element of stamp collecting in it. Is there so much difference between classifying and describing subatomic particles and classifying and describing orchids? It seems to me that the main difference lies in the difficulty of making observations. It can be enormously complicated and expensive to observe an elementary particle, whereas observing an orchid requires at most a decent microscope (admittedly, finding the orchid in the first place can be challenging). Nor is it the case that the physicist's particles are embedded in a theory and the species of the biologist are not. I would argue that species are theoretical constructs almost as much as electrons and Higgs bosons are. Species exist in space and time; we can never observe them directly in all their aspects.
    [Show full text]
  • Significant Ant Pollination in Two Orchid Species in the Alps As
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Tuexenia - Mitteilungen der Floristisch-soziologischen Arbeitsgemeinschaft Jahr/Year: 2017 Band/Volume: NS_37 Autor(en)/Author(s): Claessens Jean, Seifert Bernhard Artikel/Article: Significant ant pollination in two orchid species in the Alps as adaptation to the climate of the alpine zone? 363-374 ©Floristisch-soziologische Arbeitsgemeinschaft; www.tuexenia.de; download unter www.zobodat.at Tuexenia 37: 363–374. Göttingen 2017. doi: 10.14471/2017.37.005, available online at www.tuexenia.de SHORT COMMUNICATION Significant ant pollination in two orchid species in the Alps as adaptation to the climate of the alpine zone? Signifikante Bestäubung zweier Orchideenarten in den Alpen als Anpassung an das Klima der alpinen Zone? Jean Claessens1, * & Bernhard Seifert2 1Naturalis Biodiversity Center, Vondellaan 55, 2332 AA Leiden, Netherlands; 2Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826 Görlitz, Germany *Corresponding author, e-mail: [email protected] Abstract Ants were shown to be significant pollinators of two orchid species in the alpine zone of the Alps. Repeated observations from several localities confirm the ant Formica lemani as pollinator of Chamor- chis alpina whereas Formica exsecta is reported here for the first time as pollinator of Dactylorhiza viridis. These findings appear of great interest, as significant ant pollination of orchids is unknown so far from any other region or habitat type in the Holarctic. This raises the question if there are specific adaptations. The observations do not provide suggestions to adaptations of the Formica ants for polli- nating orchids – they simply followed their normal foraging behavior shown in any type of habitat.
    [Show full text]
  • Protection of Norwegian Orchids – a Review of Achievements and Challenges
    European Journal of Environmental Sciences 121 PROTECTION OF NORWEGIAN ORCHIDS – A REVIEW OF ACHIEVEMENTS AND CHALLENGES JØRN ERIK BJØRNDALEN Jens Bjelkesgate 16A, N-0562 Oslo, Norway Corresponding author: [email protected] ABSTRACT Norway has a rich and diverse orchid flora consisting of 36 species. Orchids are found throughout the country, but most of the species are confined to calcareous or base-rich substrates. Important orchid-rich types of vegetation include rich pine and spruce forests, rich deciduous forests, open calcareous meadows, rocky outcrops and screes, hay meadows and calcareous mires and fens. Many species are rare, and 17 species and 3 subspecies are red listed. 13 species are generally protected. Both the orchids and their habitats are susceptible to various disturbances such as e.g. building activities, road construction, quarrying, drainage, forestry and changes in agricultural practices (less intense grazing, termination of mowing), which has resulted in the continuation of the previously inhibited succession. Most of the types of habitat mentioned are important conservation sites and thus many orchid occurrences (e.g. of Cypripedium calceolus, Epipogium aphyllum, Epipactis palustris and Ophrys insectifera) are protected by a network of nature reserves designated for these habitats. However, there is an urgent need to secure species with small populations in some of the mire reserves, and succession is also a problem in many of the reserves. Protection of the few existing localities for some species is also needed. A more detailed discussion of the status of the red listed species is presented. Keywords: orchid conservation, nature reserves, management, orchid habitats, Norway Introduction classification of the taxa of Norwegian Dactylorhiza, which greatly differs from Lid and Lid (2005), but this Orchids are an important group of organisms associ- discussion is beyond the scope of the present paper.
    [Show full text]
  • 7Th International Orchid Conservation Congress
    7TH INTERNATIONAL ORCHID CONSERVATION CONGRESS Jodrell Laboratory Royal Botanic Gardens, Kew 28 May – 1 June 2019 Welcome to Kew! The International Orchid Conservation Congress (IOCC) series started in Western Australia in 2001, and subsequent meetings were held in Florida, Costa Rica, the Czech Republic, La Réunion and Hong Kong. At the meeting in Hong Kong, it was decided that IOCCVII should be held at the Royal Botanic Gardens, Kew. The title for IOCCVII is “Orchid Conservation: the Next Generation”, and we hope that the focus will be on the importance of involving the next generation of orchid conservation biologists and on the use of next-generation techniques. We are delighted to welcome more than 150 delegates from around the world to share their experiences of orchid conservation with each other. Orchids are among the most highly threatened groups of plants, with threats to orchids including habitat destruction, legal and illegal trade and climate change. As a result, our mission to conserve orchids is of increasing importance – if we don’t act, then we may be the last generation to see some groups of orchids, notably slipper orchids, in the wild. We are grateful to the Royal Botanic Gardens, Kew, for the use of the venue and for logistical support. The Lennox Boyd Trust, the Linnean Society of London and Orchid Conservation International and friends and family of the late Amy Morris provided financial support which has allowed us to provide bursaries for orchid specialists from Developing Countries so that they can attend the congress. We have an exciting and busy programme – with many talks and posters and other events including a demonstration of orchid propagation, a “World Café” session on conservation planning (arranged with the Conservation Planning Specialist Group) and a meeting of the Orchid Specialist Group.
    [Show full text]