ON the PRINCIPLES of GLOBAL CORRELATION of the CONTINENTAL TRIASSIC on the TETRAPODS the Triassic Was a Time of Transition From
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ischigualasto Formation. the Second Is a Sile- Diversity Or Abundance, but This Result Was Based on Only 19 of Saurid, Ignotosaurus Fragilis (Fig
This article was downloaded by: [University of Chicago Library] On: 10 October 2013, At: 10:52 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Vertebrate Paleontology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ujvp20 Vertebrate succession in the Ischigualasto Formation Ricardo N. Martínez a , Cecilia Apaldetti a b , Oscar A. Alcober a , Carina E. Colombi a b , Paul C. Sereno c , Eliana Fernandez a b , Paula Santi Malnis a b , Gustavo A. Correa a b & Diego Abelin a a Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan , España 400 (norte), San Juan , Argentina , CP5400 b Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina c Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology , University of Chicago , 1027 East 57th Street, Chicago , Illinois , 60637 , U.S.A. Published online: 08 Oct 2013. To cite this article: Ricardo N. Martínez , Cecilia Apaldetti , Oscar A. Alcober , Carina E. Colombi , Paul C. Sereno , Eliana Fernandez , Paula Santi Malnis , Gustavo A. Correa & Diego Abelin (2012) Vertebrate succession in the Ischigualasto Formation, Journal of Vertebrate Paleontology, 32:sup1, 10-30, DOI: 10.1080/02724634.2013.818546 To link to this article: http://dx.doi.org/10.1080/02724634.2013.818546 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. -
A New Archosauriform Reptile with Distinctive Teeth from the Middle Triassic (Ladinian) of Germany
Journal of Vertebrate Paleontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 A new archosauriform reptile with distinctive teeth from the Middle Triassic (Ladinian) of Germany Hans-Dieter Sues , Rainer R. Schoch , Gabriela Sobral & Randall B. Irmis To cite this article: Hans-Dieter Sues , Rainer R. Schoch , Gabriela Sobral & Randall B. Irmis (2020) A new archosauriform reptile with distinctive teeth from the Middle Triassic (Ladinian) of Germany, Journal of Vertebrate Paleontology, 40:1, e1764968, DOI: 10.1080/02724634.2020.1764968 To link to this article: https://doi.org/10.1080/02724634.2020.1764968 View supplementary material Published online: 23 Jun 2020. Submit your article to this journal Article views: 200 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1764968 (14 pages) The work of Hans–Dieter Sues was authored as part of his official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. Rainer R. Schoch, Gabriela Sobral and Randall B. Irmis hereby waive their right to assert copyright, but not their right to be named as co–authors in the article. DOI: 10.1080/02724634.2020.1764968 ARTICLE A NEW ARCHOSAURIFORM REPTILE WITH DISTINCTIVE TEETH FROM THE MIDDLE TRIASSIC (LADINIAN) OF GERMANY HANS-DIETER SUES, *,1 RAINER R. SCHOCH, 2 GABRIELA SOBRAL, 2 and RANDALL B. IRMIS3 1Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, P.O. -
Studies on Continental Late Triassic Tetrapod Biochronology. I. the Type Locality of Saturnalia Tupiniquim and the Faunal Succession in South Brazil
Journal of South American Earth Sciences 19 (2005) 205–218 www.elsevier.com/locate/jsames Studies on continental Late Triassic tetrapod biochronology. I. The type locality of Saturnalia tupiniquim and the faunal succession in south Brazil Max Cardoso Langer* Departamento de Biologia, FFCLRP, Universidade de Sa˜o Paulo (USP), Av. Bandeirantes 3900, 14040-901 Ribeira˜o Preto, SP, Brazil Received 1 November 2003; accepted 1 January 2005 Abstract Late Triassic deposits of the Parana´ Basin, Rio Grande do Sul, Brazil, encompass a single third-order, tetrapod-bearing sedimentary sequence that includes parts of the Alemoa Member (Santa Maria Formation) and the Caturrita Formation. A rich, diverse succession of terrestrial tetrapod communities is recorded in these sediments, which can be divided into at least three faunal associations. The stem- sauropodomorph Saturnalia tupiniquim was collected in the locality known as ‘Waldsanga’ near the city of Santa Maria. In that area, the deposits of the Alemoa Member yield the ‘Alemoa local fauna,’ which typifies the first association; includes the rhynchosaur Hyperodapedon, aetosaurs, and basal dinosaurs; and is coeval with the lower fauna of the Ischigualasto Formation, Bermejo Basin, NW Argentina. The second association is recorded in deposits of both the Alemoa Member and the Caturrita Formation, characterized by the rhynchosaur ‘Scaphonyx’ sulcognathus and the cynodont Exaeretodon, and correlated with the upper fauna of the Ischigualasto Formation. Various isolated outcrops of the Caturrita Formation yield tetrapod fossils that correspond to post-Ischigualastian faunas but might not belong to a single faunal association. The record of the dicynodont Jachaleria suggests correlations with the lower part of the Los Colorados Formation, NW Argentina, whereas remains of derived tritheledontid cynodonts indicate younger ages. -
Stuttgarter Beiträge Zur Naturkunde
S^5 ( © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser. B Nr. 278 175 pp., 4pls., 54figs. Stuttgart, 30. 12. 1999 Comparative osteology oi Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen) By Rainer R. Schoch, Stuttgart With 4 plates and 54 textfigures Abstract Mastodonsaurus giganteus, the most abundant and giant amphibian of the German Letten- keuper, is revised. The study is based on the excellently preserved and very rieh material which was excavated during road construction in 1977 near Kupferzeil, Northern Baden- Württemberg. It is shown that there exists only one diagnosable species of Mastodonsaurus, to which all Lettenkeuper material can be attributed. All finds from other horizons must be referred to as Mastodonsauridae gen. et sp. indet. because of their fragmentary Status. A sec- ond, definitely diagnostic genus of this family is Heptasaurus from the higher Middle and Upper Buntsandstein. Finally a diagnosis of the family Mastodonsauridae is provided. Ä detailed osteological description of Mastodonsaurus giganteus reveals numerous un- known or formerly inadequately understood features, yielding data on various hitherto poor- ly known regions of the skeleton. The sutures of the skull roof, which could be studied in de- tail, are significantly different from the schemes presented by previous authors. The endocra- nium and mandible are further points of particular interest. The palatoquadrate contributes a significant part to the formation of the endocranium by an extensive and complicated epi- pterygoid. -
The Geologic Time Scale Is the Eon
Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2. -
Making a Timeline Rope
Making a Timeline Rope Background: Your timeline rope invites students to focus on recent periods of geologic time. This rope demonstrates four periods and seven epochs, beginning with the Jurassic Period in the Mesozoic Era, in the Phanerozoic Eon, and ending at the present time, in the Holocene Epoch, in the Quaternary Period of the Cenozoic Era, in the Phanerozoic Eon. Standards: SC.D.1.2.3 SC.D.1.2.5 SC.D.1.3.1 SC.D.1.3.2 SC.D.1.3.3 MA.1.G.5.1 MA.1.G.5.2 MA.2.G.3.4 MA.2.G.3.1 MA.3.G.5.2 MA.4.G.3.3 MA.6.A.5.1 MA.8.A.1.3 SC.912.E.5.3 SC.912.E.6.4 SC.912.E.6.5 SC.912.N.3.1 SC.912.N.3.5 Objectives: − Analyze how specific geological processes and features are expressed in Florida and elsewhere − Describe the geological development of the present day oceans and identify commonly found features − Understand the function of models in science, and identify the wide range of models used. − Compare, contrast, and convert units of measure Vocabulary: Geologists and paleontologists give names to spans of many years. Spans are approximate; they relate more to fossil age ranges than to absolute years. Experts use a common vocabulary. Eon: Largest division of geologic time. Each eon contains several periods and can last for hundreds of millions to billions of years. Some experts identify four eons. (Example: Life on earth has been abundant during the Phanerozoic Eon, as well- preserved fossils prove.) Era: Shorter than an eon. -
Late Triassic) Adrian P
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/56 Definition and correlation of the Lamyan: A new biochronological unit for the nonmarine Late Carnian (Late Triassic) Adrian P. Hunt, Spencer G. Lucas, and Andrew B. Heckert, 2005, pp. 357-366 in: Geology of the Chama Basin, Lucas, Spencer G.; Zeigler, Kate E.; Lueth, Virgil W.; Owen, Donald E.; [eds.], New Mexico Geological Society 56th Annual Fall Field Conference Guidebook, 456 p. This is one of many related papers that were included in the 2005 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. -
A Review of Palaeozoic and Mesozoic Tetrapods from Greenland
A review of Palaeozoic and Mesozoic tetrapods from Greenland MARCO MARZOLA, OCTÁVIO MATEUS, JESPER MILÀN & LARS B. CLEMMENSEN Marzola, M., Mateus, O., Milàn, J. & Clemmensen, L.B. 2018. A review of Palaeozoic and Mesozoic tetrapods from Greenland. © 2018 by Bulletin of the Geological Society of Denmark, Vol. 66, pp. 21–46. ISSN 2245-7070. (www.2dgf.dk/publikationer/bulletin). https://doi.org/10.37570/bgsd-2018-66-02 This article presents a synthesis of Palaeozoic and Mesozoic fossil tetrapods from Greenland, includ- ing an updated review of the holotypes and a new photographic record of the main specimens. All fossil tetrapods found are from East Greenland, with at least 30 different known taxa: five stem tetra- pods (Acanthostega gunnari, Ichthyostega eigili, I. stensioi, I. watsoni, and Ymeria denticulata) from the Late Received 1 December 2016 Devonian of the Aina Dal and Britta Dal Formations; four temnospondyl amphibians (Aquiloniferus Accepted in revised form kochi, Selenocara groenlandica, Stoschiosaurus nielseni, and Tupilakosaurus heilmani) from the Early Triassic 27 October 2017 of the Wordie Creek Group; two temnospondyls (Cyclotosaurus naraserluki and Gerrothorax cf. pulcher- Published online rimus), one testudinatan (cf. Proganochelys), two stagonolepids (Aetosaurus ferratus and Paratypothorax 3 March 2018 andressorum), the eudimorphodontid Arcticodactylus, undetermined archosaurs (phytosaurs and both sauropodomorph and theropod dinosaurs), the cynodont Mitredon cromptoni, and three mammals (Ha- ramiyavia clemmenseni, Kuehneotherium, and cf. ?Brachyzostrodon), from the Late Triassic of the Fleming Fjord Formation; one plesiosaur from the Early Jurassic of the Kap Stewart Formation; one plesiosaur and one ichthyosaur from the Late Jurassic of the Kap Leslie Formation, plus a previously unreported Late Jurassic plesiosaur from Kronprins Christian Land. -
Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna. -
The University of Sydney
THE UNIVERSITY OF SYDNEY Copyright and use of this thesis This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author -subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Copyright Service. sydney.edu.au/copyright A STRUCTURAL ANALYSIS OF THE SOUTHERN HORNSBY PLATEAU, SYDNEY BASIN, NEW SOUTH WALES by Anthony Richard Norman, B.Sc. (Hons) A thesis submitted in fulfilment of the requirements for the degree of Master of Science DEPARTMENT OF GEOLOGY AND GEOPHYSICS UNIVERSITY OF SYDNEY September, 1986 ABSTRACT The Hornsby Plateau rises north of Sydney. Aerial photo interpretation of an area north of Hornsby and south of the Hawkesbury River revealed two well defined extensive traces. -
The Scapulocoracoid of an Early Triassic Stem−Frog from Poland
The scapulocoracoid of an Early Triassic stem−frog from Poland MAGDALENA BORSUK−BIAŁYNICKA and SUSAN E. EVANS Borsuk−Białynicka, M. and Evans, S.E. 2002. The scapulocoracoid of an Early Triassic stem−frog from Poland. Acta Palaeontologica Polonica 47 (1): 79–96. The scapulocoracoid of Czatkobatrachus polonicus Evans and Borsuk−Białynicka, 1998, a stem−frog from the Early Tri− assic karst locality of Czatkowice (Southern Poland), is described. The overall type of scapulocoracoid is plesiomorphic, but the subcircular shape and laterally oriented glenoid is considered synapomorphic of Salientia. The supraglenoid fora− men is considered homologous to the scapular cleft of the Anura. In Czatkobatrachus, the supraglenoid foramen occupies an intermediate position between that of the early tetrapod foramen and the scapular cleft of Anura. The cleft scapula is probably synapomorphic for the Anura. In early salientian phylogeny, the shift in position of the supraglenoid foramen may have been associated with an anterior rotation of the forelimb. This change in position of the forelimb may reflect an evolutionary shift from a mainly locomotory function to static functions (support, balance, eventually shock−absorption). Laterally extended limbs may have been more effective than posterolateral ones in absorbing landing stresses, until the specialised shock−absorption pectoral mechanism of crown−group Anura had developed. The glenoid shape and position, and the slender scapular blade, of Czatkobatrachus, in combination with the well−ossified joint surfaces on the humerus and ulna, all support a primarily terrestrial rather than aquatic mode of life. The new Polish material also permits clarifica− tion of the pectoral anatomy of the contemporaneous Madagascan genus Triadobatrachus. -
A Beaked Herbivorous Archosaur with Dinosaur Affinities from the Early Late Triassic of Poland
Journal of Vertebrate Paleontology 23(3):556±574, September 2003 q 2003 by the Society of Vertebrate Paleontology A BEAKED HERBIVOROUS ARCHOSAUR WITH DINOSAUR AFFINITIES FROM THE EARLY LATE TRIASSIC OF POLAND JERZY DZIK Instytut Paleobiologii PAN, Twarda 51/55, 00-818 Warszawa, Poland, [email protected] ABSTRACTÐAn accumulation of skeletons of the pre-dinosaur Silesaurus opolensis, gen. et sp. nov. is described from the Keuper (Late Triassic) claystone of KrasiejoÂw in southern Poland. The strata are correlated with the late Carnian Lehrberg Beds and contain a diverse assemblage of tetrapods, including the phytosaur Paleorhinus, which in other regions of the world co-occurs with the oldest dinosaurs. A narrow pelvis with long pubes and the extensive development of laminae in the cervical vertebrae place S. opolensis close to the origin of the clade Dinosauria above Pseudolagosuchus, which agrees with its geological age. Among the advanced characters is the beak on the dentaries, and the relatively low tooth count. The teeth have low crowns and wear facets, which are suggestive of herbivory. The elongate, but weak, front limbs are probably a derived feature. INTRODUCTION oped nutrient foramina in its maxilla. It is closely related to Azendohsaurus from the Argana Formation of Morocco (Gauf- As is usual in paleontology, with an increase in knowledge fre, 1993). The Argana Formation also has Paleorhinus, along of the fossil record of early archosaurian reptiles, more and with other phytosaurs more advanced than those from Krasie- more lineages emerge or extend their ranges back in time. It is joÂw (see Dutuit, 1977), and it is likely to be somewhat younger.