Sawflies (Hymenoptera, Symphyta) I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bon Echo Provincial Park
BON ECHO PROVINCIAL PARK One Malaise trap was deployed at Bon Echo Provincial Park in 2014 (44.89405, -77.19691 278m ASL; Figure 1). This trap collected arthropods for twenty weeks from May 7 – September 24, 2014. All 10 Malaise trap samples were processed; every other sample was analyzed using the individual specimen protocol while the second half was analyzed via bulk analysis. A total of 2559 BINs were obtained. Over half the BINs captured were flies (Diptera), followed by bees, ants and wasps (Hymenoptera), moths and butterflies (Lepidoptera), and beetles (Coleoptera; Figure 2). In total, 547 arthropod species were named, representing 22.9% of the BINs from the site (Appendix 1). All BINs were assigned at least to Figure 1. Malaise trap deployed at Bon Echo family, and 57.2% were assigned to a genus (Appendix Provincial Park in 2014. 2). Specimens collected from Bon Echo represent 223 different families and 651 genera. Diptera Hymenoptera Lepidoptera Coleoptera Hemiptera Mesostigmata Trombidiformes Psocodea Sarcoptiformes Trichoptera Araneae Entomobryomorpha Symphypleona Thysanoptera Neuroptera Opiliones Mecoptera Orthoptera Plecoptera Julida Odonata Stylommatophora Figure 2. Taxonomy breakdown of BINs captured in the Malaise trap at Bon Echo. APPENDIX 1. TAXONOMY REPORT Class Order Family Genus Species Arachnida Araneae Clubionidae Clubiona Clubiona obesa Linyphiidae Ceraticelus Ceraticelus atriceps Neriene Neriene radiata Philodromidae Philodromus Salticidae Pelegrina Pelegrina proterva Tetragnathidae Tetragnatha Tetragnatha shoshone -
Awenda Provincial Park
AWENDA PROVINCIAL PARK One Malaise trap was deployed at Awenda Provincial Park in 2014 (44.82534, -79.98458, 231m ASL; Figure 1). This trap collected arthropods for twenty weeks from April 29 – September 19, 2014. All 10 Malaise trap samples were processed; every other sample was analyzed using the individual specimen protocol while the second half was analyzed via bulk analysis. A total of 3029 BINs were obtained. Over half the BINs captured were flies (Diptera), followed by bees, ants and wasps (Hymenoptera), moths and butterflies (Lepidoptera), and true bugs (Hemiptera; Figure 2). In total, 595 arthropod species were named, representing 21.3% of the BINs from the Figure 1. Malaise trap deployed at Awenda Provincial site (Appendix 1). All the BINs were assigned at least Park in 2014. to family, and 54% were assigned to a genus (Appendix 2). Specimens collected from Awenda represent 214 different families and 705 genera. Diptera Hymenoptera Lepidoptera Hemiptera Coleoptera Trombidiformes Sarcoptiformes Psocodea Mesostigmata Araneae Entomobryomorpha Mecoptera Symphypleona Trichoptera Neuroptera Thysanoptera Dermaptera Pseudoscorpiones Stylommatophora Odonata Opiliones Orthoptera Figure 2. Taxonomy breakdown of BINs captured in the Malaise trap at Awenda. APPENDIX 1. TAXONOMY REPORT Class Order Family Genus Species Arachnida Araneae Agelenidae Agelenopsis Clubionidae Clubiona Clubiona kastoni Dictynidae Emblyna Emblyna sublata Linyphiidae Ceraticelus Ceraticelus atriceps Ceraticelus fissiceps Ceratinella Ceratinella brunnea Ceratinops -
Sawflies (Hymenoptera, Symphyta) of the Bohemian Forest and Its Foothills
Silva Gabreta vol. 20 (3) p. 131–147 Vimperk, 2014 Sawflies (Hymenoptera, Symphyta) of the Bohemian Forest and its foothills Karel Beneš Kreuzmannova 14, CZ-31800 Plzeň, Czech Republic [email protected] Abstract The sawflies (Hymenoptera, Symphyta) collected in the Bohemian Forest and its foothills during the sum- mer months of 1981–1985 are listed. To gain a more comprehensive overview of symphytan fauna of the region, data published by former authors have been critically analysed and evaluated to give the most possi- bly comprehensive list of species. Altogether, 173 species (Xyelidae: 1, Pamphiliidae: 17, Argidae: 6, Cim- bicidae: 6, Diprionidae: 5, Tenthredinidae: 126, Xiphydriidae: 1, Siricidae: 4, Cephidae: 5, and Orussidae: 1) are registered. Of these, three are registered as endangered and fifteen as vulnerable. Key words: Symphyta, Šumava Mts., Böhmerwald, faunistics, host plants INTRODUCTION In recent years several attempts to evaluate the symphytan fauna of some interesting central European montane regions have been published, e.g., from the Low Tatras National Park (ROLLER et al. 2006), Jizeské Hory Mts. (MACEK 2006), Bílé Karpaty Protected Landscape Area (MACEK 2012), and the Giant Mts. (BENEš 2013). However, the sawfly fauna of the Bo- hemian Forest (Šumava in Czech, Böhmerwald in German) has received in last 120 years only little attention and remained practically unknown. While the fauna of several groups of invertebrates (Coleoptera, Lepidoptera, Aranea, aquatic Crustacea, Ephemeroptera, Odona- ta, Plecoptera, Megaloptera, and Trichoptera) of the mountains and foothills comprising the Bohemian Forest is fairly well known, our knowledge of Symphyta is negligible, and only a few older publications mention this territory. -
Bees, Wasps & Ants
Sheringham and Beeston Regis Commons SSSI / SAC FAUNA: Hymenoptera INSECTA (Pterygota) Family/Order English Name. Scientific Name. Authority. Grid Ref. Tetrad/ Last Km sq. Common. Record. HYMENOPTERA. PAMPHILIDAE: Sawfly. Pamphilius inanitus (Villers, 1789) TG1642 1987? (Bees, Wasps and Ants) ARGIDAE: Elm Zig-zag Sawfly. Aproceros leucopoda Takeuchi, 1939 TG1642 14R/B 2020 Bramble Sawfly. Arge cyaneocrocea (Forster, 1771) TG1642 2016 Sawfly. Arge gracilicornis (Klug, 1814 ) TG1642 1987? CIMBICIDAE: Honeysuckle Sawfly. Abia lonicerae (Linnaeus) TG1641 14Q/B 2015 Club-horned Sawfly. Abia sericera (Linnaeus) TG1642 14R/B 2014 Club-horned Sawfly. Zaraea fasciata Linnaeus, 1758 TG1641/42 14R,14Q/B 2014 Birch Sawfly. Cimbex femoratus (Linnaeus, 1758) TG1642 14R/B 2017 SIRICIDAE: Greater Horntail Wasp. Urocerus gigas (Linnaeus, 1758) TG1642 14R/S 1992 CEPHIDAE: Sawfly. Calameuta pallipes (Klug, 1803) TG1642 1987? TENTHREDINIDAE: Willow Sawfly. Pontania proxima (Lepeletier, 1823) TG1642 14R/BS 2009 Willow Sawfly. Eupontania pedunculi (Hartig, 1837) TG1642 14R/B 1999 Willow Sawfly. Eupontainia viminalis (Linnaeus, 1758) TG1642 14R/B 2002 Willow Sawfly. Pontainia bridgemanii (Cameron, 1883) TG1642 14R/B 1999 Sawfly. Caliroa annulipes (Klug, 1816) TG1642 14R/S 2002 Hazel Sawfly. Craesus septentrionalis (Linnaeus, 1758) TG1641 14Q/B 2017 Sawfly. Blennocampa phyllocolpa Viitasaari & Vikberg, 1985 TG1642/41 14R,14Q/B 2003 Sawfly. Selandria serva (Fabricius, 1793) TG1642 14R/B 2013 Sawfly. Aneugmenus padi (Linnaeus, 1761) TG1642 1987? Bracken Sawfly. Strongylogaster multifasciata (Geoffroy, 1785) TG1642 14R/BS 2020 Sawfly. Dichrodolerus vestigialis (Klug, 1818) TG1642 1996 Sawfly. Dolerus germanicus (Fabricius, 1775) TG1642 1987? Sawfly. Eutomostethus ephippium (Panzer, 1798) TG1642 14R/BS 2020 Sawfly. Poodolerus aeneus Hartig, 1837 TG1642 1987? Sawfly. Dolerus brevitarus Hartig TG1642 1987? Sawfly. -
Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution -
VC55 Species Number
VC55 Species Number: 135 Last updated: 3rd Feb 2018 Species Common Records Last Seen Arge berberidis Berberis Sawfly 16 2017 Arge cyanocrocea Bramble Sawfly 30 2017 Arge melanochra none 2 2016 Arge ochropus Rose Sawfly 15 2017 Arge pagana Large Rose Sawfly 19 2017 Arge ustulata none 8 2017 Calameuta filiformis Reed Stem Borer 3 2015 Cephus nigrinus none 1 2017 Cephus pygmeus Wheat Stem Borer 6 2017 Cephus spinipes none 2 2017 Hartigia xanthostoma none 1 2014 Abia sericea Scabious/Club-horned Sawfly 6 2017 Cimbex connatus Large Alder Sawfly 4 2017 Cimbex femoratus Birch Sawfly 8 2017 Trichiosoma lucorum 1 1990 Trichiosoma tibiale Hawthorn Sawfly 2 1999 Zaraea fasciata 2 2017 Diprion similis Imported Pine Sawfly 2 2014 Diprion pini 1 2017 Pamphilius betulae 2 2017 Sirex noctilio 1 1980 Urocerus gigas Giant Woodwasp 25 2017 Allantus cinctus Curled Rose Sawfly 6 2014 Allantus cingulatus 2 2014 Allantus calceatus 1 2015 Ametastegia carpini Geranium Sawfly 3 2017 Ametastegia glabrata 1 2014 Apethymus filiformis 1 2014 Athalia bicolor 1 2014 Athalia circularis 5 2017 Athalia cordata 11 2017 Athalia liberta 2 2016 Athalia rosae Turnip Sawfly 31 2017 Athalia scutellariae Skullcap Sawfly 7 2017 Blennocampa pusilla 3 1996 Blennocampa phyllocolpa 7 2017 Caliroa annulipes Oak Slug Sawfly 2 2014 Caliroa cerasi Pear Slug Sawfly 4 2015 Eutomostethus ephippium 8 2017 Eutomostethus luteiventris 1 2014 Halidamia affinis 2 2013 Monophadnus pallescens 1 2011 Periclista albida 1 2010 Periclista lineolata Oak Sawfly 4 2016 Phymatocera aterrima Solomon's Seal -
Buch Forest1
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Forest Observer Jahr/Year: 2004 Band/Volume: 001 Autor(en)/Author(s): Hellrigl Klaus Artikel/Article: Fundnachweise zur Entomofauna Südtirols: Hautflügler - Hymenoptera 153-180 © Autonome Provinz Bozen, Abteilung Forstwirtschaft, download unter www.biologiezentrum.at forest observer Vol. 1 / 2004 pp. 153 - 180 Fundnachweise zur Entomofauna Südtirols: Hautflügler - Hymenoptera Klaus Hellrigl Abstract Some records from Entomofauna of South Tyrol: Hymenoptera Findings of 225 species of Hymenoptera are listed: 75 species of Symphyta (“Sawflies”), and 150 species of Apocrita - Aculeata. On the basis of the Checklist in „Tierwelt Südtirols“ (HELLRIGL 1996), 30 species of Hymenoptera are newly recorded for South Tyrol (14 Symphyta and 16 Apocrita). Some of these finds for South Tyrol had been previously published, e.g., by F.P ESARINI (1988-1997): 27 Sym- phyta (including 2 previously unrecorded Taxa: Pseudoclavellaria amerinae L., Dolerus nitens Zadd.), and by OLMI (1999): 14 species of Dryinidae (including 10 previously unrecorded Taxa). The remaining material is based on finds and indications by the author K. Hellrigl (122 species: 52 Symphyta + 70 Apocrita), as well as information received on finds in South Tyrol, by R. Franke, Görlitz (81 species: 11 Symphyta + 70 Apocrita), and A. Dreßler, Darmstadt (24 Apocrita). Einleitung Die Untersuchungen zur Insektenfauna einer Region sind ein unerschöpflicher Bereich, für den es eigentlich nie ein Ende geben kann. Zwar nimmt die Anzahl von faunistisch neuen Artnachweisen im Laufe der Jahre ab, doch sind auch Wiederfunde bereits aus dem Gebiet bekannter Arten bedeutsam, vor allem wenn sie neue Fundorte betreffen. -
Beiträge Zur Bayerischen Entomofaunistik 13: 67–207
Beiträge zur bayerischen Entomofaunistik 13:67–207, Bamberg (2014), ISSN 1430-015X Grundlegende Untersuchungen zur vielfältigen Insektenfauna im Tiergarten Nürnberg unter besonderer Betonung der Hymenoptera Auswertung von Malaisefallenfängen in den Jahren 1989 und 1990 von Klaus von der Dunk & Manfred Kraus Inhaltsverzeichnis 1. Einleitung 68 2. Untersuchungsgebiet 68 3. Methodik 69 3.1. Planung 69 3.2. Malaisefallen (MF) im Tiergarten 1989, mit Gelbschalen (GS) und Handfänge 69 3.3. Beschreibung der Fallenstandorte 70 3.4. Malaisefallen, Gelbschalen und Handfänge 1990 71 4. Darstellung der Untersuchungsergebnisse 71 4.1. Die Tabellen 71 4.2. Umfang der Untersuchungen 73 4.3. Grenzen der Interpretation von Fallenfängen 73 5. Untersuchungsergebnisse 74 5.1. Hymenoptera 74 5.1.1. Hymenoptera – Symphyta (Blattwespen) 74 5.1.1.1. Tabelle Symphyta 74 5.1.1.2. Tabellen Leerungstermine der Malaisefallen und Gelbschalen und Blattwespenanzahl 78 5.1.1.3. Symphyta 79 5.1.2. Hymenoptera – Terebrantia 87 5.1.2.1. Tabelle Terebrantia 87 5.1.2.2. Tabelle Ichneumonidae (det. R. Bauer) mit Ergänzungen 91 5.1.2.3. Terebrantia: Evanoidea bis Chalcididae – Ichneumonidae – Braconidae 100 5.1.2.4. Bauer, R.: Ichneumoniden aus den Fängen in Malaisefallen von Dr. M. Kraus im Tiergarten Nürnberg in den Jahren 1989 und 1990 111 5.1.3. Hymenoptera – Apocrita – Aculeata 117 5.1.3.1. Tabellen: Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 117 5.1.3.2. Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 122 5.1.4. Coleoptera 131 5.1.4.1. Tabelle Coleoptera 131 5.1.4.2. -
Hymenoptera, Xyelidae)
Zootaxa 4303 (1): 103–121 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4303.1.6 http://zoobank.org/urn:lsid:zoobank.org:pub:98DEFD68-A0B1-4152-8EC9-8D1FB1FA2AC8 Xyela fusca spec. nov. from Japan elucidates East Asian–North American relationships of Xyela (Hymenoptera, Xyelidae) STEPHAN M. BLANK1,3,4, KATJA KRAMP1,5 & AKIHIKO SHINOHARA2,6 1Senckenberg Deutsches Entomologisches Institut, Eberswalder Str. 90, 15374 Müncheberg, Germany. E-mail: [email protected], [email protected]. 2Department of Zoology, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki, 305–0005 Japan. E-mail: [email protected]. 3Corresponding author 4urn:lsid:zoobank.org:author:0E65D322-6E6B-489E-9243-921D28E0472D 5urn:lsid:zoobank.org:author:72579D81-D3A8-4803-91AC-4C928C83EBEB 6urn:lsid:zoobank.org:author:C7382A9B-948F-479B-BEE7-848DAFECD3BA Abstract Morphological and genetic data indicate that Xyela fusca Blank, Kramp & Shinohara spec. nov. from Shikoku, Japan, plus an undescribed species from China are closely related to the Nearctic X. bakeri Konow, 1898. These species form the X. bakeri group, which is considered to be the sister clade of the Eurasian X. julii group. In addition to the X. alpigena group, the X. bakeri group is the second species group of Xyela with representatives occurring in both the Old and the New World. While X. bakeri is associated with Pinus (Pinus) species as the larval hosts, collection data of imagines suggest P. (Strobus) parviflora for X. fusca. This appears to be the second case, in which closely related Xyela species have switched hosts between species belonging to different subgenera of Pinus. -
Molecular Phylogeny of the Sawfly Subfamily Nematinae (Hymenoptera: Tenthredinidae)
Systematic Entomology (2006),31, 569–583 DOI: 10.1111/j.1365-3113.2006.00336.x Molecular phylogeny of the sawfly subfamily Nematinae (Hymenoptera: Tenthredinidae) TOMMI NYMAN1 , ALEXEY G. ZINOVJEV2 , VELI VIKBERG3 and BRIAN D. FARRELL4 1Department of Biology, University of Oulu, Oulu, Finland, 2Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia, 3Liinalammintie 11 as. 6, Turenki, Finland, 4Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, U.S.A. Abstract. Nematinae is one of the largest subfamilies in the sawfly family Tenthredinidae, but internal relationships are unknown in the absence of any formal phylogenetic analysis. To understand the internal phylogeny of Nematinae, we sequenced a portion of the mitochondrial cytochrome oxidase I gene and the nuclear elongation factor-1a gene from thirteen outgroup taxa and sixty-eight nematine species, the ingroup taxa of which represent all major genera and subgenera within the subfamily. Maximum parsimony and Bayesian phyloge- netic analyses of the DNA sequence data show that: (1) Nematinae are monophy- letic in a broad sense which includes Hoplocampa, Susana and the tribe Cladiini, which have been classified often into separate subfamilies; together with Craterocercus, these taxa form a paraphyletic basal grade with respect to the remaining Nematinae, but among-group relationships within the grade remain weakly resolved; (2) the remainder of the ingroup, Nematinae s. str, is monophy- letic in all combined-data analyses; (3) within Nematinae s. str, the ‘Higher’ Nematinae is divided into three groups, Mesoneura and the large tribes Nematini and Pristiphorini; (4) although the traditional classifications at the tribal level are largely upheld, some of the largest tribes and genera are obviously para- or polyphyletic; (5) according to rate-smoothed phylogenies dated with two fossil calibration points, Nematinae originated 50–120 million years ago. -
Sawfly Study Group Newsletter 2
Newsletter 2 JANUARY 2007 Editor: Guy Knight, National Museums Liverpool William Brown Street, Liverpool, L3 8EN, UK [email protected] Thank you all for the encouragement and notes contributed since the previous newsletter was sent out last spring. This issue contains a variety of articles dealing with national and local recording, conservation status, behaviour and taxonomy. I am especially pleased that some of the notes in the last issue have been followed up and enhanced by what appears in this one. Because of costs, this is the last newsletter that will be sent out as printed copies unless specifically requested, so, if you have not already done so, please let me know if you can receive it electronically or require it on paper. Best wishes for a productive new year and please continue to send any contributions to me at the address above. RECENT LITERATURE This list is not exhaustive, but highlights some key literature and websites that have come to my attention in the past year. The end of last year saw the publication of the excellent Recent Sawfly Research: Synthesis and Prospects edited by S. Blank, S. Schmidt & A. Taeger (Goecke & Evers, Keltern, ISBN 3- 937783-19-9, 704pp). The book is a collection of about 40 papers detailing recent research on European and world sawfly life history & ecology, taxonomy, faunistics and checklists as well as reviews, biographies and a CD ROM of valuable ‘historic’ literature and colour plates. Several of the papers mentioned as ‘in prep’ or ‘in press’ in the note on recent additions to the British list in the last newsletter have now been published. -
Invertebrate and Avian Predators As Drivers of Chemical Defensive Strategies in Tenthredinid Sawflies
Boevé et al. BMC Evolutionary Biology 2013, 13:198 http://www.biomedcentral.com/1471-2148/13/198 RESEARCH ARTICLE Open Access Invertebrate and avian predators as drivers of chemical defensive strategies in tenthredinid sawflies Jean-Luc Boevé1*, Stephan M Blank2, Gert Meijer1,3 and Tommi Nyman4,5 Abstract Background: Many insects are chemically defended against predatory vertebrates and invertebrates. Nevertheless, our understanding of the evolution and diversity of insect defenses remains limited, since most studies have focused on visual signaling of defenses against birds, thereby implicitly underestimating the impact of insectivorous insects. In the larvae of sawflies in the family Tenthredinidae (Hymenoptera), which feed on various plants and show diverse lifestyles, two distinct defensive strategies are found: easy bleeding of deterrent hemolymph, and emission of volatiles by ventral glands. Here, we used phylogenetic information to identify phylogenetic correlations among various ecological and defensive traits in order to estimate the relative importance of avian versus invertebrate predation. Results: The mapping of 12 ecological and defensive traits on phylogenetic trees inferred from DNA sequences reveals the discrete distribution of easy bleeding that occurs, among others, in the genus Athalia and the tribe Phymatocerini. By contrast, occurrence of ventral glands is restricted to the monophyletic subfamily Nematinae, which are never easy bleeders. Both strategies are especially effective towards insectivorous insects such as ants, while only Nematinae species are frequently brightly colored and truly gregarious. Among ten tests of phylogenetic correlation between traits, only a few are significant. None of these involves morphological traits enhancing visual signals, but easy bleeding is associated with the absence of defensive body movements and with toxins occurring in the host plant.