Molecular Phylogeny of the Sawfly Subfamily Nematinae (Hymenoptera: Tenthredinidae)

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogeny of the Sawfly Subfamily Nematinae (Hymenoptera: Tenthredinidae) Systematic Entomology (2006),31, 569–583 DOI: 10.1111/j.1365-3113.2006.00336.x Molecular phylogeny of the sawfly subfamily Nematinae (Hymenoptera: Tenthredinidae) TOMMI NYMAN1 , ALEXEY G. ZINOVJEV2 , VELI VIKBERG3 and BRIAN D. FARRELL4 1Department of Biology, University of Oulu, Oulu, Finland, 2Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia, 3Liinalammintie 11 as. 6, Turenki, Finland, 4Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, U.S.A. Abstract. Nematinae is one of the largest subfamilies in the sawfly family Tenthredinidae, but internal relationships are unknown in the absence of any formal phylogenetic analysis. To understand the internal phylogeny of Nematinae, we sequenced a portion of the mitochondrial cytochrome oxidase I gene and the nuclear elongation factor-1a gene from thirteen outgroup taxa and sixty-eight nematine species, the ingroup taxa of which represent all major genera and subgenera within the subfamily. Maximum parsimony and Bayesian phyloge- netic analyses of the DNA sequence data show that: (1) Nematinae are monophy- letic in a broad sense which includes Hoplocampa, Susana and the tribe Cladiini, which have been classified often into separate subfamilies; together with Craterocercus, these taxa form a paraphyletic basal grade with respect to the remaining Nematinae, but among-group relationships within the grade remain weakly resolved; (2) the remainder of the ingroup, Nematinae s. str, is monophy- letic in all combined-data analyses; (3) within Nematinae s. str, the ‘Higher’ Nematinae is divided into three groups, Mesoneura and the large tribes Nematini and Pristiphorini; (4) although the traditional classifications at the tribal level are largely upheld, some of the largest tribes and genera are obviously para- or polyphyletic; (5) according to rate-smoothed phylogenies dated with two fossil calibration points, Nematinae originated 50–120 million years ago. In addition, the results from all Bayesian analyses provide strong and consistent support for the monophyly of Tenthredinidae, which has been difficult to demonstrate in previous parsimony analyses of morphological and molecular data. Introduction in the north temperate region (Marlatt, 1896; Kouki et al., 1994; Kouki, 1999) and, in many Arctic areas, nematines are The cosmopolitan sawfly family Tenthredinidae includes the only sawflies present (Benson, 1958; Smith, 1979; Gauld over 6000 species divided into six subfamilies (Goulet, & Bolton, 1988). The southernmost naturally occurring 1992; Taeger & Blank, 1998). One of the largest is nematine species occur in Brazil (Malaise, 1942; Smith, Nematinae, which comprises over 1000 species. Nematinae 2003) and Borneo (Benson, 1963). Nematine larvae rank has a primarily northern distribution: by contrast with most amongst the principal insect herbivores in many habitats, other insect taxa, the diversity of nematines reaches its peak and some species associated with trees are considered as serious pests. For example, Hoplocampa species damage fruits of orchard trees, and Anoplonyx and Pristiphora spe- cies can damage spruce and larch forests severely (Smith, Correspondence: Tommi Nyman, Department of Biology, 1979; Gauld & Bolton, 1988; Viitasaari, 2002). University of Oulu, PO Box 3000, FI-90014 Oulu, Finland. Despite their ubiquity and ecological importance, the E-mail: [email protected] phylogenetic relationships amongst nematine taxa remain # 2006 The Authors Journal compilation # 2006 The Royal Entomological Society 569 570 T. Nyman et al. unknown. The subfamily has been divided traditionally Materials and methods into some eight to nine tribes and approximately forty genera (cf. Smith, 1979; Zhelochovtsev, 1988, 1994; Abe Taxon sampling & Smith, 1991; Lacourt, 1998, 1999; Taeger et al., 1998). Because the definition of Nematinae is ambiguous, some The three largest nematine genera, Pristiphora, Nematus nematine groups (especially the tribe Cladiini, and the and Pachynematus s.l., have proven to be particularly genera Susana and Hoplocampa) have been classified complex from a taxonomic perspective, because attempts frequently as separate subfamilies (e.g. Yuasa, 1922; Ross, to divide them into smaller genera or subgenera have led 1937, 1951; Maxwell, 1955; Goulet, 1992; Lacourt, 1998, to difficulties in classifying many species (Benson, 1958; 1999). To date, no formal morphology-based phylogenetic Smith, 1979; Viitasaari, 2002). Here, we follow mainly analyses of the Nematinae have been performed, partly the nomenclature of the maximally divisive (sub)generic because of the limited morphological divergence amongst classifications of Zhelochovtsev (1988, 1994) and Lacourt groups and partly as a result of difficulties that follow from (1998, 1999) to ensure a broad enough taxon sample. the broad Holarctic distributions of many nematine The sixty-eight ingroup taxa included in the phylogenetic species and genera (Benson, 1958, 1962; Smith, 1979; analysis (Table 1) represent all major genera within Goulet, 1992). A phylogenetic hypothesis presented Nematinae, and most subgenera of the large genera. by Ross (1937), although not a formal analysis, was based The missing genera are rare and (near) monotypic on a philosophy of minimizing morphological (Adelomos Ross, Neodineura Taeger, Megadineura changes along the tree (Fig. 1), and later Maxwell Malaise, Katsujia Togashi and Nepionema Benson), or (1955) drew a tree on the basis of larval anatomy. their generic status is disputed (for example, Benson However, the two phylogenies include few nematine genera (1963) and Abe & Smith (1991) consider the Asian and are directly contradictory in the placement of many Moricella Rohwer a synonym of Mesoneura). The largest taxa. missing genus is Kerita Ross, which includes three The purpose of this study was to gain a more robust Nearctic species (Smith, 1976). hylogenetic hypothesis of the subfamily Nematinae. To establish the phylogenetic position of Nematinae, we For this, we used DNA sequence data from the mitochon- included thirteen outgroup taxa that supposedly represent drial cytochrome oxidase I gene and the nuclear different levels of divergence (Table 1). Sterictiphora, elongation factor-1a gene to reconstruct the relationships Diprion and Abia represent three other families from the amongst thirteen outgroup taxa and sixty-eight superfamily Tenthredinoidea (Argidae, Diprionidae and nematine species that represent all tribes and all main Cimbicidae, respectively). Of these, Sterictiphora was used genera within the Nematinae. Maximum parsimony and to root the trees, in accordance with results from phyloge- Bayesian phylogenetic analyses of the sequence data netic analyses by Rasnitsyn (1988), Vilhelmsen (1997), support the monophyly of the subfamily in a broad sense, Ronquist et al. (1999) and Schulmeister (2003). The ten give a relatively well-resolved overall view of the non-nematine tenthredinid species represent all five other nematine radiation, and provide a framework for further subfamilies within the family Tenthredinidae (Taeger & studies. Blank, 1998). All specimens have been deposited as voucher Fig. 1. Ross’s (1937) phylogenetic hypoth- esis of the Tenthredinidae. The subfamily Nematinae (and Cladiinae) is on the lower right-hand side of the tree. # 2006 The Authors Journal compilation # 2006 The Royal Entomological Society, Systematic Entomology, 31, 569–583 # Journal compilation 2006 The Authors Table 1. Taxa and samples used in the study, and collection dates and localities. Classification follows mainly Zhelochovtsev (1988, 1994) and Lacourt (1998, 1999). Ingroup tribes that are para- or polyphyletic are indicated, and tribes that should be lowered to a subtribal rank in order to make Pristiphorini and Nematini monophyletic are given in parentheses (see Fig. 3). Tribe Genus (subgenus) species Sex/stage (host, if larva) Location Date Collector ‘Susaninae’ Susana annulata Smith / Butte County, CA, U.S.A. iv.2002 H. J. Jacobson # (included in ingroup) 2006 The Royal Entomological Society, Hoplocampini Hoplocampa oregonensis (Ashmead) / Elk mtn, BC, Canada 17.vii.2002 T. Nyman (polyphyletic) Hoplocampa marlatti Rohwer / Cambridge, MA, U.S.A. 5.v.2002 T. Nyman Caulocampus acericaulis (MacGillivray) / Aneaster, ON, Canada 17–20.v.1995 B. DeJonge Caulocampus matthewsi Smith / Petersham, MA, U.S.A. 8–15.v.2002 T. Nyman Cladiini Cladius comari Stein ? Mekrija¨rvi, Finland 8.vii.2001 T. Nyman Priophorus pallipes (Serville) Larva, Betula pubescens Laboratory colony, Finland 12.iv.2000 A. Kause Trichiocampus aeneus (Zaddach) Larva, Salix phylicifolia Hausja¨rvi, Finland 2.ix.2001 V. Vikberg Mesoneurini Mesoneura opaca (Fabricius) Larva, Quercus sp. Overijse, Belgium 26.v.2001 J.-L. Boeve´ (polyphyletic) Craterocercus fraternalis (Norton) / Hardy County, WV, U.S.A. 17.4.-3.v.2002 D. R. Smith Pseudodineurini Pseudodineura fuscula (Klug) / Nana Aseme, Estonia 21.4.2002 M. Heidemaa Pseudodineura parva (Norton) ? Petersham, MA, U.S.A. 14–22.v.2002 T. Nyman Endophytus anemones (Hering) Larva, Anemone nemorosa Etzen, Austria 5.v.2002 E. Altenhofer Dineurini Platycampus luridiventris (Falle´n) ? Joensuu, Finland 11.vi.2001 T. Nyman Systematic Entomology Anoplonyx apicalis (Brischke) Larva, Larix sibirica Janakkala, Finland 1.ix.2002 V. Vikberg Dineura virididorsata (Retzius) Larva, Betula pubescens Janakkala, Finland 7.vii.2002 V. Vikberg Hemichroa (Hemichroa) crocea (Geoffroy) Larva, Alnus glutinosa Grimminge, Belgium 4.ix.2002 J.-L. Boeve´ Hemichroa
Recommended publications
  • Hymenoptera: Tenthredinidae, Blennocampinae)
    Redescription of Eutomostethus laticarinatus comb, nov. (Hymenoptera: Tenthredinidae, Blennocampinae) V. Vasu & Malkiat S. Saini VASU, V. & M. S. SAINI, 1997. REDESCRIPTION OF EUTOMOSTETHUS LATICARINATUS COMB. NOV. (HY¬ MENOPTERA: TENTHREDINIDAE, BLENNOCAMPINAE). - ENT. BER., AMST. 57 (9): 136-138. Abstract: This study deals with the correct taxonomic placement, detailed systematic redescription and illustrations of Monophadnus laticarinatus. This species is now shifted to the genus Eutomostethus. The characters distinguishing E. la¬ ticarinatus from its allied species E. orbicarinatus are commented on. Department of Zoology, Punjabi University, Patiala-147002, India. Introduction Eutomostethus laticarinatus (Cameron) comb. nov. Prior to the work by Saini & Vasu (1996a), (figs 1-6) only two species of Eutomostethus Enslin we¬ Monophadnus laticarinatus Cameron, 1899: 48. re known from India. These species were de¬ scribed by Rohwer (1913) under the genus Type material Tomostethus Konow and later on shifted by Holotype (borrowed from NHM, London) appended with the same author (Rohwer, 1915) to Eutomo¬ labels as: B.M. Type, HYM, 1.412, Monophadnus latica¬ stethus Enslin. Saini & Vasu (1996a, 1996b) rinatus Cameron, Khasia Hills, Coll. Cameron, 99-200, added 20 new species from various parts of Female. India to this genus. Specimens: India, Nagaland, Zunheboto, 1874 m, 1 5, In this paper we propose to transfer 10.ix.1992, Coll. V. Vasu; Wokha, 1300 m, 2 $, 15.ix.1992, Coll. V. Vasu. Monophadnus laticarinatus Cameron to the Depository: Type returned to NHM, London. Specimens genus Eutomostethus with which it shares a (det. Vasu & Saini) housed at Pusa National Collection, combination of characters such as: epicnemi- Division of Entomology, Indian Agricultural Research um distinctly raised, shoulder-like in Euto¬ Institute, New Delhi, India.
    [Show full text]
  • Bon Echo Provincial Park
    BON ECHO PROVINCIAL PARK One Malaise trap was deployed at Bon Echo Provincial Park in 2014 (44.89405, -77.19691 278m ASL; Figure 1). This trap collected arthropods for twenty weeks from May 7 – September 24, 2014. All 10 Malaise trap samples were processed; every other sample was analyzed using the individual specimen protocol while the second half was analyzed via bulk analysis. A total of 2559 BINs were obtained. Over half the BINs captured were flies (Diptera), followed by bees, ants and wasps (Hymenoptera), moths and butterflies (Lepidoptera), and beetles (Coleoptera; Figure 2). In total, 547 arthropod species were named, representing 22.9% of the BINs from the site (Appendix 1). All BINs were assigned at least to Figure 1. Malaise trap deployed at Bon Echo family, and 57.2% were assigned to a genus (Appendix Provincial Park in 2014. 2). Specimens collected from Bon Echo represent 223 different families and 651 genera. Diptera Hymenoptera Lepidoptera Coleoptera Hemiptera Mesostigmata Trombidiformes Psocodea Sarcoptiformes Trichoptera Araneae Entomobryomorpha Symphypleona Thysanoptera Neuroptera Opiliones Mecoptera Orthoptera Plecoptera Julida Odonata Stylommatophora Figure 2. Taxonomy breakdown of BINs captured in the Malaise trap at Bon Echo. APPENDIX 1. TAXONOMY REPORT Class Order Family Genus Species Arachnida Araneae Clubionidae Clubiona Clubiona obesa Linyphiidae Ceraticelus Ceraticelus atriceps Neriene Neriene radiata Philodromidae Philodromus Salticidae Pelegrina Pelegrina proterva Tetragnathidae Tetragnatha Tetragnatha shoshone
    [Show full text]
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • (Hymenoptera, Tenthredinidae) – a New Pest Species of Ash Tree in the Republic of Moldova
    Muzeul Olteniei Craiova. Oltenia. Studii şi comunicări. Ştiinţele Naturii. Tom. 36, No. 1/2020 ISSN 1454-6914 Tomostethus nigritus F. (HYMENOPTERA, TENTHREDINIDAE) – A NEW PEST SPECIES OF ASH TREE IN THE REPUBLIC OF MOLDOVA MOCREAC Nadejda Abstract. In the Republic of Moldova, the ash tree is a common forest species, used in the reforestation and afforestation of woods and territories, and widely used as an ornamental tree in cities and along roads. For more than ten years, our ash tree woods have been severely defoliated by the ash weevil Stereonychusfraxini (De Geer, 1775) from Curculionidae family. In the vegetation period of 2018 and 2019, defoliation was seen on ash trees, caused by unknown sawfly larvae species from the Tenthredinidae family. The analyses showed that these pests belong to the Hymenoptera order – the privet sawfly – Macrophya punctumalbum (Linnaeus, 1767), and Tomostethus nigritus (Fabricius, 1804), the last one being a new species for the fauna of the Republic of Moldova. The biggest ash defoliations caused by the Tomostethus nigritus larvae were recorded in the centre of the country, especially in the Nisporeni and Tighina Forest Enterprises and in the “Plaiul Fagului” Scientific Reserve, as well as in the urban space. Keywords: Ash Black sawfly, Tenthredinidae, ash tree, outbreaks, defoliations, Republic of Moldova. Rezumat. Tomostethus nigritus F. (Hymenoptera, Tenthredinidae) – specie nouă de dăunător al frasinului în Republica Moldova. În Republica Moldova, frasinul este o specie obișnuită, folosită nu numai în reîmpădurire și împădurire dar utilizat pe scară largă ca arbore ornamental în parcurile din orașe și de-a lungul drumurilor. Mai bine de zece ani, pădurile de frasin sunt defoliate anual de către trombarul frunzelor de frasin Stereonychus fraxini (De Geer, 1775) din familia Curculionidae.
    [Show full text]
  • Suborder Symphyta – Sawflies and Wood Wasps
    20 Yu.N. Sundukov SUBORDER SYMPHYTA – SAWFLIES Subfamily MACROXYELINAE AND WOOD WASPS MEGAXYELA Ashmead, 1898 (Odontophyes Konow, YU.N. SUNDUKOV 1899; Megaloxyela Schulz, 1906; Paraxyela Mac- Gillivray, 1912). The larvae feed on the Juglanda- Sawflies are distinguished from otherHymenoptera ceae. Type species Xyela major Cresson, 1880. by the anterior margin of the tergum 1, which appears The genus is distributed in East Palaearctic and as part of abdomen rather than thorax, though it is Nearctic region. Number of species: World – 11; fused to the postnotum of the metathorax. The sub- Palaearctic – 6; Russia – 2. order is distributed worldwide. Number of recent taxa: World – 15 familes, 45 subfamilies, about 650 genera, Megaxyela gigantea Mocsàry, 1909 (M. mikado Sato, about 8250 species; Palaearctic – 13/24/>310/about 1930). Host plant: Juglans mandshurica Maxim., 4400; Russia – 13/22/170/1546. J. ailanthifolia Carr., J. regia L. (Juglandaceae). The classification used here reflects classification, Russia: FE (KH, PR). – Korean Peninsula. derived from the “World catalog of Symphyta” (Taeger Megaxyela pulchra Blank, Shinohara et Sundukov, et al., 2010), taking into account the latest taxonomic 2017. Host plant: Juglans mandshurica Maxim., changes (see the list of references). ?J. ailanthifolia Carr., ?J. regia L., ?Pterocarya spp. (Juglandaceae). Russia: FE (PR). – China (NE, WP, INFRAORDER XYELOMORPHA SE), Korean Peninsula. SUPERFAMILY XYELOIDEA Subfamily XYELINAE One family: Xyelidae. PLERONEURA Konow, 1897 (Manoxyela Ashmead, 1898). T y p e s p e c i e s Xyela dahli Hartig, 1837. 1. FAMILY XYELIDAE The larvae of species bores in the shoot of Abies and Picea (Pinaceae). The genus is distributed in Xyelidae is the earliest known family of Hyme- the Holarctic and Neotropical regions.
    [Show full text]
  • DEFOLIATORS Insect Sections
    Alaska. Reference is made to this map in selected DEFOLIATORS insect sections. (Precipitation information from Schwartz, F.K., and Miller, J.F. 1983. Probable maximum precipitation and snowmelt criteria for Fewer defoliator plots (27 plots) were visited during southeast Alaska: National Weather Service the 1999 aerial survey than in previous years (52 plots) Hydrometeorological Report No. 54. 115p. GIS layer throughout southeast Alaska. An effort was made to created by: Tim Brabets, 1997. distribute these plots evenly across the archipelago. URL:http://agdc.usgs.gov/data/usgs/water) The objectives during the 1999 season were to: ¨ Spend more time covering the landscape during Spruce Needle Aphid the aerial survey, Elatobium abietinum Walker ¨ Allow more time to land and identify unknown mortality and defoliation, and Spruce needle aphids feed on older needles of Sitka ¨ Avoid visit sites that were hard to get to and had spruce, often causing significant amounts of needle few western hemlocks. drop (defoliation). Defoliation by aphids cause reduced tree growth and can predispose the host to Hemlock sawfly and black-headed budworm larvae other mortality agents, such as the spruce beetle. counts were generally low in 1999 as they were in Severe cases of defoliation alone may result in tree 1998. The highest sawfly larvae counts were from the mortality. Spruce in urban settings and along marine plots in Thorne Bay and Kendrick Bay, Prince of shorelines are most seriously impacted. Spruce aphids Wales Island. Larval counts are used as a predictive feed primarily in the lower, innermost portions of tree tool for outbreaks of defoliators. For example, if the crowns, but may impact entire crowns during larval sample is substantially greater in 1999, then an outbreaks.
    [Show full text]
  • Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
    Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N.
    [Show full text]
  • Evidence and Implications of Recent and Projected Climate Change in Alaska’S Forest Ecosystems 1, 2 1 3 4 JANE M
    Evidence and implications of recent and projected climate change in Alaska’s forest ecosystems 1, 2 1 3 4 JANE M. WOLKEN, TERESA N. HOLLINGSWORTH, T. SCOTT RUPP, F. STUART CHAPIN, III, SARAH F. TRAINOR, 5 6 7 3 8 TARA M. BARRETT, PATRICK F. SULLIVAN, A. DAVID MCGUIRE, EUGENIE S. EUSKIRCHEN, PAUL E. HENNON, 9 10 11 8 1 ERIK A. BEEVER, JEFF S. CONN, LISA K. CRONE, DAVID V. D ’AMORE, NANCY FRESCO, 8 3 12 11 13 THOMAS A. HANLEY, KNUT KIELLAND, JAMES J. KRUSE, TRISTA PATTERSON, EDWARD A. G. SCHUUR, 14 14 DAVID L. VERBYLA, AND JOHN YARIE 1Scenarios Network for Alaska and Arctic Planning, University of Alaska, 3352 College Road, Fairbanks, Alaska 99709 USA 2United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Boreal Ecology Cooperative Research Unit, P.O. Box 756780, University of Alaska, Fairbanks, Alaska 99775 USA 3Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775 USA 4Alaska Center for Climate Assessment and Policy, University of Alaska, 3352 College Road, Fairbanks, Alaska 99709 USA 5United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Anchorage Forestry Sciences Laboratory, 3301 C Street, Suite 200, Anchorage, Alaska 99503 USA 6Environment and Natural Resources Institute, Department of Biological Sciences, University of Alaska, Anchorage, Alaska 99508 USA 7United States Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska, Fairbanks, Alaska 99775 USA 8United States Department of Agriculture Forest
    [Show full text]
  • Sawflies (Hymenoptera, Symphyta) I
    Sawflies (Hymenoptera, Symphyta) I A review of the suborder, the Western Palaearctic taxa of Xyeloidea and Pamphilioidea Edited by Matti Viitasaari Tremex Press Ltd., Helsinki Tremex Press I hl., /!/>'. 55, 00661 Helsinki, Finland Fax: i J5.S1'9-34650090 F.niail: [email protected] Weh site: www.kolumbus.fi/tremex © 2002 Tremex Press Ltd. All rights resemed, No part of this publication may be reproduced, stored in a re- trieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, without the permission in writing of the Copyright owner. ISBN 952-5274-01-2 Key words: bisecta, Hymenoptera, Symphyta, Xyelidae, Pamphiliidae, Megalodontesidae. Published 15 March 2002 Printed and bound in Jyväskylä, Finland by Gummerus Printing Front cover photograph: larvae of Craesus septentrionalis (Linnaeus) on Common Alder. Nature Photo Agency, Finland, Hannu Huovila. Contents Introduction 5 Outlines of the present study 5 Acknowledgements 8 The contributors 10 M. Viitasaari: The suborder Symphyta of the Hymenoptera 12 A cavalcade of landmarks in taxonomic research 12 Notes on faunistic record in Northern Europe 27 Monophyly and relationships of the Symphyta 30 Life history 34 Adult stage 34 Egg stage 39 Larval stage 40 Prepupal stage 41 Pupal stage 43 Voltinism and diapause strategies 44 Larval habits 45 Host spectrum 45 External feeders 47 Internal feeders 51 Gall-inducing sawflies 51 Early-season and late-season feeders 53 Reproduction, speciation and variation 54 Modes of reproduction
    [Show full text]
  • Chlorantraniliprole: Reduced-Risk Insecticide for Controlling Insect Pests of Woody Ornamentals with Low Hazard to Bees
    242 Redmond and Potter: Acelepryn Control of Horticultural Pests Arboriculture & Urban Forestry 2017. 43(6):242–256 Chlorantraniliprole: Reduced-risk Insecticide for Controlling Insect Pests of Woody Ornamentals with Low Hazard to Bees Carl T. Redmond and Daniel A. Potter Abstract. Landscape professionals need target-selective insecticides for managing insect pests on flowering woody orna- mentals that may be visited by bees and other insect pollinators. Chlorantraniliprole, the first anthranilic diamide insec- ticide registered for use in urban landscapes, selectively targets the receptors that regulate the flow of calcium to control muscle contraction in caterpillars, plant-feeding beetles, and certain other phytophagous insects. Designated a reduced- risk pesticide by the United States Environmental Protection Agency, it has a favorable toxicological and environmental profile, including very low toxicity to bees and most types of predatory and parasitic insects that contribute to pest sup- pression. Chlorantraniliprole has become a mainstay for managing turfgrass pests, but little has been published concern- ing its performance against the pests of woody ornamentals. Researchers evaluated it against pests spanning five different orders: adult Japanese beetles, evergreen bagworm, eastern tent caterpillar, bristly roseslug sawfly, hawthorn lace bug, ole- ander aphid, boxwood psyllid, oak lecanium scale (crawlers), and boxwood leafminer, using real-world exposure scenarios. Chlorantraniliprole’s efficacy, speed of control, and residual activity as a foliar spray for the leaf-chewing pests was as good, or better, than provided by industry standards, but sprays were ineffective against the sucking pests (lace bugs, aphids, or scales). Basal soil drenches in autumn or spring failed to systemically control boxwood psyllids or leafminers, but autumn drenches did suppress roseslug damage and Japanese beetle feeding the following year.
    [Show full text]
  • Oregon Invasive Species Action Plan
    Oregon Invasive Species Action Plan June 2005 Martin Nugent, Chair Wildlife Diversity Coordinator Oregon Department of Fish & Wildlife PO Box 59 Portland, OR 97207 (503) 872-5260 x5346 FAX: (503) 872-5269 [email protected] Kev Alexanian Dan Hilburn Sam Chan Bill Reynolds Suzanne Cudd Eric Schwamberger Risa Demasi Mark Systma Chris Guntermann Mandy Tu Randy Henry 7/15/05 Table of Contents Chapter 1........................................................................................................................3 Introduction ..................................................................................................................................... 3 What’s Going On?........................................................................................................................................ 3 Oregon Examples......................................................................................................................................... 5 Goal............................................................................................................................................................... 6 Invasive Species Council................................................................................................................. 6 Statute ........................................................................................................................................................... 6 Functions .....................................................................................................................................................
    [Show full text]
  • Technical Series, No
    ' ' Technical Series, No. 20, Part II. U. S. DEPARTMENT OF AGRICULTURE, BXJRE^TJ OK' TClSrTOM:OIL.OG^Y. L, 0. HOWARD, Entomologist and Chief of Bureau. TECHNICAL PAPERS ON MISCELLANEOUS .FOREST INSECTS. II. THE GENOTYPES OF THE SAWFLIES AND WOODWASPS, OR THE SUPERFAMILY TENTHKEDINOIDEA. S. A. ROHWER, Agent and Expert. Issued M.\rch 4, 1911. WASHINGTON: GOVERNMENT PRINTING OFFICE. 1911. Technical Series, No. 20, Part II. U. S. DEPARTMENT OF AGRICULTURE. L. 0. HOWARD, Entomologist and Chief of Bureau. TECHNICAL PAPERS ON MISCELLANEOUS FOREST INSECTS. II. THE GENOTYPES OF THE SAWFLIES AND WOODWASPS, OR THE SUPERFAMILY TENTHREDINOIDEA. BY S. A. ROHWER, Agent and Expert. Issued Makch 4, 1911. WASHINGTON: GOVERNMENT PRINTING OFFICE. 1911. B UREA U OF ENTOMOLOGY. L. O. Howard, Entomologist and Chief of Bureau. C. L. Marlatt, Entomologist and Acting Chief in Absence of Chief. R. S. Clifton, Executive Assistant. W. F. Tastet, Chief Clerk. F. H. Chittenden, in charge of truck crop and stored product insect investigations. A. D. Hopkins, in charge offorest insect investigations. W. D. Hunter, in charge of southern field crop insect investigations. F. M. Webster, in charge of cereal and forage insect investigations. A. L. Quaintance, in charge of deciduous fruit insect investigations. E. F. Phillips, in charge of bee culture. D. M. Rogers, in charge of preventing spread of moths, field -work. RoLLA P. Currie, in charge of editorial work. Mabel Colcord, librarian. , Forest Insect Investigations. A. D. Hopkins, in charge. H. E. Burke, J. L. Webb, Josef Brunner, S. A. Rohwer, T. E. Snyder, W. D. Edmonston, W. B. Turner, agents and experts.
    [Show full text]