Evidence and Implications of Recent and Projected Climate Change in Alaska’S Forest Ecosystems 1, 2 1 3 4 JANE M

Total Page:16

File Type:pdf, Size:1020Kb

Evidence and Implications of Recent and Projected Climate Change in Alaska’S Forest Ecosystems 1, 2 1 3 4 JANE M Evidence and implications of recent and projected climate change in Alaska’s forest ecosystems 1, 2 1 3 4 JANE M. WOLKEN, TERESA N. HOLLINGSWORTH, T. SCOTT RUPP, F. STUART CHAPIN, III, SARAH F. TRAINOR, 5 6 7 3 8 TARA M. BARRETT, PATRICK F. SULLIVAN, A. DAVID MCGUIRE, EUGENIE S. EUSKIRCHEN, PAUL E. HENNON, 9 10 11 8 1 ERIK A. BEEVER, JEFF S. CONN, LISA K. CRONE, DAVID V. D ’AMORE, NANCY FRESCO, 8 3 12 11 13 THOMAS A. HANLEY, KNUT KIELLAND, JAMES J. KRUSE, TRISTA PATTERSON, EDWARD A. G. SCHUUR, 14 14 DAVID L. VERBYLA, AND JOHN YARIE 1Scenarios Network for Alaska and Arctic Planning, University of Alaska, 3352 College Road, Fairbanks, Alaska 99709 USA 2United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Boreal Ecology Cooperative Research Unit, P.O. Box 756780, University of Alaska, Fairbanks, Alaska 99775 USA 3Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775 USA 4Alaska Center for Climate Assessment and Policy, University of Alaska, 3352 College Road, Fairbanks, Alaska 99709 USA 5United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Anchorage Forestry Sciences Laboratory, 3301 C Street, Suite 200, Anchorage, Alaska 99503 USA 6Environment and Natural Resources Institute, Department of Biological Sciences, University of Alaska, Anchorage, Alaska 99508 USA 7United States Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska, Fairbanks, Alaska 99775 USA 8United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Juneau Forestry Sciences Laboratory, 11305 Glacier Highway, Juneau, Alaska 99801 USA 9Northern Rocky Mountain Science Center, United States Geological Survey, Bozeman, Montana 59715 USA 10Agricultural Research Service, United States Department of Agriculture, University of Alaska, Fairbanks, Alaska 99775 USA 11United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Alaska Wood Utilization Research and Development Center, 204 Siginaka Way, Sitka, Alaska 99835 USA 12Forest Health Protection, State and Private Forestry, United States Department of Agriculture Forest Service, Fairbanks Unit, 3700 Airport Way, Fairbanks, Alaska 99709 USA 13Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118526, Gainesville, Florida 32611 USA 14Department of Forest Sciences, School of Natural Resources and Agricultural Sciences, University of Alaska, Fairbanks, Alaska 99775 USA Citation: Wolken, J. M., et al. 2011. Evidence and implications of recent and projected climate change in Alaska’s forest ecosystems. Ecosphere 2(11):124. doi:10.1890/ES11-00288.1 Abstract. The structure and function of Alaska’s forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important v www.esajournals.org 1 November 2011 v Volume 2(11) v Article 124 WOLKEN ET AL. consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates assessment of current and future consequences of a changing climate, emphasizes regional differences in biophysical factors, and points to linkages that may exist but that currently lack supporting research. The framework also serves as a visual tool for resource managers and policy makers to develop regional and global management strategies and to inform policies related to climate mitigation and adaptation. Key words: Alaska; boreal forest; climate change; climate projections; coastal-temperate forest; conceptual framework; disturbance regime; ecosystem services; insects and disease; invasive species; permafrost; wildfire. Received 11 October 2011; accepted 13 October 2011; published 21 November 2011. Corresponding Editor: D. P. C. Peters. Copyright: Ó 2011 Wolken et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits restricted use, distribution, and reproduction in any medium, provided the original author and sources are credited. E-mail: [email protected] INTRODUCTION and globally. Ninety percent of the forests are classified as boreal (42 million ha), collectively Currently, climate changes are significantly representing 4% of the world’s boreal forests impacting Alaska’s ecosystems (ACIA 2005). (Shvidenko and Apps 2006); these occur These impacts have been repeatedly synthesized throughout the Interior-, Southcentral- and Ke- for arctic tundra (ACIA 2005, Hinzman et al. nai-boreal regions (Fig. 1B). Coastal-temperate 2005, McGuire et al. 2009) and portions of the forests (5 million ha) comprise 10% of Alaska’s boreal forest (Chapin et al. 2006a), but there has forests and represent 19% of the world’s coastal- been no comprehensive review of climate-change temperate forests (NAST 2003). Forests in Alaska impacts on the broad spectrum of Alaskan play a large role in the economies and livelihoods forests, which is the goal of this review. Changes of people, as a result of their proximity to urban in high-latitude forests have important implica- and rural communities, and a diversity of tions both regionally and globally. Shifts in the associated ecosystem services (MEA 2005). disturbance regimes of Alaska’s forests (boreal Changes in forest structure and function will and coastal-temperate rainforest biomes) at the not only directly impact the biological compo- regional scale directly affect the global climate nents of these ecosystems, but will also have system through greenhouse gas emissions (Tan et important consequences for society (Flint 2006, al. 2007) and altered surface-energy budgets Chapin et al. 2008, Trainor et al. 2009). (Chapin et al. 2000, Randerson et al. 2006). Changes in boreal forests have the potential to Climate-related changes in Alaskan forests also affect the global climate system for several have important regional societal consequences, reasons. First, the boreal biome comprises one- and human responses to these changes may third of the Earth’s total forested area (Shvidenko amplify their impact on forest ecosystems. and Apps 2006) and is one of the biomes Understanding the current and potential future expected to change most rapidly with future impacts of contemporary climate change is climate change (Christensen et al. 2007). Second, important not only for regional-level adaptive boreal ecosystems contain 40% of the earth’s management, but also for national and interna- reactive soil organic carbon (McGuire et al. 1995). tional decision- and policy-making related to Third, the age-dependent stand structures and mitigation and adaptation strategies. species compositions characteristic of boreal Alaska’s forests (Fig. 1A) cover one-third of the forests modulate high-latitude energy budgets state’s 172 million ha of land (Parson et al. 2001) by affecting surface albedo (Euskirchen et al. and are functionally significant, both regionally 2009a). And fourth, carbon cycling, albedo, and v www.esajournals.org 2 November 2011 v Volume 2(11) v Article 124 WOLKEN ET AL. Fig. 1. Alaska maps illustrating (A) total forested area, (B) forest region boundaries of the: (1) Interior-boreal forest that is bounded by the Brooks Range to the north, the Alaska Range to the south, and the Seward Peninsula to the west; (2) Southcentral-boreal forest that includes the forests south of the Alaska Range, west of the Alaska- Yukon border, and east of the Alaska Peninsula; (3) Kenai-boreal forest that includes the western side of the Kenai Peninsula; and (4) Coastal-temperate forest that occurs on the Alaska Panhandle, the eastern portion of the Kenai Peninsula, Prince William Sound, and the islands of the Kodiak archipelago, (C) average annual temperature from 1950–2008, and (D) length of growing season from 1950–2008. Length of growing
Recommended publications
  • Applicability of Coloured Traps for the Monitoring of the Invasive Zigzag Elm Sawfly, Aproceros Leucopoda (Hymenoptera: Argidae)
    Acta Zoologica Academiae Scientiarum Hungaricae 62(2), pp. 165–173, 2016 DOI: 10.17109/AZH.62.2.165.2016 APPLICABILITY OF COLOURED TRAPS FOR THE MONITORING OF THE INVASIVE ZIGZAG ELM SAWFLY, APROCEROS LEUCOPODA (HYMENOPTERA: ARGIDAE) Gábor Vétek1, Veronika Papp1, JÓzsef Fail1, Márta Ladányi2 and Stephan M. Blank3 1Department of Entomology, Szent István University H-1118 Budapest, Villányi út 29–43, Hungary; E-mails: [email protected] [email protected], [email protected] 2Department of Biometrics and Agricultural Informatics, Szent István University H-1118 Budapest, Villányi út 29–43, Hungary; E-mail: [email protected] 3Senckenberg Deutsches Entomologisches Institut Eberswalder Str. 90, 15374 Müncheberg, Germany; E-mail: [email protected] Aproceros leucopoda (Hymenoptera: Argidae), native to East Asia, is an invasive pest of elms (Ulmus spp.) recently reported from several European countries. The identification of ef- fective and practical tools suitable for detecting and monitoring the species has become necessary. As no trapping methods have been developed for A. leucopoda yet, in this study we compared white, yellow and fluorescent yellow sticky “cloak” traps for their appli- cability for catching adults. The experiment was carried out in a mixed forest plantation of black locust (Robinia pseudoacacia) and Siberian elm (Ulmus pumila), the latter infested heavily with A. leucopoda, in Hungary, 2012. Both the yellow and fluorescent yellow sticky “cloak” traps proved suitable for capturing high numbers of individuals of A. leucopoda, while the white traps caught significantly less adults. Trapping with the former coloured traps, completed with the inspection of host plants, may be recommended for the detection and monitoring of the pest.
    [Show full text]
  • DEFOLIATORS Insect Sections
    Alaska. Reference is made to this map in selected DEFOLIATORS insect sections. (Precipitation information from Schwartz, F.K., and Miller, J.F. 1983. Probable maximum precipitation and snowmelt criteria for Fewer defoliator plots (27 plots) were visited during southeast Alaska: National Weather Service the 1999 aerial survey than in previous years (52 plots) Hydrometeorological Report No. 54. 115p. GIS layer throughout southeast Alaska. An effort was made to created by: Tim Brabets, 1997. distribute these plots evenly across the archipelago. URL:http://agdc.usgs.gov/data/usgs/water) The objectives during the 1999 season were to: ¨ Spend more time covering the landscape during Spruce Needle Aphid the aerial survey, Elatobium abietinum Walker ¨ Allow more time to land and identify unknown mortality and defoliation, and Spruce needle aphids feed on older needles of Sitka ¨ Avoid visit sites that were hard to get to and had spruce, often causing significant amounts of needle few western hemlocks. drop (defoliation). Defoliation by aphids cause reduced tree growth and can predispose the host to Hemlock sawfly and black-headed budworm larvae other mortality agents, such as the spruce beetle. counts were generally low in 1999 as they were in Severe cases of defoliation alone may result in tree 1998. The highest sawfly larvae counts were from the mortality. Spruce in urban settings and along marine plots in Thorne Bay and Kendrick Bay, Prince of shorelines are most seriously impacted. Spruce aphids Wales Island. Larval counts are used as a predictive feed primarily in the lower, innermost portions of tree tool for outbreaks of defoliators. For example, if the crowns, but may impact entire crowns during larval sample is substantially greater in 1999, then an outbreaks.
    [Show full text]
  • DNA Barcodes for Bio-Surveillance
    Page 1 of 44 DNA Barcodes for Bio-surveillance: Regulated and Economically Important Arthropod Plant Pests Muhammad Ashfaq* and Paul D.N. Hebert Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada * Corresponding author: Muhammad Ashfaq Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada Email: [email protected] Phone: (519) 824-4120 Ext. 56393 Genome Downloaded from www.nrcresearchpress.com by 99.245.208.197 on 09/06/16 1 For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. Page 2 of 44 Abstract Many of the arthropod species that are important pests of agriculture and forestry are impossible to discriminate morphologically throughout all of their life stages. Some cannot be differentiated at any life stage. Over the past decade, DNA barcoding has gained increasing adoption as a tool to both identify known species and to reveal cryptic taxa. Although there has not been a focused effort to develop a barcode library for them, reference sequences are now available for 77% of the 409 species of arthropods documented on major pest databases. Aside from developing the reference library needed to guide specimen identifications, past barcode studies have revealed that a significant fraction of arthropod pests are a complex of allied taxa. Because of their importance as pests and disease vectors impacting global agriculture and forestry, DNA barcode results on these arthropods have significant implications for quarantine detection, regulation, and management.
    [Show full text]
  • Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems
    Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Sims, L., Goheen, E., Kanaskie, A., & Hansen, E. (2015). Alder canopy dieback and damage in western Oregon riparian ecosystems. Northwest Science, 89(1), 34-46. doi:10.3955/046.089.0103 10.3955/046.089.0103 Northwest Scientific Association Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Laura Sims,1, 2 Department of Botany and Plant Pathology, Oregon State University, 1085 Cordley Hall, Corvallis, Oregon 97331 Ellen Goheen, USDA Forest Service, J. Herbert Stone Nursery, Central Point, Oregon 97502 Alan Kanaskie, Oregon Department of Forestry, 2600 State Street, Salem, Oregon 97310 and Everett Hansen, Department of Botany and Plant Pathology, 1085 Cordley Hall, Oregon State University, Corvallis, Oregon 97331 Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Abstract We gathered baseline data to assess alder tree damage in western Oregon riparian ecosystems. We sought to determine if Phytophthora-type cankers found in Europe or the pathogen Phytophthora alni subsp. alni, which represent a major threat to alder forests in the Pacific Northwest, were present in the study area. Damage was evaluated in 88 transects; information was recorded on damage type (pathogen, insect or wound) and damage location. We evaluated 1445 red alder (Alnus rubra), 682 white alder (Alnus rhombifolia) and 181 thinleaf alder (Alnus incana spp. tenuifolia) trees. We tested the correlation between canopy dieback and canker symptoms because canopy dieback is an important symptom of Phytophthora disease of alder in Europe. We calculated the odds that alder canopy dieback was associated with Phytophthora-type cankers or other biotic cankers.
    [Show full text]
  • Cover Sheet for Proposal to the National Science
    COVER SHEET FOR PROPOSAL TO THE NATIONAL SCIENCE FOUNDATION PROGRAM ANNOUNCEMENT/SOLICITATION NO./CLOSING DATE/if not in response to a program announcement/solicitation enter NSF 10-1 FOR NSF USE ONLY NSF 10-1 NSF PROPOSAL NUMBER FOR CONSIDERATION BY NSF ORGANIZATION UNIT(S) (Indicate the most specific unit known, i.e. program, division, etc.) DEB - Long-Term Ecological Research DATE RECEIVED NUMBER OF COPIES DIVISION ASSIGNED FUND CODE DUNS# (Data Universal Numbering System) FILE LOCATION 615245164 EMPLOYER IDENTIFICATION NUMBER (EIN) OR SHOW PREVIOUS AWARD NO. IF THIS IS IS THIS PROPOSAL BEING SUBMITTED TO ANOTHER FEDERAL TAXPAYER IDENTIFICATION NUMBER (TIN) A RENEWAL AGENCY? YES NO IF YES, LIST ACRONYM(S) AN ACCOMPLISHMENT-BASED RENEWAL 926000147 NAME OF ORGANIZATION TO WHICH AWARD SHOULD BE MADE ADDRESS OF AWARDEE ORGANIZATION, INCLUDING 9 DIGIT ZIP CODE Adm Svcs Ctr Rm 109 University of Alaska Fairbanks Campus 3295 College Road AWARDEE ORGANIZATION CODE (IF KNOWN) Fairbanks, AK 99709-3705 0010637000 NAME OF PERFORMING ORGANIZATION, IF DIFFERENT FROM ABOVE ADDRESS OF PERFORMING ORGANIZATION, IF DIFFERENT, INCLUDING 9 DIGIT ZIP CODE PERFORMING ORGANIZATION CODE (IF KNOWN) IS AWARDEE ORGANIZATION (Check All That Apply) SMALL BUSINESS MINORITY BUSINESS IF THIS IS A PRELIMINARY PROPOSAL (See GPG II.C For Definitions) FOR-PROFIT ORGANIZATION WOMAN-OWNED BUSINESS THEN CHECK HERE TITLE OF PROPOSED PROJECT Regional consequences of changing climate-disturbance interactions for the resilience of Alaska’s boreal forest REQUESTED AMOUNT PROPOSED DURATION (1-60 MONTHS) REQUESTED STARTING DATE SHOW RELATED PRELIMINARY PROPOSAL NO. IF APPLICABLE $ 5,640,000 72 months 12/01/10 CHECK APPROPRIATE BOX(ES) IF THIS PROPOSAL INCLUDES ANY OF THE ITEMS LISTED BELOW BEGINNING INVESTIGATOR (GPG I.G.2) HUMAN SUBJECTS (GPG II.D.7) Human Subjects Assurance Number DISCLOSURE OF LOBBYING ACTIVITIES (GPG II.C.1.e) Exemption Subsection or IRB App.
    [Show full text]
  • Chugach National Forest Planning Area and the Three Different Geographic Areas of the National Forest
    Chapter 2 Ecological Conditions and Trends Chapter 2 Ecological Conditions and Trends Introduction Chapter 1 described the Chugach National Forest planning area and the three different geographic areas of the national forest. This chapter describes the overall ecological integrity of the area. Ecological integrity for this assessment is defined as: “The quality or condition of an ecosystem when its dominant ecological characteristics (for example, composition, structure, function, connectivity, and species composition and diversity) occur within the natural range of variation and can withstand and recover from most perturbations imposed by natural environmental dynamics or human influence.” (36 CFR 219.19) The ecosystems described in this chapter include terrestrial (soils, vegetation, and wildlife), aquatic (freshwater and coastal marine ecology) and the interface between the two (riparian areas and wetlands).These ecosystems are evaluated at the forestwide and geographic area scales where appropriate. Key characteristics of each ecosystem are identified, including species composition and diversity, structure, function, and connectivity. Existing conditions and trends of the key characteristics are described for each ecosystem. System drivers are also discussed and include dominant ecological processes, disturbance regimes, and stressors for the different ecosystems. This chapter also includes a discussion of federally recognized threatened, endangered, proposed, and candidate species that occur within the Chugach National Forest and a discussion of potential species of conservation concern. It concludes with a discussion and summary findings of the ability of the aquatic, terrestrial, and riparian ecosystems in the plan area to adapt to a rapidly changing climate. Physical properties of the environment both constrain and enable the development of some ecological systems within the Chugach National Forest.
    [Show full text]
  • Taxonomic Review of the Genus Empria Lepeletier & Serville
    JHR 74: 1–25 (2019) Taxonomic review of South Korean Empria 1 doi: 10.3897/jhr.74.39299 RESEARCH ARTICLE http://jhr.pensoft.net Taxonomic review of the genus Empria Lepeletier & Serville (Hymenoptera, Tenthredinidae) in South Korea: morphological and molecular identification of two new species Bia Park1, Marko Prous2,3, Jong-Wook Lee1 1 Department of Life-Sciences, Yeungnam University, Gyeongsan 38541, South Korea 2 Senckenberg Deutsches Entomologisches Institut, Eberswalder Str. 90, 15374 Müncheberg, Germany 3 Department of Zoology, Insti- tute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia Corresponding author: Jong-Wook Lee ([email protected]) Academic editor: Michael Ohl | Received 21 August 2019 | Accepted 30 October 2019 | Published 30 December 2019 http://zoobank.org/37129EA7-951F-4B3F-AF76-EEF3E25D77FE Citation: Park B, Prous M, Lee J-W (2019) Taxonomic review of the genus Empria Lepeletier & Serville (Hymenoptera, Tenthredinidae) in South Korea: morphological and molecular identification of two new species. Journal of Hymenoptera Research 74: 1–25. https://doi.org/10.3897/jhr.74.39299 Abstract The sawfly genus Empria Lepeletier & Serville (Hymenoptera: Tenthredinidae: Allantinae) is reviewed in South Korea and four species are reported as new in the country: Empria lycroi Prous & Park, sp. nov. (also Russia); E. nigroterga Park & Lee, sp. nov. (also Russia); E. wui Wei & Nie (also Japan); and E. zhangi Wei & Yan (also Russia). Tenthredo magnicornis Eversmann, 1864, syn. nov. is treated as a synonym of E. candidata (Fallén, 1808). A key to the six species currently known from South Korea and photographs of the diagnostic characters for each species are presented.
    [Show full text]
  • Bees, Wasps & Ants
    Sheringham and Beeston Regis Commons SSSI / SAC FAUNA: Hymenoptera INSECTA (Pterygota) Family/Order English Name. Scientific Name. Authority. Grid Ref. Tetrad/ Last Km sq. Common. Record. HYMENOPTERA. PAMPHILIDAE: Sawfly. Pamphilius inanitus (Villers, 1789) TG1642 1987? (Bees, Wasps and Ants) ARGIDAE: Elm Zig-zag Sawfly. Aproceros leucopoda Takeuchi, 1939 TG1642 14R/B 2020 Bramble Sawfly. Arge cyaneocrocea (Forster, 1771) TG1642 2016 Sawfly. Arge gracilicornis (Klug, 1814 ) TG1642 1987? CIMBICIDAE: Honeysuckle Sawfly. Abia lonicerae (Linnaeus) TG1641 14Q/B 2015 Club-horned Sawfly. Abia sericera (Linnaeus) TG1642 14R/B 2014 Club-horned Sawfly. Zaraea fasciata Linnaeus, 1758 TG1641/42 14R,14Q/B 2014 Birch Sawfly. Cimbex femoratus (Linnaeus, 1758) TG1642 14R/B 2017 SIRICIDAE: Greater Horntail Wasp. Urocerus gigas (Linnaeus, 1758) TG1642 14R/S 1992 CEPHIDAE: Sawfly. Calameuta pallipes (Klug, 1803) TG1642 1987? TENTHREDINIDAE: Willow Sawfly. Pontania proxima (Lepeletier, 1823) TG1642 14R/BS 2009 Willow Sawfly. Eupontania pedunculi (Hartig, 1837) TG1642 14R/B 1999 Willow Sawfly. Eupontainia viminalis (Linnaeus, 1758) TG1642 14R/B 2002 Willow Sawfly. Pontainia bridgemanii (Cameron, 1883) TG1642 14R/B 1999 Sawfly. Caliroa annulipes (Klug, 1816) TG1642 14R/S 2002 Hazel Sawfly. Craesus septentrionalis (Linnaeus, 1758) TG1641 14Q/B 2017 Sawfly. Blennocampa phyllocolpa Viitasaari & Vikberg, 1985 TG1642/41 14R,14Q/B 2003 Sawfly. Selandria serva (Fabricius, 1793) TG1642 14R/B 2013 Sawfly. Aneugmenus padi (Linnaeus, 1761) TG1642 1987? Bracken Sawfly. Strongylogaster multifasciata (Geoffroy, 1785) TG1642 14R/BS 2020 Sawfly. Dichrodolerus vestigialis (Klug, 1818) TG1642 1996 Sawfly. Dolerus germanicus (Fabricius, 1775) TG1642 1987? Sawfly. Eutomostethus ephippium (Panzer, 1798) TG1642 14R/BS 2020 Sawfly. Poodolerus aeneus Hartig, 1837 TG1642 1987? Sawfly. Dolerus brevitarus Hartig TG1642 1987? Sawfly.
    [Show full text]
  • The Green Alder Sawfly in Southeast Alaska
    The Green Alder Sawfly in Southeast Alaska Elizabeth Graham, PhD USDA Forest Service Forest Health Protection GAS in Southeast Alaska Elizabeth Graham, PhD USDA Forest Service Forest Health Protection What is a sawfly? • HymenopteraSymphytaTenthredinoidea • Named for their sawlike ovipositor Common Sawflies (Tenthredinidae, Diprionidae) • Hardwood and conifer feeders • Leaf feeders – External – Miners • Diverse appearance • Arge, Cimbex, Neodiprion, Phylocolpa, Pikonema, Pristophora, Susana, Trichiocampus Green Alder Sawfly • Monsoma pulveratum (Retzius) • Native to Europe, North Africa and the Near East • Preferred host is European black alder (Alnus glutinosa). Discovery of GAS in Alaska • GAS was first collected in Southcentral Alaska in 2007 during an assessment of riparian thin- leaf alder defoliation • Collection records show it was in Palmer in 2004 • Since positive identification GAS was found actively feeding in Anchorage, Kenai, Seward, Mat-Su valley, and Fairbanks. • 2010 sawfly was discovered in Washington Discovery of GAS in Southeast Alaska • Bob Gorman, CES agent in Sitka, contacted FHP in Juneau after getting calls about a “large green caterpillar” feeding on red alder • Specimens were sent and identified as GAS • GAS was found actively feeding on red alder in multiple locations throughout Sitka • GAS was then found in Juneau and Ketchikan Striped Alder Sawfly Striped Alder Sawfly Leaf Miners • Multiple species, multiple orders – Lepidoptera, Hymenoptera • Defoliation is at its worst in warm and dry climates • Larvae bore
    [Show full text]
  • Arthropod Community Structure in Regenerating Douglas-Fir and Red Alder Forests: Influences of Geography, Tree Diversity and Density
    AN ABSTRACT OF THE THESIS OF Brett L. Schaerer for the degree of Master of Science in Entomology presentedon March 17, 2000. Title: Arthropod Community Structure in Regenerating Douglas-fir and Red Alder Forests: Influences of Geography, Tree Diversity and Density Abstract approved: Redacted for privacy Timothy D. Schowalter The structuring of canopy arthropod communities was reviewed and investigated in relation to tree species diversity and its component factors, interspersion of different species and density of each tree species. Fifteen treatments of Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra) (various densities and proportions of each)were randomly assigned to 0.073 ha plots, replicated three-fold at each of two locations in Western Oregon: the Cascade Head Experimental Forest and the H. J. Andrews Experimental Forest. The six treatments used in this studywere two densities of Douglas-fir and red alder monoculture (1000 trees/ha and 500 trees/ha), and mixtures of Douglas-fir and red alder (500 trees/ha of each) planted simultaneouslyor red alder planted 6 years after the Douglas-fir. Trees were initially planted in 1985-1986. The arthropod communities were sampled in the summer of 1998 by bagging and pruning branches from the mid-canopy of both tree species. Multivariate analyses distinguished the arthropod communities foundon each tree species and geographical location, but not among the different diversity and density treatments. Many arthropod taxa and functional groups residingon a single tree species had significantly different abundances between locations. Themost commonly encountered taxon, Adelges cooleyi Gillette (Homoptera: Adelgidae),was most abundant on Douglas-firs in the 500 trees/ha monoculture and the mixture with younger red alder, and least abundant in the mixture with both species planted simultaneously (the1000 trees/ha Douglas-fir monoculture was intermediate).
    [Show full text]
  • Empria Longicornis Species Group: Taxonomic Revision with Notes on Phylogeny and Ecology (Hymenoptera, Tenthredinidae)
    Zootaxa 2756: 1–39 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Empria longicornis species group: taxonomic revision with notes on phylogeny and ecology (Hymenoptera, Tenthredinidae) MARKO PROUS, MIKK HEIDEMAA & VILLU SOON Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. E-mail: [email protected], [email protected], [email protected] Table of contents Abstract . 1 Introduction . 2 Material and methods . 3 Results . 9 Morphology . 9 Molecular phylogenetic analyses . 12 Larvae and host plants . 19 Taxonomy . 20 Empria alector Benson, 1938 . 21 Empria alpina Benson, 1938 . 22 Empria basalis Lindqvist, 1968 . 22 Empria japonica Heidemaa & Prous, sp. nov. 22 Empria loktini Ermolenko, 1971 . 24 Empria longicornis (Thomson, 1871) . 24 Empria minuta Lindqvist, 1968 . 25 Empria mongolica (Konow, 1895) . 25 Empria tridens (Konow, 1896) . 26 Key to species (imagines) . 32 Discussion . 32 Acknowledgements . 36 References . 36 Abstract The Empria longicornis species group (Hymenoptera, Tenthredinidae) is revised. Empria japonica Heidemaa & Prous, sp. nov. is described from Japan. The lectotypes of Empria gussakovskii Dovnar-Zapolskij, 1929, E. konowi Dovnar-Za- polskij, 1929, Poecilosoma longicornis Thomson, 1871, P. mongolica Konow, 1895, and P. tridens Konow, 1896 are de- signated. Empria konowi Dovnar-Zapolskij, 1929 (syn. nov.) and E. gussakovskii Dovnar-Zapolskij, 1929 (syn. nov.) are synonymized with E. tridens (Konow, 1896), and Empria waldstaetterense Liston, 1980 (syn. nov.) with E. alector Ben- son, 1938. Empria alpina Benson, 1938 and E. minuta Lindqvist, 1968, earlier misidentified as E. gussakovskii, are treated as valid species.
    [Show full text]
  • Alaska Region Pathways Animal Introductions Alaska Has a Long History of Animal Tricia L
    This work was supported in part by the U.S. Department of Agriculture, Forest Service. The findings and conclusions in this publication are those of the authors and should not be 336 construed to represent any official USDA or U.S. Government determination or policy. Appendix: Regional Summaries Alaska Region Pathways Animal Introductions Alaska has a long history of animal Tricia L. Wurtz and Bethany K. Schulz introductions, especially on its islands (Bailey 1993; Paul 2009). The frst deliberate releases of Arctic foxes (Vulpes Introduction lagopus) for fox ranching on several Aleutian Islands Alaska has fewer invasive species and is less impacted by occurred in 1750 (Black 1984); the frst known accidental invasive species than most places on Earth. Until recently, release of Norway rats (Rattus norvegicus) was prior to 1780 Alaska has been protected by its cold climate and by its via a shipwreck (Brechbill 1977). The rats spread so comparative lack of roads and other development. prolifcally that the island where the shipwreck occurred However, these barriers are eroding. Warming climate later came to be known as Rat Island (Ebbert and Byrd 2002). trends and longer shoulder seasons have reduced the cli- It was the site of an intensive, successful rat eradication mate flter that so far may have prevented some invasive effort in 2008 for the purpose of restoring seabird nesting species from establishing in the State (Figs. A1.1 and A1.2; habitat (Croll et al. 2016; Dunham 2012; Fritts 2007; USFWS Carlson et al. 2015; Jarnevich et al. 2014; Sanderson et al. 2007). Cattle (Bos taurus), Sitka black-tailed deer 2012; Wolken et al.
    [Show full text]