External Review Report of the Expert Panel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecosystem Service Assessment of the Ili Delta, Kazakhstan Niels Thevs
Ecosystem service assessment of the Ili Delta, Kazakhstan Niels Thevs, Volker Beckmann, Sabir Nurtazin, Ruslan Salmuzauli, Azim Baibaysov, Altyn Akimalieva, Elisabeth A. A. Baranoeski, Thea L. Schäpe, Helena Röttgers, Nikita Tychkov 1. Territorial and geographical location Ili Delta, Kazakhstan Almatinskaya Oblast (province), Bakanas Rayon (county) The Ili Delta is part of the Ramsar Site Ile River Delta and South Lake Balkhash Ramsar Site 2. Natural and geographic data Basic geographical data: location between 45° N and 46° N as well as 74° E and 75.5° E. Fig. 1: Map of the Ili-Balkhash Basin (Imentai et al., 2015). Natural areas: The Ramsar Site Ile River Delta and South Lake Balkhash Ramsar Site comprises wetlands and meadow vegetation (the modern delta), ancient river terraces that now harbour Saxaul and Tamarx shrub vegetation, and the southern coast line of the western part of Lake Balkhash. Most ecosystem services can be attributed to the wetlands and meadow vegetation. Therefore, this study focusses on the modern delta with its wetlands and meadows. During this study, a land cover map was created through classification of Rapid Eye Satellite images from the year 2014. The land cover classes relevant for this study were: water bodies in the delta, dense reed (total vegetation more than 70%), and open reed and shrub vegetation (vegetation cover of reed 20- 70% and vegetation cover of shrubs and trees more than 70%). The land cover class dense reed was further split into submerged dense reed and non-submerged dense reed by applying a threshold to the short wave infrared channel of a Landsat satellite image from 4 April 2015. -
Investor's Atlas 2006
INVESTOR’S ATLAS 2006 Investor’s ATLAS Contents Akmola Region ............................................................................................................................................................. 4 Aktobe Region .............................................................................................................................................................. 8 Almaty Region ............................................................................................................................................................ 12 Atyrau Region .............................................................................................................................................................. 17 Eastern Kazakhstan Region............................................................................................................................................. 20 Karaganda Region ........................................................................................................................................................ 24 Kostanai Region ........................................................................................................................................................... 28 Kyzylorda Region .......................................................................................................................................................... 31 Mangistau Region ........................................................................................................................................................ -
Evaluating Vulnerability of Central Asian Water Resources Under Uncertain Climate and Development Conditions: the Case of the Ili-Balkhash Basin
water Article Evaluating Vulnerability of Central Asian Water Resources under Uncertain Climate and Development Conditions: The Case of the Ili-Balkhash Basin Tesse de Boer 1,*, Homero Paltan 1,2, Troy Sternberg 1 and Kevin Wheeler 3 1 School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK; [email protected] (H.P.); [email protected] (T.S.) 2 Institute of Geography, Universidad San Francisco de Quito, Quito 170901, Ecuador 3 Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK; [email protected] * Correspondence: [email protected] Abstract: The Ili-Balkhash basin (IBB) is considered a key region for agricultural development and international transport as part of China’s Belt and Road Initiative (BRI). The IBB is exemplary for the combined challenge of climate change and shifts in water supply and demand in transboundary Central Asian closed basins. To quantify future vulnerability of the IBB to these changes, we employ a scenario-neutral bottom-up approach with a coupled hydrological-water resource modelling set-up on the RiverWare modelling platform. This study focuses on reliability of environmental flows under historical hydro-climatic variability, future hydro-climatic change and upstream water demand development. The results suggest that the IBB is historically vulnerable to environmental shortages, and any increase in water consumption will increase frequency and intensity of shortages. Increases in precipitation and temperature improve reliability of flows downstream, along with water demand Citation: de Boer, T.; Paltan, H.; reductions upstream and downstream. Of the demand scenarios assessed, extensive water saving is Sternberg, T.; Wheeler, K. -
Kazakhstan and the Kyrgyz Republic: Almaty-Bishkek Regional Road Rehabilitation Project
ASIAN DEVELOPMENT BANK Independent Evaluation Department PROJECT PERFORMANCE EVALUATION REPORT ON KAZAKHSTAN AND THE KYRGYZ REPUBLIC: ALMATY-BISHKEK REGIONAL ROAD REHABILITATION PROJECT In this electronic file, the report is followed by Management’s response, and the Board of Directors’ Development Effectiveness Committee (DEC) Chair’s summary of a discussion of the report by DEC. Performance Evaluation Report Project Numbers: 29568 and 32463 Loan Numbers: 1774 and 1775 Project Performance Evaluation Report (Joint Report) March 2009 Kazakhstan and the Kyrgyz Republic: Almaty– Bishkek Regional Road Rehabilitation Project This joint evaluation report was prepared by the Independent Evaluation Department of the Asian Development Bank and the Evaluation Department of the European Bank for Reconstruction and Development. CURRENCY EQUIVALENTS Asian Development Bank Currency Unit (Kazakhstan) – tenge (T) At Appraisal At Project Completion At Operations Evaluation (August 2000) (October 2007) (August 2008) T1.00 = $0.0070 $0.0082 $0.0084 $1.00 = T142.400 T120.855 T119.680 Currency Unit (Kyrgyz Republic) – som (Som) At Appraisal At Project Completion At Operations Evaluation (August 2000) (October 2007) (August 2008) Som1.00 = $0.0208 $0.02895 $0.0289 $1.00 = Som47.990 Som34.540 Som34.560 European Bank for Reconstruction and Development Currency Unit (Kazakhstan) – tenge (KZT) At Appraisal (October 2000) $1 = €1.17 $1 = KZT (tenge)144 ABBREVIATIONS ADB – Asian Development Bank BME – benefit monitoring and evaluation CAREC – Central Asia Regional -
The Five Countries of Central Asia
The Five Countries of Central Asia 55°0'E 75°0'E Kostanai Petropavlovsk 1:10 000 000 200 100 0 200 Sergeevka Kokshetau N RUSSIAN Irtyshsk Kilometers Stepniak Pavlodar FEDERATION Rudnyi 50°0'N Makinsk Aksu Zhitikara Akkol Ereimentau Dzhetyghara Atbasar Oral Esil Ekibastuz 50°0'N Ak-Say Ishi m ASTANA Irty sh Oskemen U r a Zyrianovsk l Semey Derzhavinsk Aktobe N ura Temirtau Arkalyk Chromtau Alga Karaghandy Karkaralinsk Kandygash arysu S Ayakoz Lake Zaisan Emba KAZAKHSTAN Karazhal Atyrau Emba Shakhtinsk Shalkar Balkhash Ucharal Aral S ar Lake Balkhash Ushtobe y r D ya Baikonyr Ili Tekeli PEOPLE’S REPUBLIC Kazalinsk Taldykorgan OF CHINA Fort Shevchenko Zharkent Kyzyl Orda Chui Il i Aktau Aral Sea Kapchagay Almaty Kyzylsay Zhanatas Shu Muynak Kentau Talgar Karatau Taraz Balykchy Kungrad Chimbay Turkestan Caspian Sea BISHKEK Tokmok Karakol Shymkent Talas Lake Arys Issyk-Kul Naryn 40°0'N Nukus UZBEKISTAN Lenger KYRGYZ Dashoguz Uchkuduk Naryn Urgench Tash-Kumyr REPUBLIC TASHKENT 40°0'N Chardak Jalal Abad Khiva Zarafshan Lebap Namangan Kyzyl-Kaya Akhangaran Andizhan AZERBAIJAN Turkmenbashi Nurata Gulistan Osh Khudzand Kokand Kyzyl-Kiya Ghizhduvan Djizzak Fergana Hazar Balkanabat Gazli Navoi National capital Isfara Bereket Zhuma TURKMENISTAN Bukhara Ura-Tyube Provincial/oblast capital Aktash Samarkand Kagan Ayni Kum Dag Seydi Serdar Karakul Pendzhekent Dzhirgital City Mubarek Kasan Rogun Sumb ar Shahrizabz Rivers and canals Baharly Turkmenabad Karshi TAJIKISTAN DUSHANBE Guzar Denau Airport (international) Etrek ASHGABAT Karabekevul Kulyab Murgab K Baisun Atrek ar Talimardzhan ak International boundaries um Mary Shurchi Khorog C Kerki an Tedzhen al Bairam-Ali Gaurdak Kurgan-Tyube Boundaries are not necessarily authoritative. -
Kapchagay Saryozek Aktobe Shonzhy Charyn Canyon Kokpek Talgar Almaty Koktal
Saryozek Koktal Aktobe Kapchagay Shonzhy Kokpek Charyn Canyon Talgar Almaty WELCOME TO KAZAKHSTAN NEW MAZDA CX-30: KAZAKHSTAN DRIVE Welcome to The Land of Wanderers. Ahead of you lies a captivating and occasionally challenging drive through a variety of the extraordinarily contrasting yet always exhilarating landscapes this vast country has to offer. Equipped with Mazda’s unique new Skyactiv-X engine and intelligent all-wheel drive, the new Mazda CX-30 is ideally suited to tackle the diverse terrain that awaits. WELCOME TO KAZAKHSTAN MAZDA CX-30 Slotting into the company’s award-winning SUV range between the CX-3 and CX-5, the CX-30 enters a new market segment for Mazda. It fulfils the requirements of customers who wish to combine the compact, urban-friendly dimensions of the former with the space and practicality of the latter. The new Mazda CX-30 showcases the latest developments in the company’s ground-breaking KODO design language - the greater styling prestige and elegance of a minimalist, less-is-more aesthetic inspired by the purest traditions of Japanese art and the beauty of space between objects. The spacious and versatile human-centric interior has all the practicality and comfort demanded by customers in this popular sector, and features premium materials and painstaking fit and finish to create an interior ambience of high quality and genuine refinement. It integrates ergonomic excellence with state-of-the-art technology in the design of everything from the driving position and field of view to the Human-Machine Interface (HMI) and audio sound quality. And a 430-litre loadspace (VDA) ensures it’s as practical as it is desirable. -
Ecosystem Management in Balkhash Lake Basin As a Model of SDG Localization in Kazakhstan and Central Asia Region1
1 Dr. Bulat K. Yessekin, Kazakhstan green economy national council expert, International consultant on Sustainable Development, Climate Change and Water Ecosystem management in Balkhash Lake basin as a model of SDG localization in Kazakhstan and Central Asia region1 Balkhash-Alakol basin, a common example of unsustainable management in Kazakhstan, was offered as a model of problems transformation into opportunities. The basin represents the territory with the total area of 413 thousand km2 (bigger than Great Britain, Holland, Switzerland and Belgium together), 45 000 of small and medium rivers, 12 types of ecosystems (from glaciers to deserts), conservation areas and Special Protected Natural Areas – 3000 km2, farmlands – 12,600 million ha, planted area – 1,300 million ha, pastures – 10,400 million ha, 6000 of water basins and impoundments, more than 50 thousand tons of fish per year – this is the capacity of the basin, rich extractable and other resources. At the beginning of 90-s, Balkhash lake (the 13th biggest lake in the world) could suffer the same destiny as Aral Sea just in a few years – with the launch of Kapchagay hydro-electric power station and the construction of impoundment. However, in 1992, Kazakhstan State Committee for Water Resources took an ultimate decision to stop filling the impoundment as the water reached the critical mark (341 m above the sea level) – and the lake began to restore2. The basin is mainly an agrarian region (up to 90% of water consumption in the basin), but it also has significant hydroelectric power stations, mining and processing enterprises. For the moment, experts discuss plans on the construction of Balkhash Atomic Power Station or Heat Power Plant. -
Stakeholder Engagement Plan (Rev. 10.0) Big Almaty Ring Road (BAKAD) Project Volume VI
Stakeholder Engagement Plan (Rev. 10.0) Big Almaty Ring Road (BAKAD) Project Volume VI May 2020 www.erm.com The business of sustainability FINAL REPORT BAKAD PROJECT Stakeholder Engagement Plan (Revision 10.0) Volume VI Prepared for the BAKAD Consortium May 2020 CONTENTS LIST OF ACRONYMS 4 1 INTRODUCTION 5 2 BAKAD PROJECT DESCRIPTION 8 2.1 BRIEF PROJECT DESCRIPTION 8 2.2 PROJECT TIMELINE 11 3 STAKEHOLDER IDENTIFICATION AND ANALYSIS 12 4 PAST STAKEHOLDER ENGAGEMENT 14 4.1 STAKEHOLDER ENGAGEMENT HISTORY (2006 – 2013) 14 4.2 STAKEHOLDER ENGAGEMENT DURING ESIA PREPARATION 17 5 STAKEHOLDER ENGAGEMENT DURING THE SITE CLEARANCE 25 6 ESIA ENGAGEMENT AND DISСLOSURE PLAN 26 6.1 OBJECTIVES OF DOCUMENT DISCLOSURE 26 6.2 WHO WILL BE INFORMED? 26 6.3 SPECIAL CONSIDERATION ON VULNERABLE GROUPS 27 6.4 WHICH INFORMATION WILL BE AVAILABLE? 28 6.5 HOW AND WHERE WILL THE PUBLIC BE ABLE TO OBTAIN THE INFORMATION? 29 6.6 CONSULTATION FIELD TEAMS – TASKS AND RESPONSIBILITIES 39 6.7 RECORDING AND RESPONSE TO COMMENTS 39 7 STAKEHOLDER ENGAGEMENT AFTER THE DISCLOSURE PERIOD, MONITORING AND REPORTING 41 7.1 STAKEHOLDER ENGAGEMENT AFTER THE DISCLOSURE PERIOD (2019 - 2038) 41 7.2 MONITORING AND REPORTING 47 7.3 STAKEHOLDER ENGAGEMENT AFTER THE END OF THE CONCESSION PERIOD (AFTER 2038) 49 8 GRIEVANCE MECHANISM 51 8.1 MANAGEMENT PROCESS 52 8.2 LOGGING 55 8.3 RESPONSIBILITIES 55 8.4 EPC SOCIAL EXPERT 56 8.5 DOCUMENTATION AND REPORTING FOR THE PROJECT 56 APPENDIX 1 58 APPENDIX 2 62 APPENDIX 3 69 APPENDIX 4 74 APPENDIX 5 76 APPENDIX 6 78 APPENDIX 7 80 APPENDIX 8 88 ERM EURASIA BAKAD ESIA BAKAD CONSORTIUM SEP, VOL. -
Industrial Zones in Kazakhstan
2 CONTENT Introduction to Kazakhstan ............................................................................................................................. 4 Support for investors ............................................................................................................................... 8 Definition of Industrial zones ................................................................................................................... 12 Industrial zones of Kazakhstan .......................................................................................................................... 14 Aktobe region’s Industrial zones ..................................................................................................................... 16 Almaty region’s Industrial zones .................................................................................................................... 18 3 Atyrau region’s Industrial zones ..................................................................................................................... 20 East Kazakhstan region’s Industrial zones ......................................................................................................................................... 22 Kyzylorda region’s Industrial zones ..................................................................................................................... 24 South Kazakhstan region’s Industrial zones .......................................................................................................................................... -
Extensive Review of Tuberculosis Prevention, Control and Care In
Extensive review of tuberculosis prevention, control and care in Kazakhstan 10–16 May 2012 ABSTRACT The notification rate of TB cases in Kazakhstan is among the highest in the WHO European Region. WHO was requested to organize a review of the Kazakh Tuberculosis Programme, which took place from 10 to 16 May 2012. The reviewers made a number of recommendations to improve the programme. The main focus should be on: expansion of the programmatic management of drug-resistant TB, introduction and roll-out of molecular diagnosis of TB and MDR-TB, expansion of ambulatory treatment of patients, and home-based care and day-care treatment including all eligible patients, particularly sputum-smear- negative patients (as well as sputum-smear-negative MDR-TB patients). Hospitalization practices need to be rationalized in order: (i) to prevent the spread of drug resistance, and (ii) to use the available resources more efficiently by reallocating the funds saved by reducing the number of hospitals to expand ambulatory treatment, social support for patients and the number of health-care providers. Examples of the involvement of civil society organizations and provision of an integrated continuum of care (transfer of released patients from prison to civilian sector) need to be expanded across the country. Keywords CONTROL DELIVERY OF HEALTH CARE NATIONAL HEALTH PROGRAMS PREVENTION PROGRAM EVALUATION TUBERCULOSIS, MULTIDRUG-RESISTANT Address requests about publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe UN City, Marmorvej 51 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for permission to quote or translate, on the Regional Office website (http://www.euro.who.int/pubrequest). -
Effectiveness of Ring Roads in Reducing Traffic Congestion
sustainability Article Effectiveness of Ring Roads in Reducing Traffic Congestion in Cities for Long Run: Big Almaty Ring Road Case Study Assel Nugmanova 1 , Wulf-Holger Arndt 2, Md Aslam Hossain 1 and Jong Ryeol Kim 1,* 1 Department of Civil and Environmental Engineering, Nazarbayev University, Nur-Sultan 010000, Kazakhstan 2 Centre for Technology and Society, Technische Universität Berlin, 10623 Berlin, Germany * Correspondence: [email protected]; Tel.: +7-7172-70-91-36 Received: 29 May 2019; Accepted: 22 July 2019; Published: 11 September 2019 Abstract: It is common to increase road capacity by constructing ring roads to reduce traffic congestion in city areas, although this is often found to be ineffective in the long run. Accordingly, this study investigates various traffic congestion management approaches and their effectiveness in major cities, and explores an identical transport problem in Almaty, Kazakhstan: The Big Almaty Ring Road (BAKAD). Several case examples from the existing literature are examined in which various approaches were taken for managing traffic congestion problems, and these approaches are classified into three concepts. The first concept comprises heavy engineering measures such as ring road development, new road construction, expansion of existing roads, etc. Such measures can initially reduce traffic congestion, but often become ineffective with time due to the generation of induced traffic. Many cities have taken Push and Pull measures that ensure more efficient use of existing capacity and have initiated environmentally friendly alternative transportation modes such as decreased car usage; promotion of public transport, biking and walking; minimization of the necessity of people’s movement by changing urban land use patterns; and so on. -
Land Cover Dynamics and Water Management in Basin of River Ile on Base of Satellite Data
IAAE Inter-Conference Symposium Agricultural Transitions along the Silk Road Restructuring, Resources and Trade in the Central Asia Region 4 - 6 April 2016 | Almaty, Kazakhstan Land cover dynamics and water management in basin of river Ile on base of satellite data Alexey Terekhov, Svetlana Dolgikh RSE "Kazhydromet", Kazakhstan; [email protected] Central Asian regional map KAZAKHSTAN Lake Balkhash River Ili basin Aral Sea 140,000 sq.km Yining Almaty Uzbekistan Kyrgystan Lake Issyk-Kul CHINA 4-year’s average river Ile runoff (164 km, near boundary KZ - China) [daily] M 3 / sec Why ? Day Agricultural landcover dynamics in river Ile basin Landsat images covering of river Ile basin [http:/glovis.usgs.gov] 1983 - current time Arable land in river Ili basin Created on base of LANDSAT 1999-2002 years. Expert interpretation and hand mapping Lake Balkhash Total arable land area (about 1,000,000 ha) KZ 45% 55% CH KZ CHINA Yining Almaty Fragment of arable land map (on base of satellite data 1999-2002 years) Types of cropland practice in river Ili basin River Ili BASIN Irrigated Not irrigated 17% Cropland area Lake Balkhash Kazakhstan 83% KZ CH 38% Cropland 34% Not irrigated 62% winter crops Irrigated area 66% Spring crops Cropland Irrigated area Irrigated Not irrigated Arable land area change during 2003-2010 years in China part of river Ili basin. Created on base of LANDSAT data KZ CHINA Input since 2003 12 % 88% Before 2003 Time of beginning Cropland Land use 2010 Before 2003 During 2003-2010 Example of land use change fragment of river Ili basin [China] Landsat data 2000 2009 5 000 m 5 000 m Artificial Reservoirs, Natural Lakes in basin of river Ile Artificial reservoirs in China’s part of river Ile basin China Before River Kas 2005 1990 2010 2011 River Kunges River Ile 2009 River Tekes 2005 2012 2015 Zharyntaisky reservoir River Ile River Kunges River Ile Kapchagaisky reservoir Landsat -8 June 4, 2015 Landsat images of reservoir № 4 (Zharyntaysky) on river Kas Landsat images of reservoir № 1 on river Tekes.