Base Ten Number System Our Base Ten Number System Is Called the Hindu-Arabic System

Total Page:16

File Type:pdf, Size:1020Kb

Base Ten Number System Our Base Ten Number System Is Called the Hindu-Arabic System Base Ten Number System Our base ten number system is called the Hindu-Arabic system. In this system there are ten different symbols (digits) to represent quantities, 0,1,2,3,4,5,6,7,8,9. In fact, there are number systems in use that do this, namely the binary (two symbols 0 and 1), octal (eight symbols 0,1,2,3,4,5,6,7) and hexadecimal (sixteen different symbols, 0-9,A,B,C,D,E,F). How Did Numbers Arise? To understand how number systems work, let us first imagine that there we are cavepeople and that there is no number system. The only way we could represent how many objects there are in a set would be to write something like Of course this system will become very cumbersome as the number of objects begins increasing. The first simplification is to start grouping objects or placing a symbol when we get to a certain quantity. The number of objects which we group is completely arbitrary. 1 •We need symbols to represent objects up to the point that we group them. •Let us imagine that we group whenever we have six objects, i.e. we have six different symbols •They are 0,1,2,3,4,5 (none) =0 • I = 1 • II = 2 • III = 3 • IIII =4 • IIIII =5 If we add one more object we must group the objects we have and begin our numbering from the beginning specifying the first digit as a number of groups of six and the second as how many ungouped objects left over. • IIIIII = 1 0 • IIIIII I = 1 1 • IIIIII I I = 1 2 • IIIIII III =1 3 • IIIIII IIII =1 4 • IIIIII IIIII =1 5 • IIIIII IIIIII =2 0 • IIIIII IIIIII I =2 1 • IIIIII IIIIII II=2 2 2 Eventually we will have = 5 5 If we add one more object We write these as 1 0 0 =100 The system is called a place-value number system because each place or position of a digit determines it’s value. The Number of different digits is called the base. For example in base six the values are: Groups Groups Ones Of six- of sixes sixes (Thirty six) A number written in base six would look like Total=105 2 5 3 Representing 2 thirty sixes, five sixes, and three ones 3 Going the other way-imagine you had 81 objects, how would you write this number in base six? Groups Groups Ones Of six- of sixes 81 =213 sixes 10 6 (Thirty six) Out of the 81, how many groups of thirty sixes can you make? How may groups of sixes ? How many ones left over? •You can make Two groups of thirty sixes (72 leaving 9) •Out of the nine you can make one group of six (Leaving 3) •You have three left over. So 81 in base ten is written in base six Our Base Ten Number System Tens Ones H u n d r e d s Tens Ones 4 The Egyptians had a number system using seven different symbols. 1 is shown by a single stroke. 10 is shown by a drawing of a hobble for cattle. 100 is represented by a coil of rope. 1,000 is a drawing of a lotus plant. 10,000 is represented by a finger. 100,000 by a tadpole or frog 1,000,000 is the figure of a god with arms raised above his head. 5 Mayan Number System The Mayans devised a counting system that was able to represent very large numbers by using only 3 symbols, a dot, a bar, and a symbol for zero, or completion, usually a shell. 6 Arabic Numerals Here is an example of an early form of Indian numerals being used in the eastern part of the Arabic empire around first century AD 969 A.D. Binary Numbers Computers happen to operate using the base-2 number system, also known as the binary number system. The word bit is a shortening of the words "Binary digit." Whereas decimal digits have 10 possible values ranging from 0 to 9, bits have only two possible values: 0 and 1. Therefore, a binary number is composed of only 0s and 1s, like this: 1011. How do you figure out what the value of the binary number 1011 is? You can see that in binary numbers, each bit holds the value of increasing powers of 2. The reason each position’s value is a multiple of two is because there are only two symbols. 7 We can look at the binary system as a number of Off/On switches. If the switch is ‘On’ this represents a 1, if it is ‘Off’ it represents a zero. If all the swtches are ‘On’ in a 8 digit number then the number represented is 255 (Add 128+64+32+16+8+4+2+1) Each digit is called a bit. On the right you see the representation for the number 58. (32+16+8+2) This is how you write numbers in binary 0 = 0 10 = 1010 1 = 1 11 = 1011 2 = 10 12 = 1100 3 = 11 13 = 1101 4 = 100 14 = 1110 5 = 101 15 = 1111 6 = 110 16 = 10000 7 = 111 17 = 10001 8 = 1000 18 = 10010 9 = 1001 19 = 10011 20 = 10100 8.
Recommended publications
  • The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes
    Portland State University PDXScholar Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics Publications and Presentations and Statistics 3-2018 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hu Sun University of Macau Christine Chambris Université de Cergy-Pontoise Judy Sayers Stockholm University Man Keung Siu University of Hong Kong Jason Cooper Weizmann Institute of Science SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/mth_fac Part of the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Citation Details Sun X.H. et al. (2018) The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes. In: Bartolini Bussi M., Sun X. (eds) Building the Foundation: Whole Numbers in the Primary Grades. New ICMI Study Series. Springer, Cham This Book Chapter is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Xu Hu Sun, Christine Chambris, Judy Sayers, Man Keung Siu, Jason Cooper, Jean-Luc Dorier, Sarah Inés González de Lora Sued, Eva Thanheiser, Nadia Azrou, Lynn McGarvey, Catherine Houdement, and Lisser Rye Ejersbo This book chapter is available at PDXScholar: https://pdxscholar.library.pdx.edu/mth_fac/253 Chapter 5 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hua Sun , Christine Chambris Judy Sayers, Man Keung Siu, Jason Cooper , Jean-Luc Dorier , Sarah Inés González de Lora Sued , Eva Thanheiser , Nadia Azrou , Lynn McGarvey , Catherine Houdement , and Lisser Rye Ejersbo 5.1 Introduction Mathematics learning and teaching are deeply embedded in history, language and culture (e.g.
    [Show full text]
  • Tai Lü / ᦺᦑᦟᦹᧉ Tai Lùe Romanization: KNAB 2012
    Institute of the Estonian Language KNAB: Place Names Database 2012-10-11 Tai Lü / ᦺᦑᦟᦹᧉ Tai Lùe romanization: KNAB 2012 I. Consonant characters 1 ᦀ ’a 13 ᦌ sa 25 ᦘ pha 37 ᦤ da A 2 ᦁ a 14 ᦍ ya 26 ᦙ ma 38 ᦥ ba A 3 ᦂ k’a 15 ᦎ t’a 27 ᦚ f’a 39 ᦦ kw’a 4 ᦃ kh’a 16 ᦏ th’a 28 ᦛ v’a 40 ᦧ khw’a 5 ᦄ ng’a 17 ᦐ n’a 29 ᦜ l’a 41 ᦨ kwa 6 ᦅ ka 18 ᦑ ta 30 ᦝ fa 42 ᦩ khwa A 7 ᦆ kha 19 ᦒ tha 31 ᦞ va 43 ᦪ sw’a A A 8 ᦇ nga 20 ᦓ na 32 ᦟ la 44 ᦫ swa 9 ᦈ ts’a 21 ᦔ p’a 33 ᦠ h’a 45 ᧞ lae A 10 ᦉ s’a 22 ᦕ ph’a 34 ᦡ d’a 46 ᧟ laew A 11 ᦊ y’a 23 ᦖ m’a 35 ᦢ b’a 12 ᦋ tsa 24 ᦗ pa 36 ᦣ ha A Syllable-final forms of these characters: ᧅ -k, ᧂ -ng, ᧃ -n, ᧄ -m, ᧁ -u, ᧆ -d, ᧇ -b. See also Note D to Table II. II. Vowel characters (ᦀ stands for any consonant character) C 1 ᦀ a 6 ᦀᦴ u 11 ᦀᦹ ue 16 ᦀᦽ oi A 2 ᦰ ( ) 7 ᦵᦀ e 12 ᦵᦀᦲ oe 17 ᦀᦾ awy 3 ᦀᦱ aa 8 ᦶᦀ ae 13 ᦺᦀ ai 18 ᦀᦿ uei 4 ᦀᦲ i 9 ᦷᦀ o 14 ᦀᦻ aai 19 ᦀᧀ oei B D 5 ᦀᦳ ŭ,u 10 ᦀᦸ aw 15 ᦀᦼ ui A Indicates vowel shortness in the following cases: ᦀᦲᦰ ĭ [i], ᦵᦀᦰ ĕ [e], ᦶᦀᦰ ăe [ ∎ ], ᦷᦀᦰ ŏ [o], ᦀᦸᦰ ăw [ ], ᦀᦹᦰ ŭe [ ɯ ], ᦵᦀᦲᦰ ŏe [ ].
    [Show full text]
  • Indic​ ​Loanwords​ ​In​ ​Tocharian​ ​B,​ ​Local​ ​Markedness,​ ​​ ​And​ ​The​ ​Animacy
    Indic Loanwords in Tocharian B, Local Markedness, and the Animacy Hierarchy ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​​ ​ ​ ​ ​ ​ ​ ​ Francesco Burroni and Michael Weiss (Department of Linguistics, Cornell University) ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ A question that is rarely addressed in the literature devoted to Language Contact is: how are nominal forms borrowed when the donor and the recipient language both possess rich inflectional morphology? Can nominal forms be borrowed from and in different cases? What are the decisive factors shaping the borrowing scenario? In this paper, we frame this question from the angle of a case study involving two ancient Indo-European languages: Tocharian and Indic (Sanskrit, Prakrit(s)). ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Most studies dedicated to the topic of loanwords in Tocharian B (henceforth TB) have focused on borrowings from Iranian (e.g. Tremblay 2005), but little attention has been so far devoted to forms borrowed from Indic, perhaps because they are considered uninteresting. We argue that such forms, however, are of interest for the study of Language Contact. A remarkable feature of Indic borrowings into TB is that a-stems are borrowed in TB as e-stems when denoting animate referents, but as consonant ​ ​ ​ ​ (C-)stems when denoting inanimate referents, a distribution that was noticed long ago by Mironov (1928, following Staёl-Holstein 1910:117 on Uyghur). In the literature, however, one finds no reaction to Mironov’s idea. By means of a systematic study of all the a-stems borrowed from Indic into TB, we argue ​ ​ that the trait [+/- animate] of the referent is, in fact, a very good predictor of the TB shape of the borrowing, e.g. male personal names from Skt.
    [Show full text]
  • An Introduction to Indic Scripts
    An Introduction to Indic Scripts Richard Ishida W3C [email protected] HTML version: http://www.w3.org/2002/Talks/09-ri-indic/indic-paper.html PDF version: http://www.w3.org/2002/Talks/09-ri-indic/indic-paper.pdf Introduction This paper provides an introduction to the major Indic scripts used on the Indian mainland. Those addressed in this paper include specifically Bengali, Devanagari, Gujarati, Gurmukhi, Kannada, Malayalam, Oriya, Tamil, and Telugu. I have used XHTML encoded in UTF-8 for the base version of this paper. Most of the XHTML file can be viewed if you are running Windows XP with all associated Indic font and rendering support, and the Arial Unicode MS font. For examples that require complex rendering in scripts not yet supported by this configuration, such as Bengali, Oriya, and Malayalam, I have used non- Unicode fonts supplied with Gamma's Unitype. To view all fonts as intended without the above you can view the PDF file whose URL is given above. Although the Indic scripts are often described as similar, there is a large amount of variation at the detailed implementation level. To provide a detailed account of how each Indic script implements particular features on a letter by letter basis would require too much time and space for the task at hand. Nevertheless, despite the detail variations, the basic mechanisms are to a large extent the same, and at the general level there is a great deal of similarity between these scripts. It is certainly possible to structure a discussion of the relevant features along the same lines for each of the scripts in the set.
    [Show full text]
  • Tibetan Romanization Table
    Tibetan Comment [LRH1]: Transliteration revisions are highlighted below in light-gray or otherwise noted in a comment. ALA-LC romanization of Tibetan letters follows the principles of the Wylie transliteration system, as described by Turrell Wylie (1959). Diacritical marks are used for those letters representing Indic or other non-Tibetan languages, and parallel the use of these marks when transcribing their counterpart letters in Sanskrit. These are applied for the sake of consistency, and to reflect international publishing standards. Accordingly, romanize words of non-Tibetan origin systematically (following this table) in all cases, even though the word may derive from Sanskrit or another language. When Tibetan is written in another script (e.g., ʼPhags-pa) the corresponding letters in that script are also romanized according to this table. Consonants (see Notes 1-3) Vernacular Romanization Vernacular Romanization Vernacular Romanization ka da zha ཀ་ ད་ ཞ་ kha na za ཁ་ ན་ ཟ་ Comment [LH2]: While the current ALA-LC ga pa ’a table stipulates that an apostrophe should be used, ག་ པ་ འ་ this revision proposal recommends that the long- nga pha ya standing defacto LC practice of using an alif (U+02BC) be continued and explicitly stipulated in ང་ ཕ་ ཡ་ the Table. See accompanying Narrative for details. ca ba ra ཅ་ བ་ ར་ cha ma la ཆ་ མ་ ལ་ ja tsa sha ཇ་ ཙ་ ཤ་ nya tsha sa ཉ་ ཚ་ ས་ ta dza ha ཏ་ ཛ་ ཧ་ tha wa a ཐ་ ཝ་ ཨ་ Vowels and Diphthongs (see Notes 4 and 5) ཨི་ i ཨཱི་ ī རྀ་ r̥ ཨུ་ u ཨཱུ་ ū རཱྀ་ r̥̄ ཨེ་ e ཨཻ་ ai ལྀ་ ḷ ཨོ་ o ཨཽ་ au ལཱྀ ḹ ā ཨཱ་ Other Letters or Diacritical Marks Used in Words of Non-Tibetan Origin (see Notes 6 and 7) ṭa gha ḍha ཊ་ གྷ་ ཌྷ་ ṭha jha anusvāra ṃ Comment [LH3]: This letter combination does ཋ་ ཇྷ་ ◌ ཾ not occur in Tibetan texts, and has been deprecated from the Unicode Standard.
    [Show full text]
  • Prof. P. Bhaskar Reddy Sri Venkateswara University, Tirupati
    Component-I (A) – Personal details: Prof. P. Bhaskar Reddy Sri Venkateswara University, Tirupati. Prof. P. Bhaskar Reddy Sri Venkateswara University, Tirupati. & Dr. K. Muniratnam Director i/c, Epigraphy, ASI, Mysore Dr. Sayantani Pal Dept. of AIHC, University of Calcutta. Prof. P. Bhaskar Reddy Sri Venkateswara University, Tirupati. Component-I (B) – Description of module: Subject Name Indian Culture Paper Name Indian Epigraphy Module Name/Title Kharosthi Script Module Id IC / IEP / 15 Pre requisites Kharosthi Script – Characteristics – Origin – Objectives Different Theories – Distribution and its End Keywords E-text (Quadrant-I) : 1. Introduction Kharosthi was one of the major scripts of the Indian subcontinent in the early period. In the list of 64 scripts occurring in the Lalitavistara (3rd century CE), a text in Buddhist Hybrid Sanskrit, Kharosthi comes second after Brahmi. Thus both of them were considered to be two major scripts of the Indian subcontinent. Both Kharosthi and Brahmi are first encountered in the edicts of Asoka in the 3rd century BCE. 2. Discovery of the script and its Decipherment The script was first discovered on one side of a large number of coins bearing Greek legends on the other side from the north western part of the Indian subcontinent in the first quarter of the 19th century. Later in 1830 to 1834 two full inscriptions of the time of Kanishka bearing the same script were found at Manikiyala in Pakistan. After this discovery James Prinsep named the script as ‘Bactrian Pehelevi’ since it occurred on a number of so called ‘Bactrian’ coins. To James Prinsep the characters first looked similar to Pahlavi (Semitic) characters.
    [Show full text]
  • The Formal Kharoṣṭhī Script from the Northern Tarim Basin in Northwest
    Acta Orientalia Hung. 73 (2020) 3, 335–373 DOI: 10.1556/062.2020.00015 Th e Formal Kharoṣṭhī script from the Northern Tarim Basin in Northwest China may write an Iranian language1 FEDERICO DRAGONI, NIELS SCHOUBBEN and MICHAËL PEYROT* L eiden University Centre for Linguistics, Universiteit Leiden, Postbus 9515, 2300 RA Leiden, Th e Netherlands E-mail: [email protected]; [email protected]; *Corr esponding Author: [email protected] Received: February 13, 2020 •Accepted: May 25, 2020 © 2020 The Authors ABSTRACT Building on collaborative work with Stefan Baums, Ching Chao-jung, Hannes Fellner and Georges-Jean Pinault during a workshop at Leiden University in September 2019, tentative readings are presented from a manuscript folio (T II T 48) from the Northern Tarim Basin in Northwest China written in the thus far undeciphered Formal Kharoṣṭhī script. Unlike earlier scholarly proposals, the language of this folio can- not be Tocharian, nor can it be Sanskrit or Middle Indic (Gāndhārī). Instead, it is proposed that the folio is written in an Iranian language of the Khotanese-Tumšuqese type. Several readings are proposed, but a full transcription, let alone a full translation, is not possible at this point, and the results must consequently remain provisional. KEYWORDS Kharoṣṭhī, Formal Kharoṣṭhī, Khotanese, Tumšuqese, Iranian, Tarim Basin 1 We are grateful to Stefan Baums, Chams Bernard, Ching Chao-jung, Doug Hitch, Georges-Jean Pinault and Nicholas Sims-Williams for very helpful discussions and comments on an earlier draft. We also thank the two peer-reviewers of the manuscript. One of them, Richard Salomon, did not wish to remain anonymous, and espe- cially his observation on the possible relevance of Khotan Kharoṣṭhī has proved very useful.
    [Show full text]
  • Töwkhön, the Retreat of Öndör Gegeen Zanabazar As a Pilgrimage Site Zsuzsa Majer Budapest
    Töwkhön, The ReTReaT of öndöR GeGeen ZanabaZaR as a PilGRimaGe siTe Zsuzsa Majer Budapest he present article describes one of the revived up to the site is not always passable even by jeep, T Mongolian monasteries, having special especially in winter or after rain. Visitors can reach the significance because it was once the retreat and site on horseback or on foot even when it is not possible workshop of Öndör Gegeen Zanabazar, the main to drive up to the monastery. In 2004 Töwkhön was figure and first monastic head of Mongolian included on the list of the World’s Cultural Heritage Buddhism. Situated in an enchanted place, it is one Sites thanks to its cultural importance and the natural of the most frequented pilgrimage sites in Mongolia beauties of the Orkhon River Valley area. today. During the purges in 1937–38, there were mass Information on the monastery is to be found mainly executions of lamas, the 1000 Mongolian monasteries in books on Mongolian architecture and historical which then existed were closed and most of them sites, although there are also some scattered data totally destroyed. Religion was revived only after on the history of its foundation in publications on 1990, with the very few remaining temple buildings Öndör Gegeen’s life. In his atlas which shows 941 restored and new temples erected at the former sites monasteries and temples that existed in the past in of the ruined monasteries or at the new province and Mongolia, Rinchen marked the site on his map of the subprovince centers. Öwörkhangai monasteries as Töwkhön khiid (No.
    [Show full text]
  • 3 Writing Systems
    Writing Systems 43 3 Writing Systems PETER T. DANIELS Chapters on writing systems are very rare in surveys of linguistics – Trager (1974) and Mountford (1990) are the only ones that come to mind. For a cen- tury or so – since the realization that unwritten languages are as legitimate a field of study, and perhaps a more important one, than the world’s handful of literary languages – writing systems were (rightly) seen as secondary to phonological systems and (wrongly) set aside as unworthy of study or at best irrelevant to spoken language. The one exception was I. J. Gelb’s attempt (1952, reissued with additions and corrections 1963) to create a theory of writ- ing informed by the linguistics of his time. Gelb said that what he wrote was meant to be the first word, not the last word, on the subject, but no successors appeared until after his death in 1985.1 Although there have been few lin- guistic explorations of writing, a number of encyclopedic compilations have appeared, concerned largely with the historical development and diffusion of writing,2 though various popularizations, both new and old, tend to be less than accurate (Daniels 2000). Daniels and Bright (1996; The World’s Writing Systems: hereafter WWS) includes theoretical and historical materials but is primarily descriptive, providing for most contemporary and some earlier scripts information (not previously gathered together) on how they represent (the sounds of) the languages they record. This chapter begins with a historical-descriptive survey of the world’s writ- ing systems, and elements of a theory of writing follow.
    [Show full text]
  • Tugboat, Volume 19 (1998), No. 4 417 Romanized Indic and LATEX
    TUGboat, Volume 19 (1998), No. 4 417 Romanized Indic and LATEX 3 ISO 15919 and CSX+ Anshuman Pandey ISO/TC46/SC2/WG12, the International Standards Organization Working Group for the Transliteration 1 Introduction of Indic, has been busy with the draft ISO 15919 In 1990 at the 8th World Sanskrit Conference in standard [2]. This draft standard provides tables Vienna, a panel of Indologists devised two encod- which enable the romanization of Indic scripts which ing schemes which would enable them to exchange are specified in Rows 09–0D and 0F of UCS (ISO/IEC electronic data across a variety of platforms. These 10646 and Unicode). schemes are the “Classical Sanskrit” and “Classi- This romanization is accomplished using plain cal Sanskrit eXtended” encodings, widely known in ASCII 7-bit (ISO-646) characters, two or three ro- Indological circles as CS and CSX, respectively, or man characters often being required to represent simply, CS/CSX. a single Indic one. These tables provide for the Devanagari, Gujarati, Gurmukhi, Bengali (includ- 2 CS and CSX ing Assamese), Oriya, Telugu, Kannada, Malay- The CS and CSX encodings are currently the clos- alam, Tamil, and Sinhala scripts. This draft is not est thing to an accepted standardization of the 8-bit yet a standard, although work is well advanced. transliteration of Indic scripts. CS/CSX is based on While ISO 15919 is still in draft stages, it ap- IBM Code Page 437, whose characters of the range pears that a consensus has been reached with regard 129–255 have been reassigned with characters tradi- to the form of transliteration.
    [Show full text]
  • Initial Literacy in Devanagari: What Matters to Learners
    Initial literacy in Devanagari: What Matters to Learners Renu Gupta University of Aizu 1. Introduction Heritage language instruction is on the rise at universities in the US, presenting a new set of challenges for language pedagogy. Since heritage language learners have some experience of the target language from their home environment, language instruction cannot be modeled on foreign language instruction (Kondo-Brown, 2003). At the same time, there may be significant gaps in the learner’s competence; in describing heritage learners of South Asian languages, Moag (1996) notes that their acquisition of the native language has often atrophied at an early stage. For learners of South Asian languages, the writing system presents an additional hurdle. Moag (1996) states that heritage learners have more problems than their American counterparts in learning the script; the heritage learner “typically takes much more time to master the script, and persists in having problems with both reading and writing far longer than his or her American counterpart” (page 170). Moag attributes this to the different purposes for which learners study the language, arguing that non-native speakers rapidly learn the script since they study the language for professional purposes, whereas heritage learners study it for personal reasons. Although many heritage languages, such as Japanese, Mandarin, and the South Asian languages, use writing systems that differ from English, the difficulties of learning a second writing system have received little attention. At the elementary school level, Perez (2004) has summarized differences in writing systems and rhetorical structures, while Sassoon (1995) has documented the problems of school children learning English as a second script; in addition, Cook and Bassetti (2005) offer research studies on the acquisition of some writing systems.
    [Show full text]
  • Ingo Strauch the Bajaur Collection of Kharoṣṭhī Manuscripts – a Preliminary Survey
    Ingo Strauch The Bajaur Collection of Kharoṣṭhī manuscripts – a preliminary survey 1. The discovery In 1999 a cardbox containing a number of folded birch bark scrolls was brought to Mr. M. Nasim Khan, PhD, Assistant Professor at the Depart- ment of Archaeology of the University of Peshawar (cf. NASIM KHAN & SOHAIL KHAN 2004 (2006): 10, fig. 2). Already some time before he had heard about this discovery while working on a field trip in the Bajaur area. According to these rumours and the description given by the person who delivered this parcel and claimed to be the finder, the manuscripts were found in the vicinity of the village Miān Kili in the Dir district,1 but on the Bajaur side of the river which marks the border between both districts. The exact find-spot of the manuscripts was indicated as the ruins of a Buddhist monastery called today simply maḥal (Pers./Arab. “house, palace”) (cf. figs. 1,2). fig. 1: Map with Miān Kili and its position within “Greater Gandhāra” 1 The place can easily be located with help of Google Earth at 34° 49‘ 24“ North, 71° 40‘ 17“ East. Studien zur Indologie und Iranistik 25 (2008) 103-136 104 | Ingo Strauch fig. 2: Map showing the suggested findspot of the manuscripts It was stated that the scrolls were found in situ deposited in one of the cells of the monastery in a stone chamber formed by large plates and measur ing ca. 50 cm in diameter. This description, however, raises some questions regarding the character of this manuscript deposit.
    [Show full text]