THREE PRAYER TEXTS by ÖNDÖR GEGEEN ZANABAZAR Zsuzsa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GEO ROO DIST BUC PRO Prep ATE 111 Cha Dec Expi OTECHNICA OSEVELT ST TRICT CKEYE, ARI OJECT # 15 Pared By
GEOTECHNICAL EXPLORARATION REPORT ROOSEVELT STREET IMPROVEMENT DISTRICT BUCKEYE, ARIZONA PROJECT # 150004 Prepared by: ATEK Engineering Consultants, LLC 111 South Weber Drive, Suite 1 Chandler, Arizona 85226 Exp ires 9/30/2018 December 14, 2015 December 14, 2015 ATEK Project #150004 RITOCH-POWELL & Associates 5727 North 7th Street #120 Phoenix, AZ 85014 Attention: Mr. Keith L. Drunasky, P.E. RE: GEOTECHNICAL EXPLORATION REPORT Roosevelt Street Improvement District Buckeye, Arizona Dear Mr. Drunasky: ATEK Engineering Consultants, LLC is pleased to present the attached Geotechnical Exploration Report for the Roosevelt Street Improvement Disstrict located in Buckeye, Arizona. The purpose of our study was to explore and evaluate the subsurface conditions at the proposed site to develop geotechnical engineering recommendations for project design and construction. Based on our findings, the site is considered suittable for the proposed construction, provided geotechnical recommendations presented in thhe attached report are followed. Specific recommendations regarding the geotechnical aspects of the project design and construction are presented in the attached report. The recommendations contained within this report are depeendent on the provisions provided in the Limitations and Recommended Additional Services sections of this report. We appreciate the opportunity of providing our services for this project. If you have questions regarding this report or if we may be of further assistance, please contact the undersigned. Sincerely, ATEK Engineering Consultants, LLC Expires 9/30/2018 James P Floyd, P.E. Armando Ortega, P.E. Project Manager Principal Geotechnical Engineer Expires 9/30/2017 111 SOUTH WEBER DRIVE, SUITE 1 WWW.ATEKEC.COM P (480) 659-8065 CHANDLER, AZ 85226 F (480) 656-9658 TABLE OF CONTENTS 1. -
Positional Notation Or Trigonometry [2, 13]
The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity. -
The Festvox Indic Frontend for Grapheme-To-Phoneme Conversion
The Festvox Indic Frontend for Grapheme-to-Phoneme Conversion Alok Parlikar, Sunayana Sitaram, Andrew Wilkinson and Alan W Black Carnegie Mellon University Pittsburgh, USA aup, ssitaram, aewilkin, [email protected] Abstract Text-to-Speech (TTS) systems convert text into phonetic pronunciations which are then processed by Acoustic Models. TTS frontends typically include text processing, lexical lookup and Grapheme-to-Phoneme (g2p) conversion stages. This paper describes the design and implementation of the Indic frontend, which provides explicit support for many major Indian languages, along with a unified framework with easy extensibility for other Indian languages. The Indic frontend handles many phenomena common to Indian languages such as schwa deletion, contextual nasalization, and voicing. It also handles multi-script synthesis between various Indian-language scripts and English. We describe experiments comparing the quality of TTS systems built using the Indic frontend to grapheme-based systems. While this frontend was designed keeping TTS in mind, it can also be used as a general g2p system for Automatic Speech Recognition. Keywords: speech synthesis, Indian language resources, pronunciation 1. Introduction in models of the spectrum and the prosody. Another prob- lem with this approach is that since each grapheme maps Intelligible and natural-sounding Text-to-Speech to a single “phoneme” in all contexts, this technique does (TTS) systems exist for a number of languages of the world not work well in the case of languages that have pronun- today. However, for low-resource, high-population lan- ciation ambiguities. We refer to this technique as “Raw guages, such as languages of the Indian subcontinent, there Graphemes.” are very few high-quality TTS systems available. -
Buddhist Archeology in Mongolia: Zanabazar and the Géluk Diaspora Beyond Tibet
Buddhist Archeology in Mongolia: Zanabazar and the Géluk Diaspora beyond Tibet Uranchimeg Tsultemin, Indiana University–Purdue University Indianapolis (IUPUI) Uranchimeg, Tsultemin. 2019. “Buddhist Archeology in Mongolia: Zanabazar and the Géluk Dias- pora beyond Tibet.” Cross-Currents: East Asian History and Culture Review (e-journal) 31: 7–32. https://cross-currents.berkeley.edu/e-journal/issue-31/uranchimeg. Abstract This article discusses a Khalkha reincarnate ruler, the First Jebtsundampa Zanabazar, who is commonly believed to be a Géluk protagonist whose alliance with the Dalai and Panchen Lamas was crucial to the dissemination of Buddhism in Khalkha Mongolia. Za- nabazar’s Géluk affiliation, however, is a later Qing-Géluk construct to divert the initial Khalkha vision of him as a reincarnation of the Jonang historian Tāranātha (1575–1634). Whereas several scholars have discussed the political significance of Zanabazar’s rein- carnation based only on textual sources, this article takes an interdisciplinary approach to discuss, in addition to textual sources, visual records that include Zanabazar’s por- traits and current findings from an ongoing excavation of Zanabazar’s Saridag Monas- tery. Clay sculptures and Zanabazar’s own writings, heretofore little studied, suggest that Zanabazar’s open approach to sectarian affiliations and his vision, akin to Tsongkhapa’s, were inclusive of several traditions rather than being limited to a single one. Keywords: Zanabazar, Géluk school, Fifth Dalai Lama, Jebtsundampa, Khalkha, Mongo- lia, Dzungar Galdan Boshogtu, Saridag Monastery, archeology, excavation The First Jebtsundampa Zanabazar (1635–1723) was the most important protagonist in the later dissemination of Buddhism in Mongolia. Unlike the Mongol imperial period, when the sectarian alliance with the Sakya (Tib. -
2020 Language Need and Interpreter Use Study, As Required Under Chair, Executive and Planning Committee Government Code Section 68563 HON
JUDICIAL COUNCIL OF CALIFORNIA 455 Golden Gate Avenue May 15, 2020 San Francisco, CA 94102-3688 Tel 415-865-4200 TDD 415-865-4272 Fax 415-865-4205 www.courts.ca.gov Hon. Gavin Newsom Governor of California HON. TANI G. CANTIL- SAKAUYE State Capitol, First Floor Chief Justice of California Chair of the Judicial Council Sacramento, California 95814 HON. MARSHA G. SLOUGH Re: 2020 Language Need and Interpreter Use Study, as required under Chair, Executive and Planning Committee Government Code section 68563 HON. DAVID M. RUBIN Chair, Judicial Branch Budget Committee Chair, Litigation Management Committee Dear Governor Newsom: HON. MARLA O. ANDERSON Attached is the Judicial Council report required under Government Code Chair, Legislation Committee section 68563, which requires the Judicial Council to conduct a study HON. HARRY E. HULL, JR. every five years on language need and interpreter use in the California Chair, Rules Committee trial courts. HON. KYLE S. BRODIE Chair, Technology Committee The study was conducted by the Judicial Council’s Language Access Hon. Richard Bloom Services and covers the period from fiscal years 2014–15 through 2017–18. Hon. C. Todd Bottke Hon. Stacy Boulware Eurie Hon. Ming W. Chin If you have any questions related to this report, please contact Mr. Douglas Hon. Jonathan B. Conklin Hon. Samuel K. Feng Denton, Principal Manager, Language Access Services, at 415-865-7870 or Hon. Brad R. Hill Ms. Rachel W. Hill [email protected]. Hon. Harold W. Hopp Hon. Hannah-Beth Jackson Mr. Patrick M. Kelly Sincerely, Hon. Dalila C. Lyons Ms. Gretchen Nelson Mr. -
The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes
Portland State University PDXScholar Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics Publications and Presentations and Statistics 3-2018 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hu Sun University of Macau Christine Chambris Université de Cergy-Pontoise Judy Sayers Stockholm University Man Keung Siu University of Hong Kong Jason Cooper Weizmann Institute of Science SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/mth_fac Part of the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Citation Details Sun X.H. et al. (2018) The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes. In: Bartolini Bussi M., Sun X. (eds) Building the Foundation: Whole Numbers in the Primary Grades. New ICMI Study Series. Springer, Cham This Book Chapter is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Xu Hu Sun, Christine Chambris, Judy Sayers, Man Keung Siu, Jason Cooper, Jean-Luc Dorier, Sarah Inés González de Lora Sued, Eva Thanheiser, Nadia Azrou, Lynn McGarvey, Catherine Houdement, and Lisser Rye Ejersbo This book chapter is available at PDXScholar: https://pdxscholar.library.pdx.edu/mth_fac/253 Chapter 5 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hua Sun , Christine Chambris Judy Sayers, Man Keung Siu, Jason Cooper , Jean-Luc Dorier , Sarah Inés González de Lora Sued , Eva Thanheiser , Nadia Azrou , Lynn McGarvey , Catherine Houdement , and Lisser Rye Ejersbo 5.1 Introduction Mathematics learning and teaching are deeply embedded in history, language and culture (e.g. -
Tai Lü / ᦺᦑᦟᦹᧉ Tai Lùe Romanization: KNAB 2012
Institute of the Estonian Language KNAB: Place Names Database 2012-10-11 Tai Lü / ᦺᦑᦟᦹᧉ Tai Lùe romanization: KNAB 2012 I. Consonant characters 1 ᦀ ’a 13 ᦌ sa 25 ᦘ pha 37 ᦤ da A 2 ᦁ a 14 ᦍ ya 26 ᦙ ma 38 ᦥ ba A 3 ᦂ k’a 15 ᦎ t’a 27 ᦚ f’a 39 ᦦ kw’a 4 ᦃ kh’a 16 ᦏ th’a 28 ᦛ v’a 40 ᦧ khw’a 5 ᦄ ng’a 17 ᦐ n’a 29 ᦜ l’a 41 ᦨ kwa 6 ᦅ ka 18 ᦑ ta 30 ᦝ fa 42 ᦩ khwa A 7 ᦆ kha 19 ᦒ tha 31 ᦞ va 43 ᦪ sw’a A A 8 ᦇ nga 20 ᦓ na 32 ᦟ la 44 ᦫ swa 9 ᦈ ts’a 21 ᦔ p’a 33 ᦠ h’a 45 ᧞ lae A 10 ᦉ s’a 22 ᦕ ph’a 34 ᦡ d’a 46 ᧟ laew A 11 ᦊ y’a 23 ᦖ m’a 35 ᦢ b’a 12 ᦋ tsa 24 ᦗ pa 36 ᦣ ha A Syllable-final forms of these characters: ᧅ -k, ᧂ -ng, ᧃ -n, ᧄ -m, ᧁ -u, ᧆ -d, ᧇ -b. See also Note D to Table II. II. Vowel characters (ᦀ stands for any consonant character) C 1 ᦀ a 6 ᦀᦴ u 11 ᦀᦹ ue 16 ᦀᦽ oi A 2 ᦰ ( ) 7 ᦵᦀ e 12 ᦵᦀᦲ oe 17 ᦀᦾ awy 3 ᦀᦱ aa 8 ᦶᦀ ae 13 ᦺᦀ ai 18 ᦀᦿ uei 4 ᦀᦲ i 9 ᦷᦀ o 14 ᦀᦻ aai 19 ᦀᧀ oei B D 5 ᦀᦳ ŭ,u 10 ᦀᦸ aw 15 ᦀᦼ ui A Indicates vowel shortness in the following cases: ᦀᦲᦰ ĭ [i], ᦵᦀᦰ ĕ [e], ᦶᦀᦰ ăe [ ∎ ], ᦷᦀᦰ ŏ [o], ᦀᦸᦰ ăw [ ], ᦀᦹᦰ ŭe [ ɯ ], ᦵᦀᦲᦰ ŏe [ ]. -
The Kharoṣṭhī Documents from Niya and Their Contribution to Gāndhārī Studies
The Kharoṣṭhī Documents from Niya and Their Contribution to Gāndhārī Studies Stefan Baums University of Munich [email protected] Niya Document 511 recto 1. viśu͚dha‐cakṣ̄u bhavati tathāgatānaṃ bhavatu prabhasvara hiterṣina viśu͚dha‐gātra sukhumāla jināna pūjā suchavi paramārtha‐darśana 4 ciraṃ ca āyu labhati anālpakaṃ 5. pratyeka‐budha ca karoṃti yo s̄ātravivegam āśṛta ganuktamasya 1 ekābhirāma giri‐kaṃtarālaya 2. na tasya gaṃḍa piṭakā svakartha‐yukta śamathe bhavaṃti gune rata śilipataṃ tatra vicārcikaṃ teṣaṃ pi pūjā bhavatu [v]ā svayaṃbhu[na] 4 1 suci sugaṃdha labhati sa āśraya 6. koḍinya‐gotra prathamana karoṃti yo s̄ātraśrāvaka {?} ganuktamasya 2 teṣaṃ ca yo āsi subha͚dra pac̄ima 3. viśāla‐netra bhavati etasmi abhyaṃdare ye prabhasvara atīta suvarna‐gātra abhirūpa jinorasa te pi bhavaṃtu darśani pujita 4 2 samaṃ ca pādo utarā7. imasmi dāna gana‐rāya prasaṃṭ́hita u͚tama karoṃti yo s̄ātra sthaira c̄a madhya navaka ganuktamasya 3 c̄a bhikṣ̄u m It might be going to far to say that Torwali is the direct lineal descendant of the Niya Prakrit, but there is no doubt that out of all the modern languages it shows the closest resemblance to it. [...] that area around Peshawar, where [...] there is most reason to believe was the original home of Niya Prakrit. That conclusion, which was reached for other reasons, is thus confirmed by the distribution of the modern dialects. (Burrow 1936) Under this name I propose to include those inscriptions of Aśoka which are recorded at Shahbazgaṛhi and Mansehra in the Kharoṣṭhī script, the vehicle for the remains of much of this dialect. To be included also are the following sources: the Buddhist literary text, the Dharmapada found in Khotan, written likewise in Kharoṣṭhī [...]; the Kharoṣṭhī documents on wood, leather, and silk from Caḍ́ota (the Niya site) on the border of the ancient kingdom of Khotan, which represented the official language of the capital Krorayina [...]. -
Sanskrit Alphabet
Sounds Sanskrit Alphabet with sounds with other letters: eg's: Vowels: a* aa kaa short and long ◌ к I ii ◌ ◌ к kii u uu ◌ ◌ к kuu r also shows as a small backwards hook ri* rri* on top when it preceeds a letter (rpa) and a ◌ ◌ down/left bar when comes after (kra) lri lree ◌ ◌ к klri e ai ◌ ◌ к ke o au* ◌ ◌ к kau am: ah ◌ं ◌ः कः kah Consonants: к ka х kha ga gha na Ê ca cha ja jha* na ta tha Ú da dha na* ta tha Ú da dha na pa pha º ba bha ma Semivowels: ya ra la* va Sibilants: sa ш sa sa ha ksa** (**Compound Consonant. See next page) *Modern/ Hindi Versions a Other ऋ r ॠ rr La, Laa (retro) औ au aum (stylized) ◌ silences the vowel, eg: к kam झ jha Numero: ण na (retro) १ ५ ॰ la 1 2 3 4 5 6 7 8 9 0 @ Davidya.ca Page 1 Sounds Numero: 0 1 2 3 4 5 6 7 8 910 १॰ ॰ १ २ ३ ४ ६ ७ varient: ५ ८ (shoonya eka- dva- tri- catúr- pancha- sás- saptán- astá- návan- dásan- = empty) works like our Arabic numbers @ Davidya.ca Compound Consanants: When 2 or more consonants are together, they blend into a compound letter. The 12 most common: jna/ tra ttagya dya ddhya ksa kta kra hma hna hva examples: for a whole chart, see: http://www.omniglot.com/writing/devanagari_conjuncts.php that page includes a download link but note the site uses the modern form Page 2 Alphabet Devanagari Alphabet : к х Ê Ú Ú º ш @ Davidya.ca Page 3 Pronounce Vowels T pronounce Consonants pronounce Semivowels pronounce 1 a g Another 17 к ka v Kit 42 ya p Yoga 2 aa g fAther 18 х kha v blocKHead -
Indic Loanwords In Tocharian B, Local Markedness, And The Animacy
Indic Loanwords in Tocharian B, Local Markedness, and the Animacy Hierarchy Francesco Burroni and Michael Weiss (Department of Linguistics, Cornell University) A question that is rarely addressed in the literature devoted to Language Contact is: how are nominal forms borrowed when the donor and the recipient language both possess rich inflectional morphology? Can nominal forms be borrowed from and in different cases? What are the decisive factors shaping the borrowing scenario? In this paper, we frame this question from the angle of a case study involving two ancient Indo-European languages: Tocharian and Indic (Sanskrit, Prakrit(s)). Most studies dedicated to the topic of loanwords in Tocharian B (henceforth TB) have focused on borrowings from Iranian (e.g. Tremblay 2005), but little attention has been so far devoted to forms borrowed from Indic, perhaps because they are considered uninteresting. We argue that such forms, however, are of interest for the study of Language Contact. A remarkable feature of Indic borrowings into TB is that a-stems are borrowed in TB as e-stems when denoting animate referents, but as consonant (C-)stems when denoting inanimate referents, a distribution that was noticed long ago by Mironov (1928, following Staёl-Holstein 1910:117 on Uyghur). In the literature, however, one finds no reaction to Mironov’s idea. By means of a systematic study of all the a-stems borrowed from Indic into TB, we argue that the trait [+/- animate] of the referent is, in fact, a very good predictor of the TB shape of the borrowing, e.g. male personal names from Skt. -
KHA in ANCIENT INDIAN MATHEMATICS It Was in Ancient
KHA IN ANCIENT INDIAN MATHEMATICS AMARTYA KUMAR DUTTA It was in ancient India that zero received its first clear acceptance as an integer in its own right. In 628 CE, Brahmagupta describes in detail rules of operations with integers | positive, negative and zero | and thus, in effect, imparts a ring structure on integers with zero as the additive identity. The various Sanskrit names for zero include kha, ´s¯unya, p¯urn. a. There was an awareness about the perils of zero and yet ancient Indian mathematicians not only embraced zero as an integer but allowed it to participate in all four arithmetic operations, including as a divisor in a division. But division by zero is strictly forbidden in the present edifice of mathematics. Consequently, verses from ancient stalwarts like Brahmagupta and Bh¯askar¯ac¯arya referring to numbers with \zero in the denominator" shock the modern reader. Certain examples in the B¯ıjagan. ita (1150 CE) of Bh¯askar¯ac¯arya appear as absurd nonsense. But then there was a time when square roots of negative numbers were considered non- existent and forbidden; even the validity of subtracting a bigger number from a smaller number (i.e., the existence of negative numbers) took a long time to gain universal acceptance. Is it not possible that we too have confined ourselves to a certain safe convention regarding the zero and that there could be other approaches where the ideas of Brahmagupta and Bh¯askar¯ac¯arya, and even the examples of Bh¯askar¯ac¯arya, will appear not only valid but even natural? Enterprising modern mathematicians have created elaborate legal (or technical) machinery to overcome the limitations imposed by the prohibition against use of zero in the denominator. -
Part 1: Introduction to The
PREVIEW OF THE IPA HANDBOOK Handbook of the International Phonetic Association: A guide to the use of the International Phonetic Alphabet PARTI Introduction to the IPA 1. What is the International Phonetic Alphabet? The aim of the International Phonetic Association is to promote the scientific study of phonetics and the various practical applications of that science. For both these it is necessary to have a consistent way of representing the sounds of language in written form. From its foundation in 1886 the Association has been concerned to develop a system of notation which would be convenient to use, but comprehensive enough to cope with the wide variety of sounds found in the languages of the world; and to encourage the use of thjs notation as widely as possible among those concerned with language. The system is generally known as the International Phonetic Alphabet. Both the Association and its Alphabet are widely referred to by the abbreviation IPA, but here 'IPA' will be used only for the Alphabet. The IPA is based on the Roman alphabet, which has the advantage of being widely familiar, but also includes letters and additional symbols from a variety of other sources. These additions are necessary because the variety of sounds in languages is much greater than the number of letters in the Roman alphabet. The use of sequences of phonetic symbols to represent speech is known as transcription. The IPA can be used for many different purposes. For instance, it can be used as a way to show pronunciation in a dictionary, to record a language in linguistic fieldwork, to form the basis of a writing system for a language, or to annotate acoustic and other displays in the analysis of speech.