Submitted to Accounts of Chemical Research

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Cucurbit[n]uril -based Monodisperse Microcapsules Self - Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials

Journal: Accounts of Chemical Research

Manuscript ID ar-2016-00429g.R2

Manuscript Type: Article

Date Submitted by the Author: 22-Nov-2016

Complete List of Authors: Liu, Ji; Melville Laboratory for Polymer Synthesis, Department of Chemistry Lan, Yang; , Melville Laboratory for Polymer Synthesis, Department of Chemistry Yu, Ziyi; University of Cambridge, Chemistry Tan, Cindy; University of Cambridge, Melville Laboratory for Polymer Synthesis, Department of Chemistry; MARA University of Technology - Sarawak Campus Parker, Richard; University of Cambridge, Chemistry Abell, Chris; University of Cambridge, Chemistry Scherman, Oren; University of Cambridge, Melville Laboratory for Polymer Synthesis, Department of Chemistry

ACS Paragon Plus Environment Page 1 of 20 Submitted to Accounts of Chemical Research

1 2 3 4 5 Cucurbit[n]uril-based Microcapsules Self-Assembled within Microfluidic 6 Droplets: A Versatile Approach for Supramolecular Architectures and Materials 7 Ji Liu,† Yang Lan,† Ziyi Yu,∗,‡ Cindy S.Y. Tan,†,¶ Richard M. Parker,‡ Chris Abell,∗,‡ and 8 Oren A. Scherman∗,† 9 † Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield 10 Road, Cambridge CB2 1EW, UK. 11 ‡ Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. 12 ¶Faculty of Applied Sciences, Universiti Teknologi MARA, 94300 Kota Samarahan, Sarawak, Malaysia. 13 Received November 19, 2016; E-mail: [email protected]; [email protected]; [email protected] 14 15 Conspectus disperse supramolecular microcapsules, fab- 16 ricated through the integration of traditional 17 Microencapsulation is a fundamental con- microfluidic techniques and interfacial host- 18 cept behind a wide range of daily applica- guest chemistry, specifically cucurbit[n]uril 19 tions ranging from paints, adhesives and pes- (CB[n])-mediated host-guest interactions. 20 ticides to targeted drug delivery, transport Three different strategies: colloidal particle- 21 of vaccines and self-healing concretes. The driven assembly, interfacial condensation- driven assembly and electrostatic interaction- 22 beauty of microfluidics to generate microcap- driven assembly, are classified and discussed 23 sules arises from the capability of fabricat- in details, presenting the methodology in- 24 ing mono-disperse and micron-scale droplets, which can lead to microcapsules/particles volved in each microcapsule formation pro- 25 with fine-tuned control over size, shape and cess. We highlight the state-of-the-art in 26 hierarchical structure, as well as high repro- design and control over structural complex- 27 ducibility, efficient material usage and high- ity with desirable functionality, as well as 28 throughput manipulation. The introduction promising applications, such as cargo deliv- 29 of supramolecular chemistry, such as host- ery stemming from the assembled microcap- 30 guest interactions, endows the resultant mi- sules. On account of its dynamic nature, 31 crocapsules with stimuli-responsiveness and the CB[n]-mediated host-guest complexation 32 self-adjusting capabilities, and facilitates hi- has demonstrated efficient response toward 33 erarchical microstructures with tuneable sta- various external stimuli such as UV light, 34 bility and porosity, leading to the maturity of pH change, redox chemistry, and compet- 35 current microencapsulation industry. itive guests. Herein, we also demonstrate 36 Supramolecular architectures and materi- different microcapsule modalities, which are n 37 als have attracted immense attention over the engineered with CB[ ] host-guest chemistry and also can be destroyed with the aid of 38 last decade, as they open the possibility to external stimuli, for triggered release of pay- 39 obtain a large variety of aesthetically pleas- ing structures, with myriad applications in loads. In addition to the overview of recent 40 biomedicine, energy, sensing, catalysis and achievements and current limitations of these 41 biomimicry, on account of the inherent re- microcapsules, we finally summarize several 42 versible and adaptive nature of supramolecu- perspectives in tuneable cargo loading and 43 lar interactions. As a subset of supramolecu- triggered release, directions and challenges 44 lar interactions, host-guest molecular recogni- for this technology, as well as possible strate- 45 tion involves the formation of inclusion com- gies for further improvement, which will lead 46 plexes between two or more moieties, with to substaintial progress of host-guest chem- 47 specific three-dimensional structures and spa- istry in supramolecular architectures and 48 tial arrangements, in a highly controllable materials. 49 and cooperative manner. Such highly selec- 50 tive, strong yet dynamic interactions could be 1. Introduction 51 exploited as an alternative methodology for 52 programmable and controllable engineering of supramolecular architectures and materi- The synthesis and self-assembly of polymer building 53 blocks for the construction of functional supramolecular 54 als, exploiting reversible interactions between complementary components. Through the micro-/nano-structures are a major part of the emerging 55 1,2 engineering of molecular structures, assem- field of Supramolecular Polymer Chemistry. The intro- 56 blies can be readily functionalized based on duction of non-covalent supramolecular interactions such as 57 host-guest interactions, with desirable physic- hydrogen bonding, host-guest complexation or electrostatic 58 ochemical characteristics. interactions offers great opportunities to impart novel fea- 3 59 In this account, we summarize the current tures and functions to these polymer systems. As an exam- 60 state of development in the field of mono- ple of such self-assembled architectures, microcapsules have ACS Paragon Plus Environment 1 Submitted to Accounts of Chemical Research Page 2 of 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment Page 3 of 20 Submitted to Accounts of Chemical Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment Submitted to Accounts of Chemical Research Page 4 of 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment Page 5 of 20 Submitted to Accounts of Chemical Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment Submitted to Accounts of Chemical Research Page 6 of 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment Page 7 of 20 Submitted to Accounts of Chemical Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment Submitted to Accounts of Chemical Research Page 8 of 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment Page 9 of 20 Submitted to Accounts of Chemical Research

capsules requires future investigation, device design, and in fragment-based drug discovery. He also has research in- 1 process optimization. An important direction for future terests in developing microdroplets as a novel experimental 2 work will be expanding the range of stimuli, which can be platform, which led to the co-founding of Sphere Fluidics 3 incorporated in microcapsule formulations, featuring quanti- (2010) and Aqdot (2013). 4 tative functions and responses that can be activated in these Oren Scherman is the Director of the Melville Labora- 5 dynamic assemblies in a well-controlled manner. A future tory for Polymer Synthesis in the Department of Chemistry 6 challenge is to develop a monitoring strategy, which not only at the University of Cambridge and Professor of Supramolec- 7 controls the microcapsule integrity, but also tracks in situ ular and Polymer Chemistry. His current research projects 8 the cargoes delivery . Further in vitro and in vivo studies include the application of macrocyclic host-guest chem- 9 will be indispensable before CB[n]-based microcapsules are istry using cucurbit[n]urils in the development of novel 10 used for any biomedical applications, as most current stud- supramolecular hydrogels and microcapsules, drug-delivery 11 ies focus on the methodology of microcapsule construction systems based on dynamic hydrogels, the conservation and 12 and state-of-art techniques to trigger the structural destruc- restoration of important historical artefacts through the 13 tion with internal or external stimuli, thus release of the exploitation of supramolecular polymer chemistry and sens- 14 cargoes. Addressing these issues will benefit the design and ing and catalysis using self-assembled nanophotonic systems. 15 fabrication of next-generation supramolecular hierarchical structures and functional materials. Acknowledgement 16 17 J. L. is financially supported by the Marie Curie FP7 SASSYPOL ITN (607602) programme. C.S.Y.T. thanks the 18 Biography Ministry of Education of Malaysia and Universiti Teknologi 19 Ji Liu obtained his PhD in 2013 under the co-supervision MARA for their financial support. Z.Y. and C.A. were 20 of Prof. Christine Jerome at the University of Liege and in receipt of funding from BBSRC sLoLa award reference 21 Prof. Etienne Duguet at the University of Bordeaux. He BB/L002957/1, EPSRC and Institutional Sponsorship 2012- 22 joined the group of Prof. Oren Scherman at the University University of Cambridge EP/K503496/1 and the Transla- 23 of Cambridge as a postdoctoral research associate in 2014 tional Grant EP/ H046593/1. O.A.S thanks the EPRSC 24 and then as a Marie Curie research fellow since 2015. His (EP/F0355351 and EP/G060649/1) and the ERC (ASPiRe, 25 current research is mainly focused on cucurbit[n]uril-based 240629) for their funding. 26 supramolecular host-guest interactions for polymeric self- assembly, supramolecular transient networks and dynamic 27 References 28 interfacial adhesion. Yang Lan completed his PhD at the University of Cam- (1) Brunsveld, L.; Folmer, B.; Meijer, E.; Sijbesma, R. Supramolec- 29 ular polymers. Chem. Rev. 2001, 101, 4071–4098. 30 bridge in 2014 under the supervision of Prof. Oren Scher- (2) Tsivgoulis, G. M.; Lehn, J. M. Photonic molecular devices: re- man. He continued as a joint postdoctoral research asso- versibly photoswitchable fluorophores for nondestructive read- 31 out for optical memory. Angew. Chem. Int. Ed. 1995, 34, 1119– ciate with Prof. Oren Scherman and Dr. Erika Eiser in the 32 1122. Cavendish Laboratory. His current research is centred on (3) Aida, T.; Meijer, E.; Stupp, S. Functional supramolecular poly- 33 mers. Science 2012, 335, 813–817. colloidal self-assemblies with the assistance of cucurbit[n]uril (4) Duncanson, W. J.; Lin, T.; Abate, A. R.; Seiffert, S.; 34 host-guest chemistry. Shah, R. K.; Weitz, D. A. Microfluidic synthesis of advanced mi- 35 croparticles for encapsulation and controlled release. Lab. Chip Ziyi Yu received his PhD at the Nanjing University of 2012, 12, 2135–2145. 36 Technology in 2012 under the supervision of Prof. Su Chen, (5) Datta, S. S.; Abbaspourrad, A.; Amstad, E.; Fan, J.; Kim, S.-H.; 37 Romanowsky, M.; Shum, H. C.; Sun, B.; Utada, A. S.; Wind- and then joined Prof. Chris Abell’s group at the University bergs, M.; Zhou, S.; Weitz, D. A. 25th anniversary article: dou- 38 of Cambridge as a postdoctoral research associate. His re- ble emulsion templated solid microcapsules: mechanics and con- 39 search interest is on developing droplet-based microfluidics trolled release. Adv. Mater. 2014, 26, 2205–2218. (6) van Dongen, S. F.; de Hoog, H.-P. M.; Peters, R. J.; Nallani, M.; 40 in cucurbit[n]uril-based supramolecular assemblies, colloidal Nolte, R. J.; van Hest, J. C. Biohybrid polymer capsules. Chem. structures and single-cell analysis. Rev. 2009, 109, 6212–6274. 41 (7) Sun, T.; Morgan, H. Single-cell microfluidic impedance cytom- 42 Cindy S. Y. Tan obtained her PhD at the University etry: a review. Microfluid. Nanofluid. 2010, 8, 423–443. of Cambridge in 2016, under the supervision of Prof. Oren (8) Zhang, J.; Coulston, R. J.; Jones, S. T.; Geng, J.; Scher- 43 man, O. A.; Abell, C. One-step fabrication of supramolecular 44 Scherman. Her research focuses on supramolecular polymer microcapsules from microfluidic droplets. Science 2012, 335, networks based on cucurbit[n]uril host-guest interactions. 690–694. 45 (9) Kim, J.-W.; Utada, A. S.; Fern´andez-Nieves, A.; Hu, Z.; 46 She is currently a Senior Lecturer at Universiti Teknologi Weitz, D. A. Fabrication of monodisperse gel shells and func- MARA in Malaysia. tional microgels in microfluidic devices. Angew. Chem. Int. Ed. 47 2007, 119, 1851–1854. Richard Parker graduated with PhD in chemistry from 48 (10) Schloss, A. C.; Liu, W.; Williams, D. M.; Kaufman, G.; Hen- the University of Southampton in 2011. He is currently a drickson, H. P.; Rudshteyn, B.; Fu, L.; Wang, H.; Batista, V. S.; 49 Osuji, C.; Yan, E. C.; Regan, L. Fabrication of modularly postdoctoral research associate at the University of Cam- functionalizable microcapsules using protein-based technologies. 50 bridge, where he utilizes self-assembly within microfluidic ACS Biomater. Sci. Eng. 2016, 2, 1856–1861. 51 (11) Wang, J.-T.; Wang, J.; Han, J.-J. Fabrication of advanced par- droplets to prepare novel material architectures, with inter- ticles and particle-based materials assisted by droplet-based mi- 52 ests ranging from supramolecular microcapsules and gels to crofluidics. Small 2011, 7, 1728–1754. 53 bio-inspired photonics. (12) Wang, W.; Zhang, M.-J.; Chu, L.-Y. Functional polymeric mi- croparticles engineered from controllable microfluidic emulsions. 54 Chris Abell is the Pro-Vice-Chancellor for Research and Acc. Chem. Res. 2013, 47, 373–384. 55 the Professor of Biological Chemistry at the University of (13) Johnston, A. P.; Cortez, C.; Angelatos, A. S.; Caruso, F. Layer- by-layer engineered capsules and their applications. Curr. Opin. 56 Cambridge. He was elected into the Academy of Medical Colloid Interface Sci. 2006, 11, 203–209. Sciences in 2012 and a Fellow of the Royal Society in 2016. (14) Wang, Y.; Angelatos, A. S.; Caruso, F. Template synthesis 57 of nanostructured materials via layer-by-layer assembly. Chem. 58 His research focus is on using fragment-based methods in Mater. 2007, 20, 848–858. drug discovery and . In 1999, he co-founded (15) Kong, F.; Zhang, X.; Zhang, H.; Qu, X.; Chen, D.; Servos, M.; 59 M¨akil¨a, E.; Salonen, J.; Santos, H. A.; Hai, M.; Weitz, D. In- 60 Astex, which grew to become the world-leading company hibition of multidrug resistance of cancer cells by co-delivery of ACS Paragon Plus Environment 9 Submitted to Accounts of Chemical Research Page 10 of 20

DNA nanostructures and drugs using porous silicon nanoparti- ery Rev. 2013, 65, 1420–1446. 1 cles@ giant liposomes. Adv. Funct. Mater. 2015, 25, 3330–3340. (42) Liu, J.; Debuigne, A.; Detrembleur, C.; J´erˆome, C. Poly (N- 2 (16) Barrow, S. J.; Kasera, S.; Rowland, M. J.; del Barrio, J.; Scher- vinylcaprolactam): a thermoresponsive macromolecule with man, O. A. Cucurbituril-based molecular recognition. Chem. promising future in biomedical field. Adv. Healthcare Mater. 3 Rev. 2015, 115, 12320–12406. 2014, 3, 1941–1968. (17) Boekhoven, J.; Stupp, S. I. 25th anniversary article: (43) Xu, X.; Appel, E. A.; Liu, X.; Parker, R. M.; Scherman, O. A.; 4 supramolecular materials for regenerative medicine. Adv. Abell, C. Formation of cucurbit[8]uril-based supramolecular 5 Mater. 2014, 26, 1642–1659. hydrogel beads using droplet-based microfluidics. Biomacro- (18) Yan, X.; Wang, F.; Zheng, B.; Huang, F. Stimuli-responsive molecules 2015, 16, 2743–2749. 6 supramolecular polymeric materials. Chem. Soc. Rev. 2012, 41, (44) Tan, C. S. Y.; del Barrio, J.; Liu, J.; Scherman, O. A. 7 6042–6065. Supramolecular polymer networks based on cucurbit[8]uril host– (19) Whitesides, G. M. The origins and the future of microfluidics. guest interactions as aqueous photo-rheological fluids. Polym. 8 Nature 2006, 442, 368–373. Chem. 2015, 6, 7652–7657. 9 (20) Harada, A.; Takashima, Y.; Nakahata, M. Supramolecular poly- (45) Biedermann, F.; Ross, I.; Scherman, O. A. Host-guest accel- meric materials via cyclodextrin-guest interactions. Acc. Chem. erated photodimerisation of anthracene-labeled macromolecules 10 Res. 2014, 47, 2128–2140. in water. Polym. Chem. 2014, 5, 5375–5382. 11 (21) Yu, G.; Jie, K.; Huang, F. Supramolecular amphiphiles based (46) Marguet, M.; Bonduelle, C.; Lecommandoux, S. Multicom- on host–guest molecular recognition motifs. Chem. Rev. 2015, partmentalized polymeric systems: towards biomimetic cellular 12 115, 7240–7303. structure and function. Chem. Soc. Rev. 2013, 42, 512–529. (22) Isaacs, L. Stimuli responsive systems constructed using cucur- (47) Schoonen, L.; van Hest, J. Compartmentalization approaches in 13 bit[n]uril-type molecular containers. Acc. Chem. Res. 2014, 47, soft matter science: from nanoreactor development to organelle 14 2052–2062. mimics. Adv. Mater. 2016, 28, 1109–1128. (23) Assaf, K. I.; Nau, W. M. Cucurbiturils: from synthesis to high- (48) Shum, H. C.; Zhao, Y. J.; Kim, S.-H.; Weitz, D. A. Multicom- 15 affinity binding and catalysis. Chem. Soc. Rev. 2015, 44, 394– partment polymersomes from double emulsions. Angew. Chem. 16 418. Int. Ed. 2011, 123, 1686–1689. (24) Zheng, Y.; Yu, Z.; Parker, R. M.; Wu, Y.; Abell, C.; Scher- (49) Delcea, M.; Yashchenok, A.; Videnova, K.; Kreft, O.; 17 man, O. A. Interfacial assembly of dendritic microcapsules with M¨ohwald, H.; Skirtach, A. G. Multicompartmental micro- and 18 host-guest chemistry. Nat. Commun. 2014, 5, 5772. nanocapsules: hierarchy and applications in biosciences. Macro- (25) Park, J. I.; Saffari, A.; Kumar, S.; G¨unther, A.; Kumacheva, E. mol. Biosci. 2010, 10, 465–474. 19 Microfluidic synthesis of polymer and inorganic particulate ma- (50) Paleos, C. M.; Pantos, A. Molecular recognition and organiza- terials. Annu. Rev. Mater. Res. 2010, 40, 415–443. tional and polyvalent effects in vesicles induce the formation of 20 (26) Stephenson, G.; Parker, R. M.; Lan, Y.; Yu, Z.; Scher- artificial multicompartment cells as model systems of eukary- 21 man, O. A.; Abell, C. Supramolecular colloidosomes: fabri- otes. Acc. Chem. Res. 2014, 47, 1475–1482. cation, characterisation and triggered release of cargo. Chem. (51) Valencia, P. M.; Farokhzad, O. C.; Karnik, R.; Langer, R. Mi- 22 Commun. 2014, 50, 7048–7051. crofluidic technologies for accelerating the clinical translation of 23 (27) Yu, Z.; Lan, Y.; Parker, R. M.; Zhang, W.; Deng, X.; Scher- nanoparticles. Nat. Nanotech. 2012, 7, 623–629. man, O. A.; Abell, C. Dual-responsive supramolecular colloidal 24 microcapsules from cucurbit[8]uril molecular recognition in mi- 25 crofluidic droplets. Polym. Chem. 2016, 7, 5996–6002. (28) Quevedo, E.; Steinbacher, J.; McQuade, D. T. Interfacial poly- 26 merization within a simplified microfluidic device: capturing 27 capsules. J. Am. Chem. Soc. 2005, 127, 10498–10499. (29) Zhang, H.; Tumarkin, E.; Peerani, R.; Nie, Z.; Sullan, R. 28 M. A.; Walker, G. C.; Kumacheva, E. Microfluidic production of biopolymer microcapsules with controlled morphology. J. Am. 29 Chem. Soc. 2006, 128, 12205–12210. 30 (30) Yu, Z.; Zhang, J.; Coulston, R. J.; Parker, R. M.; Bieder- mann, F.; Liu, X.; Scherman, O. A.; Abell, C. Supramolecular 31 hydrogel microcapsules via cucurbit[8]uril host–guest interac- 32 tions with triggered and UV-controlled molecular permeability. Chem. Sci. 2015, 6, 4929–4933. 33 (31) Kaufman, G.; Boltyanskiy, R.; Nejati, S.; Thiam, A. R.; 34 Loewenberg, M.; Dufresne, E. R.; Osuji, C. O. Single-step mi- crofluidic fabrication of soft monodisperse polyelectrolyte mi- 35 crocapsules by interfacial complexation. Lab. Chip 2014, 14, 36 3494–3497. (32) Kim, M.; Yeo, S. J.; Highley, C. B.; Burdick, J. A.; Yoo, P. J.; 37 Doh, J.; Lee, D. One-step generation of multifunctional poly- electrolyte microcapsules via nanoscale interfacial complexation 38 in emulsion (NICE). ACS Nano 2015, 9, 8269–8278. 39 (33) Parker, R. M.; Zhang, J.; Zheng, Y.; Coulston, R. J.; Smith, C. A.; Salmon, A. R.; Yu, Z.; Scherman, O. A.; Abell, C. 40 Electrostatically directed self-assembly of ultrathin supramolec- 41 ular polymer microcapsules. Adv. Funct. Mater. 2015, 25, 4091–4100. 42 (34) Yu, Z.; Zheng, Y.; Parker, R. M.; Lan, Y.; Wu, Y.; Coul- 43 ston, R. J.; Zhang, J.; Scherman, O. A.; Abell, C. Microfluidic droplet-facilitated hierarchical assembly for dual cargo loading 44 and synergistic delivery. ACS Appl. Mater. Interfaces 2016, 8, 8811–8820. 45 (35) Lan, Y.; Loh, X. J.; Geng, J.; Walsh, Z.; Scherman, O. A. A 46 supramolecular route towards core-shell polymeric microspheres in water via cucurbit[8]uril complexation. Chem. Commun. 47 2012, 48, 8757–8759. 48 (36) Kim, C.; Agasti, S. S.; Zhu, Z.; Isaacs, L.; Rotello, V. M. Recognition-mediated activation of therapeutic gold nanopar- 49 ticles inside living cells. Nat. Chem. 2010, 2, 962–966. 50 (37) Groombridge, A. S.; Palma, A.; Parker, R. M.; Abell, C.; Scherman, O. A. Aqueous interfacial gels assembled from small 51 molecule supramolecular polymers. Chem. Sci. 2017, DOI: 52 10.1039/C6SC04103E. (38) Salmon, A. R.; Parker, R. M.; Groombridge, A. S.; Mae- 53 stro, A.; Coulston, R. J.; Hegemann, J.; Kierfeld, J.; Scher- man, O. A.; Abell, C. Microcapsule buckling triggered by 54 compression-induced interfacial phase change. Langmuir 2016, 55 32, 10987–10991. (39) Das, M.; Zhang, H.; Kumacheva, E. Microgels: old materials 56 with new applications. Annu. Rev. Mater. Res. 2006, 36, 117– 57 142. (40) Liu, J.; Detrembleur, C.; Mornet, S.; J´erˆome, C.; Duguet, E. De- 58 sign of hybrid nanovehicles for remotely triggered drug release: 59 an overview. J. Mater. Chem. B 2015, 3, 6117–6147. (41) Zhao, C.-X. Multiphase flow microfluidics for the production of 60 single or multiple emulsions for drug delivery. Adv. Drug Deliv- ACS Paragon Plus Environment 10 Page 11 of 20 Submitted to Accounts of Chemical Research

1 aqueous phase 2 Applications oil 3 sensing 4 oil cell study 5 microreactor 6 drug delivery 7 ... 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment 11 Submitted to Accounts of Chemical Research Page 12 of 20

1 Formation of polymer microcapsules strengthened with CB[n] host-guest interactions 2(a) 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 + 22 23 24 25 26 CB[8] 27 28 29 30 31 32 33 34 35 36 st nd 37 1 guest-containing 2 guest-containing 38 polymeric self-assemblies 39 40 polymer 1 polymer 2 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Phase 1 59 60 Phase 2 Oil

(b) Stepwise formation of CB[8]. Guest 1. Guest 2 ternary complex CB[8] Guest 2 Guest 1

ACS Paragon Plus Environment Page 13 of 20 Submitted to Accounts of Chemical Research (a) (c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (d) 16 17 18 19 20 21 22 23 24 25 (b)26 27 28 (e) 29 30 31 32 33 34 35 36 ACS Paragon Plus Environment 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Submitted to Accounts of Chemical Research Page 14 of 20

1(a) (c) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31(b) 32 33 34 35 36 (d) 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Paragon Plus Environment Page 15 of 20 Submitted to Accounts of Chemical Research

(a) (c) 1 2 3 4 Water 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (b)19 20 21 22 23 24 25 26 (g) (d)27 (e) (f) 28 29 30 31 32 33 34 35 36 ACS Paragon Plus Environment 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 (a) Submitted to Accounts of Chemical Research (c) Page 16 of 20

P1 1 micelle 2 Water 3 4 + 5 P2 CB[8] 6 Oil 7 (d) (b)8 C12H25S S CN 9 co b COOH 1-x x n m S COOH 10 O O O O 11 12 O P1 3 13 14 N 15 N 16 17 CN (e) 18 HOOC co co H 19 1-x-y y x N q 20 O O O 21 P2 Cl 22 OH ACSN Paragon Plus Environment 23 24 N I 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 17 of 20 Submitted to Accounts of Chemical Research

(a)1 2 hv1 hv1 3 4 5 hv hv2 6 2 7 8 9 10 11 12 (b)13 14 (c) 15 16 17 180 s 19 20 0 h 3 h 6 h 10 h 21 22 23 24 2530 s 26 27 0 h 3 h 6 h 10 h 28 29 30 31 3260 s 33 ACS Paragon Plus Environment 34 35 0 h 3 h 6 h 10 h 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Submitted to Accounts of Chemical Research Page 18 of 20 Redox-triggered release

1 + e 2 (a) + . (b) 3 + 4 - e . + 5 6 7 + + N N 8 in Na2S2O4 solution Cl- - 9 Cl 10 11 . + + . N N 12 - - 13 Cl Cl 14 15 16 in H2O 17 18 19 Photo-triggered release 20 21 22 hv 23(c) + (d) 24 UV 120 s 25 (365 nm) 26 27 40 min 28 40 min 29 N N N N 30 31 trans cis 32 33 34 35 Competitive guest-triggered release 36 37 38 (g) 39(e) (f) 40 + + 41 42 43 ACS Paragon Plus Environment 44 H2N 45 before rehydration 46 addition of ADA (1 mM) 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 19 of 20 Submitted to Accounts of Chemical Research

(a) Interfacial dendritic (b) 1 2 microcapsule 3 4 5 6 7 8 9 10 11 12 13 (c) 14 15 16 17 18 19 20 21 22 23 24 (d)25 (g) 26 (e) 27 28 29 30 31 32 33 34 35 36 37 38 (f) 39 40 41 42 43 44 ACS Paragon Plus Environment 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Submitted to Accounts of Chemical Research Page 20 of 20 s pha aqueou se 1 2 3 Applications 4 oil 5 sensing 6 7 8 cell study 9 oil 10 microreactor 11 12 drug delivery 13 14 ... 15 16 17 18 19 20 21 22 23 24 25 26 27 ACS Paragon Plus Environment 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60