Catalysis for the Production of Acetic Acid by Methanol Carbonylation
Total Page:16
File Type:pdf, Size:1020Kb
Downloaded from orbit.dtu.dk on: Oct 08, 2021 Supported Ionic Liquid Phase (SILP) Catalysis for the Production of Acetic acid by Methanol Carbonylation Hanning, Christopher William Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hanning, C. W. (2012). Supported Ionic Liquid Phase (SILP) Catalysis for the Production of Acetic acid by Methanol Carbonylation. DTU Chemistry. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. S Centre for Catalysis and Sustainable Chemistry C C Supported Ionic Liquid Phase (SILP) Catalysis for the Production of Acetic acid by Methanol Carbonylation Christopher W. Hanning Ph.D. Thesis Technical University of Denmark Centre for Catalysis and Sustainable Chemistry Department of Chemistry July 2012 Contents 1 Introduction 1 1.1 AceticAcid ............................ 1 1.2 ProductionMethodsforAceticAcid . 3 1.2.1 Biologically Derived Acetic Acid . 3 1.2.2 Catalysed Acetic Acid Production . 5 1.2.3 Carbonylation Reations . 8 1.3 IonicLiquids ........................... 16 1.3.1 Supported Ionic Liquids . 17 1.4 Commercial Acetic Acid Production/ Reactor Styles . 20 2 Experimental Set-up 23 2.1 Introduction............................ 23 2.2 DesignandConstruction . 23 2.2.1 PressureTesting ..................... 27 2.3 Corrosion ............................. 29 2.4 FlowControllers ......................... 30 2.5 BackPressureRegulatingValve . 33 2.6 Heating .............................. 36 2.6.1 Ovens ........................... 36 2.6.2 HeatingControl...................... 37 2.7 AdditionofMeIco-catalyst . 41 2.7.1 Initial Cooling . 41 2.7.2 FurtherMeIcooling. 42 2.8 MajorAlterations......................... 43 2.8.1 ReactorPressurisation . 43 2.8.2 Removalof“DeadSpace” afterPValve. 44 2.9 Achieving a Suitable Back Pressure of the Pressure Regulating Valve................................ 45 2.10ProductIsolation ......................... 45 2.11 Maintenance/“down-time” . 46 2.12 Blocking of the GC valve inlet . 48 i 2.13 Corrosionresistantmaterials. 48 2.14 FinalIncarnationoftheTest-Rig . 49 2.15 Wacker Chemie AG Pilot Plant . 49 3 Analytic system 51 3.1 GCConfiguration......................... 51 3.1.1 H2 DetectorTCD..................... 52 3.1.2 FIDDetector ....................... 53 3.1.3 OrganicsTCDDetector . 53 3.2 OvenRamp ............................ 55 3.3 InternalStandards ........................ 55 3.3.1 MethaneasanInternalStandard . 57 3.4 Calibrationofcomponents . 57 4 Experimental results 58 4.1 Replication of Previous Results . 58 4.2 Iodidedimer............................ 60 4.3 Chlorideprecursor ........................ 64 4.4 RhodiumSources ......................... 66 4.5 Cationvariation.......................... 67 4.6 Anionvariation .......................... 68 4.7 IridiumCatalysts ......................... 69 4.8 Products.............................. 70 4.9 Wateraddition .......................... 73 4.10 Gas solubility in IL . 74 4.11 IntellectualProperty . 75 5 Catalysis analytical tools 76 5.1 TGA- Thermal gravimetric analysis. 76 5.1.1 Ionic Liquids/Molten Salts . 76 5.1.2 RhSource......................... 77 5.1.3 SILPCatalysts ...................... 79 5.1.4 SlowHeating ....................... 79 5.2 DSC - Differential Scanning Calorimetry . 82 5.3 BET- Brunauer-Emmett-Teller isotherm . 82 5.4 FT-IR - Fourier Transform Infra Red Spectroscopy . 83 6 Experimental 87 6.1 Reactors.............................. 87 6.2 FlowControllers ......................... 88 6.3 Heating .............................. 88 ii 6.4 Pressure .............................. 89 6.5 MeIAddition ........................... 90 6.6 ProductIsolation ......................... 91 6.7 MethanolTank .......................... 91 6.8 AfteraReaction ......................... 92 6.9 GCSequence ........................... 93 7 Conclusion 95 A Experimental Synthesis 112 A.1 Thebasicprocedure . .. .. .112 A.2 Variations .............................113 A.3 IonicLiquids ...........................114 B Components Listing 116 C Evolution of the test rig over the course of the Project 119 D Examples of Corrosion Experienced 125 E Comparison of Various Steel Types 130 – F Exposure of a MeOH wetted, Bmim I/[Rh(CO)2I2] SILP to air over a period of 1 hour 131 G Fresh and Used Examples of SILP Catalysts 135 iii List of Figures 1.1 AceticAcidEndUses....................... 2 1.2 OxidationofAcetaldehyde . 7 1.3 CoCatalyticCycle ........................ 9 1.4 NiCatalyticCycle ........................ 10 1.5 MonsantoCatalyticCycle . 12 1.6 Cativa Catalytic Cycle . 13 1.7 StandardCarbonylationReactor. 13 1.8 Complete Cativa Catalytic Cycle . 15 1.9 DifferenttypesofSILP-styleCatalysts . 18 1.10 Process Diagram of a Methanol Carbonylation Plant . 21 2.1 TheOriginalIncarnationoftheTestRig . 24 2.2 Initial Test Rig Design . 25 2.3 Examplesofcorrosion ...................... 26 2.4 ReactorCrossSectionandBed . 27 2.5 Reactor with Connections Labelled . 28 2.6 ReactorConnectionFittings . 29 2.7 Comparing Components Before and After the Reactor . 30 2.8 CEMandMFCs ......................... 31 2.9 FlowControllersandCEM. 32 2.10 ControlBoxforFlowControllersandCEM . 32 2.11 Pressure Regulating Valve ..................... 33 2.12 Pressure Valve Actuator ...................... 33 2.13 PressureTransducer . 34 2.14 CorrosionaroundtheValvePin . 34 2.15 Comparison of the Kvs values .................. 35 2.16 Surface of the Pin Seat Showing Black/Brown Condensate .... 35 2.17BrokenValvePin ......................... 35 2.18 HeatingCableusedforPressureValve . 36 2.19 Adaptor used to connect the Pressure Valve to the Swagelok ComponentsintherestoftheSystem. 36 2.20 OriginalControlBoxforOvenControl . 37 iv 2.21 LabviewScreenforOvenControl . 38 2.22CN616controller ......................... 38 2.23 Simplified Wiring Diagram of CN616 controller . 39 2.24 BrokenHeatingTapes . 40 2.25 ExampleofaHeatingCable . 40 2.26 HaakeEK20forCoolingMeI . 42 2.27 Julabo F12 used to Pump Cooling Water Around the System . 42 2.28 The Dead Space Previously Leading to the Reactor . 44 2.29 System After the Removal of The Dead Space . 44 2.30 Consender Containing Condensate from System . 46 2.31 Condenser from Above, Showing Inlet and Outlet to Condenser 46 2.32 BlockageoftheGCValve . 48 2.33 HPLC reading just after automatic shutdown . 49 2.34 The Final and Current Incarnation of the Test-Rig . 50 3.1 Configuration of the GC collums and valves . 52 3.2 TemperatureProfileofGCMethod . 56 4.1 TOF for the initial Experiment . 60 4.2 [Rh(CO)2I]2 dimer ........................ 61 4.3 [Rh(CO)2I]2 dimer under CO atmosphere . 61 4.4 FreshlypreparedSILPcatalysts . 61 4.5 FreshSILPinAir......................... 62 4.6 Discoloured SILP in Air . 62 4.7 [Rh(CO)2Cl]2 dimerStructure . 65 4.8 [Rh(CO)2Cl]2 dimerCrystals................... 65 5.1 (N-Methyl-N-phenylamino)Ph3PIDegradation. 77 · 5.2 Decomposition of RhCl3 xH2O ................. 78 5.3 Decomposition of [Rh(CO)2Cl]2 ................. 78 ◦ 5.4 Fresh sample of Ph3MePI at 250 Cfor20hours . 80 ◦ 5.5 Used sample of Ph3MePI at 250 Cfor20hours . 80 ◦ 5.6 15 vol% Ph3MeP I/ [Rh(CO)2Cl]2 Stability at 250 C over 2 hours................................ 81 ◦ 5.7 Degradation of Ph4PI at a heating rate of 1 C/minute . 81 5.8 SamplesusedforFT-IRStudy. 84 5.9 Spectra of CO stretching in mixed I/Cl systems . 85 5.10 The mixed chlorine/iodine complex formed . 86 5.11 LossofCOfromthecomplexovertime . 86 6.1 LabviewScreenforOvenControl . 89 6.2 PressureValveControlBox . 90 v 6.3 MeOHtankused ......................... 92 vi List of Tables 1.1 ComponentsofPyroligneousAcid . 4 1.2 Consumption of Acetaldehyde for the Production of Acetic Acid,2006............................. 8 1.3 Heterogeneous vs Homogeneous Catalysis . 19 3.1 Retention time of Compounds on the FID detector . 54 3.2 Retention time of compounds on the TCD detector . 54 3.3 OvenHeatingProgramme . 55 4.1 ResultsSummary ......................... 59 4.2 Comparison of published results and initial trials . 60 4.3 Catalyst Wetting Trials . 64 4.4 Variation of Rh loading . 64 4.5 Comparison of Iodide and Chloride Rhodium Precursors . 65 4.6 AlternativeRhodiumSources . 66 4.7 VariationofCationUsed . 68 4.8 AnionVariation.......................... 69 4.9 Rhodium vs. Iridium Catalysts . 70 4.10 Main Product Distribution over Presented Reactions . 71 5.1 SaltDegradationRanges . 77 5.2 RhComplexDegradtion .. .. 78 5.3 Decomposition of SILP with Varied IL Loadings . 79 5.4 LongTermTGAExperiments . 81 5.5 Eutectic Points of 0.5:0.5 Mole ratio salt combinations . 82 5.6 BETMeasurements........................ 83 5.7 MeasuredC=OStretches. 83 5.8 IRExperimentsperformed . 84 vii Aknowledgements All of the work carried out here was conducted at the Centre for Catalysis and Sustainable Chemistry (CSC), in the Department