Mechanistic Understanding of Methanol Carbonylation: Interfacing Homogeneous and Heterogeneous Catalysis Via Carbon Supported Irala

Total Page:16

File Type:pdf, Size:1020Kb

Mechanistic Understanding of Methanol Carbonylation: Interfacing Homogeneous and Heterogeneous Catalysis Via Carbon Supported Irala Journal of Catalysis 361 (2018) 414–422 Contents lists available at ScienceDirect Journal of Catalysis journal homepage: www.elsevier.com/locate/jcat Mechanistic understanding of methanol carbonylation: Interfacing homogeneous and heterogeneous catalysis via carbon supported IrALa Alyssa J.R. Hensley a, Jianghao Zhang a, Ilka Vinçon b, Xavier Pereira Hernandez a, Diana Tranca b, ⇑ ⇑ ⇑ Gotthard Seifert b, , Jean-Sabin McEwen a,c,d,e, , Yong Wang a,e, a The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, United States b Theoretical Chemistry, Technische Universität Dresden, Dresden 01062, Germany c Department of Physics and Astronomy, Washington State University, Pullman, WA 99164, United States d Department of Chemistry, Washington State University, Pullman, WA 99164, United States e Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99352, United States article info abstract Article history: The creation of heterogeneous analogs to homogeneous catalysts is of great importance to many indus- Received 17 July 2017 trial processes. Acetic acid synthesis via the carbonylation of methanol is one such process and it relies on Revised 21 February 2018 a difficult-to-separate homogeneous Ir-based catalyst. Using a combination of density functional theory Accepted 22 February 2018 (DFT) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, we determine Available online 5 April 2018 the structure and mechanism for methanol carbonylation over a promising single-site IrALa/C heteroge- neous catalyst replacement. Here, the Ir center is the active site with the acetyl-Ir complex being a rate Keywords: controlling intermediate. Furthermore, the La both atomically disperses the Ir and acts as a Lewis acid Single-site heterogeneous catalyst site. In fact, the La promoter in the IrALa/C catalyst was found to behave similarly to homogeneous pro- Methanol carbonylation IrALa complex moters by abstracting an iodine from the Ir center and accelerating the CO insertion step. Overall, this Promoter effects work provides key insight into the atomistic nature of the IrALa/C single-site catalyst and allows for Density functional theory the further design and optimization of single-site heterogeneous catalysts. Attenuated total reflectance-Fourier Ó 2018 Elsevier Inc. All rights reserved. transform infrared spectroscopy 1. Introduction the oxidative addition of iodomethane (MeI) to the reduced metal À center ([M(CO)2I2] ) and the migratory insertion of CO into the Single-site heterogeneous catalysts are a new class of materials methyl-metal bond followed by the reductive elimination of acetyl that interface the heterogeneous and homogeneous paradigms, iodide (AcI) as the product [10,19–21]. In our recent work, we combining the high activity and selectivity of homogeneous cata- reported a promising heterogeneous catalyst for the carbonylation lysts with the high separability of heterogeneous catalysts. Exam- of methanol based on Ir and a La promoter [11]. Characterization of ples of such catalysts include bimetallic surfaces with an this IrALa/C system showed that the catalyst was a molecular spe- atomically dispersed noble metal supported on a base metal or cies with distinct sites formed from two metal atoms [11], essen- oxide surface, as well as being exchanged into zeolites [1–9]. One tially creating a single-site catalyst on an activated carbon industrially homogeneous catalytic process currently without a support. Overall, the heterogeneous IrALa/C catalyst showed com- viable heterogeneous replacement [10–12] is the production of parable reactivity and selectivity to the analogous homogeneous acetic acid which is accomplished via the carbonylation of metha- catalyst [11]. Furthermore, using La as a promoter as opposed to nol through either the Monsanto process with an Rh catalyst Ru can also reduce the cost of the catalyst. Thus, the IrALa/C [10,13,14] or the Cativa process with an Ir catalyst with a Ru pro- heterogeneous catalyst is a promising alternative to the conven- moter [14–18]. The mechanism for the catalysis has the same tional homogeneous system for the carbonylation of methanol to major steps for both processes [14,15], with the key steps being acetic acid. Here, we establish the structure and methanol carbonylation mechanism of the heterogeneous IrALa/C catalyst using a combi- ⇑ Corresponding authors at: The Gene and Linda Voiland School of Chemical nation of density functional theory (DFT) and attenuated total Engineering and Bioengineering, Washington State University, Pullman, WA 99164, reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. United States (J.-S. McEwen and Y. Wang). Additionally, we have elucidated the role of the La promoter in E-mail addresses: [email protected] (G. Seifert), [email protected] (J.-S. McEwen), [email protected] (Y. Wang). the carbonylation reaction. Overall, this work shows that the https://doi.org/10.1016/j.jcat.2018.02.022 0021-9517/Ó 2018 Elsevier Inc. All rights reserved. A.J.R. Hensley et al. / Journal of Catalysis 361 (2018) 414–422 415 dispersion and activity of single-site heterogeneous catalysts can pffiffiffiffiffiffiffiffiffiffiffiffi p2ðÞp 3=2 be tuned via the choice of promoter (i.e. altering the promoter’s ¼ 8 2 kBT IAIBIC ð Þ qrot;nonÀlinear 3 4 oxygen affinity and electronegativity/Lewis acidity), thereby rh allowing for the greater design and optimization of heterogeneous catalysts for the carbonylation of methanol. À t = Y h i 2kBT ¼ e ð Þ qvib À t = 5 2. Methods and materials 1 À e h i kBT i 2.1. Density functional theory where m and P are the mass and partial pressure of the mole- cule of interest; Ilinear is the moment of inertia for a linear molecule; DFT calculations were carried out using the Vienna Ab Initio IA, IB, and IC are the principal moments of inertia of the molecule of r Simulation Package (VASP) [22–24]. The projector-augmented interest (non-linear case); is the symmetry number for the mole- m wave (PAW) method [25,26] with a plane-wave basis set and cule of interest; and i is the ith vibrational mode. All Gibbs ener- an energy cutoff of 450 eV were used. To model the electron gies were calculated at a temperature of 513 K, a total pressure of exchange and correlation, the Perdew-Burke-Ernzerhof (PBE) 17 bar, a CO concentration of 17.3 mol%, a MeI concentration of 1.8 functional [27] has been applied. Spin polarization has been mol%, and an AcI concentration of 1.8 mol%, consistent with the included in all calculations. The Gaussian smearing [28] method catalytic experiments performed in our previous work (see Supple- was used with a smearing width of 0.2 eV to improve conver- mentary Material for more details) [11]. gence, and the total energy was extrapolated to zero Kelvin. All For the surface calculations, a single layer carbon sheet was gas phase ground state optimizations used the conjugate gradi- simulated to represent the activated carbon support. The single ent method and were considered converged when the inter- layer sheet was found to be sufficient as only weak interactions atomic forces were smaller than 0.01 eV/Å, while surface exist between different layers of graphite and the influence of mul- relaxations were considered converged when the forces were less tiple graphene layers on adsorption energies is negligible [35]. Two than 0.025 eV/Å. The energy tolerance was set to 10À7 eV. Calcu- different adsorption sites have been modeled using VASP and are lations for molecules in the gas phase were performed using an shown in Fig. S1; a pristine graphene sheet to represent the basal 18 Â 19 Â 20 Å box, and one single k-point, the Gamma point, planes and an OH-passivated armchair-graphene nanoribon was sufficient to span the Brillouin zone. Ab Initio Molecular (AGNR-OH) to simulate an adsorption edge (Fig. S1). An optimized Dynamics (AIMD) simulations have been computed for a NVT lattice constant of 2.467 Å was found for graphene which is consis- ensemble at 513 K, which is the reaction temperature. As the tent with previous theoretical results [36,37]. The k-point mesh spin-polarized ground state optimizations resulted in a net zero was optimized and a (3 Â 3 Â 1) Monkhorst-Pack mesh [38] for magnetic moment for the complexes examined here, the AIMD the pristine graphene has been used. A vacuum slab of 20 Å was calculations were not spin polarized and the energy tolerance found to be sufficient to separate the layers. To simulate the gra- À5 Â was set to 10 eV. The transition states calculated here were phene sheet, a p(6 6) supercell was used, which consisted of 72 obtained using the Climbing Image Nudged Elastic Band (CINEB) atoms in the surface layer. These input parameters were necessary method [29]. The optimizations along the minimum energy path- in order to minimize the lateral interactions between adjacent ways (MEPs) were performed with the fast inertial relaxation metal complexes. A (1 Â 2 Â 3) Monkhorst-Pack mesh was applied engine (FIRE) optimizer with force and energy tolerances of for the p(5 Â 9) supercell used to model the AGNR-OH surface. The 0.05 eV/Å and 10À7 eV, respectively [30,31]. Each transition state edge-to-edge and layer-to-layer distance between AGNR-OH in the was found to have one imaginary vibrational mode along a given supercell is 13 Å and 17 Å, respectively. Binding energies for the reaction pathway [32]. adsorption of the IrALa complex were calculated as: In order to make a stronger connection between the theory and E ¼ E = À E À E ð6Þ experiment in this work, we calculated the Gibbs energy for our b IrLa C C IrLa tested methanol carbonylation reaction pathways using standard where EIrLa/C,EC, and EIrLa are the total energies of the adsorbed statistical mechanics principles [33].
Recommended publications
  • 4 Experimental
    Chapter 1 Introduction Introduction Chapter 1 1.1 Transition Metal Complexes as Homogeneous Catalysts A variety of transition metals and metal complexes act as catalysts for organic reactions. The use of transition metal complexes to catalyse organic reactions is one of the most important applications of organometallic chemistry and has been the driving force in the rapid development of this field since catalysts are crucial to the turnover and selectivity in many chemical syntheses.1* Organometallic complexes catalyse a wide range of reactions, both in nature and in industry. For example, the naturally occurring metalloenzymes are vital catalysts in many metabolic processes such as respiration and are crucial in the photosynthetic cycle. Transition metal catalysts are used industrially in the production of bulk materials, pharmaceuticals, agrochemicals, flavours and fragrances2 by technological application such as; the hydroformylation of alkenes, the oxidation of alkenes, hydrocyanation of butadiene, and hydrogenation (Scheme 1.1).3 Hydroformylation of Alkenes (Oxo Process) O O H C Co(I) or Rh(I) C R + H2 +CO R H + R * Oxidation of alkenes (Wacker Process) O Pd(II) + Cu(II) + 1 O H 2 2 Hydrocyanation of Butadiene Ni(0) CN + 2HCN NC Hydrogenation (Wilkinson’s Catalyst) [RhCl(PPh3)3] R + H2 R Scheme 0.1 * References begin on page 16. 1 Introduction Chapter 1 One of the most important examples of homogeneous catalysis is the carbonylation of methanol to produce acetic acid, in what is known as the Monsanto Process (Scheme 1.2). Acetic acid is used for different purposes in the industry such as producing vinegar, food preservatives, solvents and plastics.
    [Show full text]
  • Bimetallic Catalyst Catalyzed Carbonylation of Methanol to Acetic Acid
    materials Article Study on Rh(I)/Ru(III) Bimetallic Catalyst Catalyzed Carbonylation of Methanol to Acetic Acid Shasha Zhang 1, Wenxin Ji 1,2,*, Ning Feng 2, Liping Lan 1, Yuanyuan Li 1,2 and Yulong Ma 1,2 1 College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China; [email protected] (S.Z.); [email protected] (L.L.); [email protected] (Y.L.); [email protected] (Y.M.) 2 State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; [email protected] * Correspondence: [email protected]; Tel.: +86-135-1957-9989; Fax: +86-951-206-2323 Received: 13 July 2020; Accepted: 3 September 2020; Published: 11 September 2020 Abstract: In this study, a Rh(I)/Ru(III) catalyst with a bimetallic space structure was designed and synthesized. The interaction between the metals of the bimetallic catalyst and the structure of the bridged dimer can effectively reduce the steric hindrance effect and help speed up the reaction rate while ensuring the stability of the catalyst. X-ray photoelectron spectroscopy (XPS) results show that rhodium accepts electrons from chlorine, thereby increasing the electron-rich nature of rhodium and improving the catalytic activity. This promotes the nucleophilic reaction of the catalyst with methyl iodide and reduces the reaction energy barrier. The methanol carbonylation performance of the Rh/Ru catalyst was evaluated, and the results show that the conversion rate of methyl acetate and the yield of acetic acid are 96.0% under certain conditions. Furthermore, during the catalysis, no precipitate is formed and the amount of water is greatly reduced.
    [Show full text]
  • Advances in the Carbonylation of Aryl Halides Using Palladium Catalysts
    FIRST SOLVIAS SCIENCE DAY 684 CHIMIA 2001,55, No.9 Chimia 55 (2001) 684--687 © Schweizerische Chemische Gesellschaft ISSN 0009-4293 Advances in the Carbonylation of Aryl Halides Using Palladium Catalysts Matthias Bellera* and Adriano F. Indoleseb Abstract: The palladium-catalyzed carbonylation of aryl halides is shown to be a versatile tool for the synthesis of various benzoic and heteroaromatic acid derivatives. Recent developments from our laboratories in this area are presented. Keywords: Benzoic acid derivatives· Carbonylation . Homogeneous catalysis· Palladium Introduction From a general point of view the leav- Elegant work by researchers from ing group of the aryl-X derivative is for- Hoffmann-La Roche also demonstrated Palladium-catalyzed carbonylation reac- mally replaced by a nucleophile with in- the industrial applicability of such a reac- tions of aryl-X compounds leading to corporation of one or two molecules of tion in the commercial process for carboxylic acid derivatives were estab- CO (Scheme I). In addition to aryl-, hete- Lazabemide, a monamine oxidase B in- lished in the mid-seventies by the pio- ro-aryl-, vinyl-, allyl- und benzyl-X com- hibitor. In this process the aminocar- neering work of Heck and co-workers pounds can also serve as starting materi- bonylation of the commercially available [1]. Since that time these reactions have als in these carbonylations [2]. Two ex- 2,5-dichloropyridine with ethylenedi- found a number of applications in organ- amples for carbonylation reactions of ben- amine is performed with a Pd/dppp cata- ic synthesis, and even some industrial zyl-X applied on an industrial scale for lyst with comparably high catalyst pro- processes (see below) have been realized.
    [Show full text]
  • 39 Transition Metal Ketenes Laura M. Babcock Literature Seminar March 19, 1985 the Mechanism of Fischer-Tropsch Catalysis Is
    39 Transition Metal Ketenes Laura M. Babcock Literature Seminar March 19, 1985 The mechanism of Fischer-Tropsch catalysis is presently believed to pro­ ceed via reactions involving methylene species on metal surfaces [1]. Muetterties, Herrmann, and Katzer [2] have suggested that carbonyl carbene coupling to form an intermediate ketene complex is one reaction path which could lead to oxygen-containing products. Support for these ketene inter­ mediates arises from the ever increasing number of isolable, transition metal ketene complexes and their subsequent reactivity. Transition metal ketenes have been observed in several different bonding arrangements. C ,0 and C ,C 'TT-bonding to one or two metal centers have been reported. Terminal, MRC~C=O, and µ cluster bridged ketene complexes are 3 also known. There are three primary methods for synthesizing transition metal ketenes. Substitution reactions bind a ketene to the metal center by displacement of a weakly Mund ligand [ 3]. Dehydrohalogena tion, a general synthetic route to ketene complexes of zr ·and Ti, involves proton abstraction from the acyl~halo complex followed by displacement of the halogen by the ketene oxygen [4]. Insertion of a carbonyl into the metal carbon bond of a methylene ligand is, however, the most common method for preparing metal ketenes [5]. CO insertion into other alkylidenes and alkylidynes has been observed as well, Fig. 1. L3bellng and reactivity studies on several systems 0s(C0)4 a . /~ . (CO).,ps 0s(C014 \ c-cI H2 'o Fig. 1 2 PMe3 _ e"'-t,,,_h=-=e_,__r__ b. 40°C indicate that both internal c~rbene-carbonyl coupling [5b,c,6] and insertion of external carbon monoxide [7] are possible pathways for the formation of metal ketenes.
    [Show full text]
  • ACETIC ACID and ACETIC ANHYDRIDE (November 1994)
    Abstract Process Economics Program Report 37B ACETIC ACID AND ACETIC ANHYDRIDE (November 1994) This Report presents preliminary process designs and estimated economics for the manufacture of acetic acid and acetic anhydride by carbonylation technology. The three processes evaluated in this report include Monsanto’s low pressure carbonylation of methanol process (BP Chemical acquired licensing rights to this process in 1985), Eastman’s process for carbonylation of methyl acetate to produce acetic anhydride (methanol added to the reaction mixture results in the coproduction of acetic acid in this process), and a process based on BP Chemical patents that coproduces acetic acid and acetic anhydride via carbonylation of methyl acetate in the presence of water. Both the Eastman and BP Chemical processes are back– integrated into the manufacture of the methyl acetate feedstock from methanol and acetic acid. We have included a discussion of other commercialized acetic acid and acetic anhydride processes as well as potential new processes. A list of the world’s acetic acid and acetic anhydride producers along with their estimated plant capacities and a description of the major acetic acid and acetic anhydride markets are also included in this Report. This Report will be useful to producers of acetic acid and acetic anhydride, as well as to producers of methanol and downstream products such as vinyl acetate monomer. PEP’93 MKG CONTENTS 1 INTRODUCTION 1-1 2 SUMMARY 2-1 GENERAL ASPECTS 2-1 ECONOMIC ASPECTS 2-1 TECHNICAL ASPECTS 2-3 Low Pressure Carbonylation
    [Show full text]
  • Development and Application of New Solid-Supported Bis (Oxazolines) In
    Development and Application of New Solid-Supported Bis(oxazolines) in the Area of Asymmetric Catalysis INAUGURALDISSERTATION zur Erlangung des Doktorgrades der Fakultät für Chemie, Pharmazie und Geowissenschaften der Albert-Ludwigs-Universität Freiburg im Breisgau vorgelegt von Claudia Stork aus Freiburg April 2009 Die vorliegende Arbeit wurde am Institut für Organische Chemie und Biochemie der Albert- Ludwigs-Universität Freiburg in der Zeit von Mai 2006 bis April 2009 im Arbeitskreis von Herrn Prof. Dr. W. Bannwarth angefertigt. Vorsitzender des Promotionsausschusses: Prof. Dr. R. Schubert Referent: Prof. Dr. W. Bannwarth Koreferent: Prof. Dr. Ch. Janiak Datum der Promotion: 05.11.2009 Danksagung Herrn Prof. Dr. Bannwarth danke ich für die interessante Aufgabenstellung, die gewährten Freiheiten bei der Ausgestaltung des Themas sowie die großzügige Unterstützung. DSM danke ich für die finanzielle Unterstützung der vorliegenden Arbeit. Herrn Prof. Dr. Bonrath (DSM) möchte ich für die wertvollen Diskussionen und die gute Zusammenarbeit danken. Für die freundliche Übernahme des Koreferats danke ich Herrn Prof. Dr. Janiak. Allen ehemaligen und gegenwärtigen Mitarbeitern unserer Arbeitsgruppe danke ich für die ständige Diskussionsbereitschaft, die angenehme Arbeitsatmosphäre und die Hilfsbereitschaft. Namentlich genannt seinen dabei vor allem: Dominik Altevogt, Luigi Rumi, Rolf Kramer und Hartmut Rapp. Für das sorgfältige Korrekturlesen dieser Arbeit danke ich Jan-Frederik Blank, Luigi Rumi und Dominik Altevogt. Bei Fr. Hirth-Walter bedanke ich mich für die Durchführung der AAS-Messungen. Herrn Dr. Harald Scherer danke ich für die Aufnahme der HR-MAS-NMR Spektren. Selbstverständlich sei auch allen Mitgliedern der Service-Abteilungen gedankt. Besonders hervorheben möchte ich Herrn Fehrenbach für die zahlreichen HPLC-Messungen. Mein größter Dank geht jedoch an meine Familie und Jan-Frederik für ihre Geduld und ihre moralische Unterstützung.
    [Show full text]
  • Organometallic and Catalysis
    ORGANOMETALLIC AND CATALYSIS Dr. Malay Dolai, Assistant Professor, Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur-721404, WB, India. 1.Introduction Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkaline, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and tin, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide (metal carbonyls), cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. In 1827, Zeise's salt is the first platinum- olefin complex: K[PtCl3(C2H4)].H2O, the first invented organometallic compound. Organometallic compounds find wide use in commercial reactions, both as homogeneous catalysis and as stoichiometric reagents For instance, organolithium, organomagnesium, and organoaluminium compounds, examples of which are highly basic and highly reducing, are useful stoichiometrically, but also catalyze many polymerization reactions. Almost all processes involving carbon monoxide rely on catalysts, notable examples being described as carbonylations. The production of acetic acid from methanol and carbon monoxide is catalyzed via metal carbonyl complexes in the Monsanto process and Cativa process. Most synthetic aldehydes are produced via hydroformylation. The bulk of the synthetic alcohols, at least those larger than ethanol, are produced by hydrogenation of hydroformylation- derived aldehydes.
    [Show full text]
  • Organometallic Chemistry Chemistry
    OrganometallicOrganometallic Chemistry Chemistry Worawan Bhanthumnavin Department of Chemistry Chulalongkorn University Bangkok 10330, Thailand Given as part of the 6th semester organic chemistry course at the University of Regensburg (May 2008) Under the ASEM-DUO Thailand 2007 exchange program organoboron, organosilicon Organoboron compounds • Revise: what organoboron have you seen before? boranes Organoboron compounds • vast array of C-C-forming reactions involving organoborons • Here: focus on transfer reactions of C moieties from boron to an adjacent C. Examples: transfer of CO, CN, carbanions derived from dichloromethyl methyl ether and dichloromethane, and allyl groups in reactions of allylic boranes with aldehydes. Preparations Reaction of Organoborons Carbonylation • reaction of organoboranes with carbon monoxide [(–):C≡O:(+) ], which is an ylide, gives rise to 3 possible rearrangements. • Depending on reaction conditions, single, double, and triple migrations of groups may occur leading, after appropriate workup, to a variety of aldehydes and ketones as well as primary, secondary, and tertiary alcohols. Reaction of Organoborons Carbonylation Synthesis of Aldehydes and Primary Alcohols • Addition of CO to trialkylboranes leads to the formation of an ate-complex (structure A). Subsequent migration of an R group to the CO ligand yields intermediate B. In the presence of a mild reducing agent, such as lithium trimethoxyaluminum hydride or potassium triisopropoxyborohydride, B is converted to the mono-migration product C. Reaction of Organoborons Carbonylation Synthesis of Aldehydes and Primary Alcohols • Oxidation (H2O2) of C furnishes the corresponding aldehyde. On the other hand, treatment of C with LiAlH4 followed by oxidative workup produces the primary alcohol. Reaction of Organoborons Carbonylation Synthesis of Aldehydes and Primary Alcohols • To maximize utilization of valuable alkyl groups, alkenes used for the transfer reaction are hydroborated with 9-BBN.
    [Show full text]
  • Metal Carbonyls
    MODULE 1: METAL CARBONYLS Key words: Carbon monoxide; transition metal complexes; ligand substitution reactions; mononuclear carbonyls; dinuclear carbonyls; polynuclear carbonyls; catalytic activity; Monsanto process; Collman’s reagent; effective atomic number; 18-electron rule V. D. Bhatt / Selected topics in coordination chemistry / 2 MODULE 1: METAL CARBONYLS LECTURE #1 1. INTRODUCTION: Justus von Liebig attempted initial experiments on reaction of carbon monoxide with metals in 1834. However, it was demonstrated later that the compound he claimed to be potassium carbonyl was not a metal carbonyl at all. After the synthesis of [PtCl2(CO)2] and [PtCl2(CO)]2 reported by Schutzenberger (1868) followed by [Ni(CO)4] reported by Mond et al (1890), Hieber prepared numerous compounds containing metal and carbon monoxide. Compounds having at least one bond between carbon and metal are known as organometallic compounds. Metal carbonyls are the transition metal complexes of carbon monoxide containing metal-carbon bond. Lone pair of electrons are available on both carbon and oxygen atoms of carbon monoxide ligand. However, as the carbon atoms donate electrons to the metal, these complexes are named as carbonyls. A variety of such complexes such as mono nuclear, poly nuclear, homoleptic and mixed ligand are known. These compounds are widely studied due to industrial importance, catalytic properties and structural interest. V. D. Bhatt / Selected topics in coordination chemistry / 3 Carbon monoxide is one of the most important π- acceptor ligand. Because of its π- acidity, carbon monoxide can stabilize zero formal oxidation state of metals in carbonyl complexes. 2. SYNTHESIS OF METAL CARBONYLS Following are some of the general methods of preparation of metal carbonyls.
    [Show full text]
  • An Investigation on the Effects of Iodide Salts in Iridium Catalyst in Methanol Carbonylation Process
    Archive of SID An investigation on the effects of iodide salts in iridium catalyst in methanol carbonylation process M.T. Ashtiany, A.M. Rezaee and M.R. Jafari Nasr* Petrochemical Research & Technology Company (NPC-RT), Tehran, Iran Recieved: May 2010; Revised: July 2010; Accepted: August 2010 Abstract: In this study, iodide salts and carbonyl complexes of specific metals used as promoters in carbonylation of methanol in iridium/iodide based catalyst. The iridium catalyzed carbonylation of methanol to acetic acid is promoted by two distinct classes of promoters; simple iodide salts of zinc, cadmium, mercury, indium and gallium and carbonyl or halocarbonyl complexes of tungsten, rhenium, osmium and ruthenium. All of these promoters are led to increase the rate of methanol carbonylation. In this experimental research, it has been observed that the effect of ruthenium promoter in rate of methanol carbonylation and high reaction rate is achieved by increasing the ruthenium concentration. The experimental tests are carried out to identify the effect of different promoters. In the presence of ruthenium and iridium, it has been observed that the maximum activity is achieved between 5 to 6 weight percent of water concentration. Keywords: Methanol carbonylation, Iridium, Promoter, Iodide salt. Introduction at 250°C and 680 bar pressure [2-3]. Monsanto dis- The global annual production capacity of acetic acid covered rhodium based catalyst for carbonylation in 2004 was about 9.3 million tones. The main uses for of methanol under relatively mild conditions rather acetic acid are in production of vinyl acetate (VAM), than previous method, 250°C operating temperature solvents in the manufacturing of the terephthalic and 680 bar pressure, and commercialized its process anhydride, acetic anhydride which mainly used to at Texas City in 1970 [4-5].
    [Show full text]
  • Carbonylation Process
    turopaiscnes patentamt European Patent Office © Publication number: 0 279 477 Office europeen des brevets A1 EUROPEAN PATENT APPLICATION Application number: 88200128.2 C07C © Int. CI.4: 67/38 , C07C- 69/24 © Date of filing: 26.01.88 © Priority: 29.01.87 GB 8701966 © Applicant: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. © Date of publication of application: Carel van Bylandtlaan 30 24.08.88 Bulletin 88/34 NL-2596 HR Den Haag(NL) © Designated Contracting States: © Inventor: Petrus, Leonardus BE DE ES FR GB IT NL Badhuisweg 3 NL-1031 CM Amsterdam(NL) © Representative: Aalbers, Onno et al P.O. Box 302 NL-2501 CH The Hague(NL) gy Carbonylation process. 57) A continuous process for the carbonylation of an alkene or an alkyne which comprises reacting an alkene or an alkyne with carbon monoxide and a hydroxyl group containing compound in the presence of a catalytic system comprising a) palladium or a palladium compound, b) a ligand and c) an acid wherein the ligand and the acid are added each to the reaction either continuously or intermittently. 3. S s 7) s N D L U erox uopy Centre i 279 477 CARBONYLATION PROCESS The present invention relates to a continuous process for the carbonylation of an alkene or an alkyne. carbon Carbonylation processes are well known processes in the art, e.g. it is known that ethylene, monoxide and methanol react to obtain methyl propionate. A number of catalyst systems are at present known which promote the carbonylation reaction. It is 5 known that Group VIII noble metals (e.g.
    [Show full text]
  • We Can Now Define a Ligand As Any Molecule Or Ion That Has at Least
    Chapter 2 General Aspects of Carbonylation Catalysis 2.1 Introduction: A chance observation by Ludwig Mond in 1884 led to an important advance in the nickel refining industry. When he found his nickel valves were being eaten away by CO, he deliberately heated Ni powder in a stream of CO to form a volatile compound, Ni(CO)4, the first known metal carbonyl. The Mond refining process was based on the fact that the carbonyl can be decomposed to give pure nickel by further heating, see Figure 2.1. Lord Kelvin was so impressed by this result that he remarked that Mond ‘gave wings to nickel’. OC CO ∆ ∆ Ni + 4CO Ni Ni + 4CO Ore OC CO Pure Figure 2.1 Mond process to refine nickel ore. The development of organometallic chemistry has over the past years gained impetus, arising from the ability of transition metals to catalyse various kinds of organic transformations1. Since 1938 when Otto Roelen discovered the oxo synthesis2,3, work in the area of homogeneous catalysis has increased greatly due in part to work done by Adkins and Krsek4, Storch et al.5, Berty and Marko6 and Natta7. 1 B. Douglas, D.H. McDaniel, J.J. Alexander, “Concepts and Models of Inorganic Chemistry”, 2nd Ed., John Wiley & Sons, New York, 1983. 2 O. Roelen, ChED Chem. Exp. Didakt., 3, 1977, 119. 3 (a) B. Cornils, W.A. Herrmann, M. Rasch, Angew. Chem., 106, 1994, 2219. (b) B. Cornils, W.A. Herrmann, M. Rasch, Angew. Chem., Int. Ed. Engl., 33, 1994, 2144. 4 H. Adkins, G. Krsek, J.
    [Show full text]