Development and Integration of New Processes Consuming Carbon Dioxide in Multi-Plant Chemical Production Complexes
Total Page:16
File Type:pdf, Size:1020Kb
DEVELOPMENT AND INTEGRATION OF NEW PROCESSES CONSUMING CARBON DIOXIDE IN MULTI-PLANT CHEMICAL PRODUCTION COMPLEXES A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering in The Department of Chemical Engineering by Sudheer Indala B.Tech., Andhra University, India, 2001 May, 2004 ACKNOWLEDGEMENTS I would like, first, to express my deepest appreciation for the technical guidance and support given by my research advisor, Professor Ralph W. Pike. His continuous suggestions and feedback will always be remembered. Needless to say, his belief in me made this work possible. I would like to thank Dr. Armando B. Corripio and Dr. F. Carl Knopf for being a part of my examination committee. I would like to specially thank Dr. Armando B. Corripio without whose valuable suggestions I would still be toiling trying to solve some complex simulations. I would like to dedicate this work to my parents for their continuous guidance, encouragement, prayers, love and support throughout my life. I would like to thank Dr. Ralph W. Pike, and The Department of Chemical Engineering for providing financial support to me throughout my stay at LSU. I would like to thank Aimin Xu, my colleague and a Ph.D. student, for all the helpful discussions and suggestions. There are countless other people whose names and faces pass through my mind as I ruminate about this period at LSU. So, I would have to include all of them saying that it was really a pleasure knowing them and that aspect, as much as anything else, made this whole journey worthwhile. ii TABLE OF CONTENTS Acknowledgements…………………………………………………….………… ii List of Tables…………………………………………………………………….. vi List of Figures…………………………………………………………….……… x Abstract…………………………………………………………………………... xiii Chapter One. Introduction……………………………………………………... 1 A. Overview of Chemical Production Complexes………………………………. 2 1.Total Cost Accounting……………………………………………………... 3 B. Greenhouse Effect and Climate Change……………………………………… 4 1. Estimation of Greenhouse Gas Emissions………………………………… 6 2. Greenhouse Gas Emissions……………………………………………….. 8 C. Carbon Dioxide – A Greenhouse Gas………………………………………... 9 1. Sources of CO2 Emissions………………………………………………… 9 D. CO2 Conversion and Utilization……………………………………………… 13 1. Potential for CO2 Utilization………………………………………………. 16 2. Challenges for CO2 Utilization……………………………………………. 16 3. Research Strategies for CO2 Utilization…………………………………… 18 a. Developing New Alternate Processes…………………………………… 19 b. Increasing the Commercial Applications of Products from CO2……….. 20 c. Effective CO2 Sequestration……………………………………………... 20 d. Replacement of Hazardous Substances………………………………….. 21 e. Other Areas of CO2 Utilization………………………………………….. 22 E. Chemical Complexes Around the World……………………………………... 22 F. Sustainable Development…………………………………………………….. 25 1. Achieving Sustainable Development……………………………………… 26 2. Sustainable Development and Responsible Care………………………….. 28 G. Summary……………………………………………………………………... 30 Chapter Two. Literature Review……………………………………………….. 32 A. Carbon Dioxide as a Raw Material…………………………………………... 32 B. Properties of Carbon Dioxide………………………………………………… 32 C. Reactivity of Carbon Dioxide………………………………………………… 33 D. Current Uses of Carbon Dioxide……………………………………………... 35 E. Reactions of Carbon Dioxide………………………………………………… 36 F. Chemical Complex and Cogeneration Analysis System……………………... 49 G. Summary……………………………………………………………………... 52 Chapter Three. Selection of New Processes……………….…………………… 54 A. Propylene…………………………………………………………………….. 58 B. Methanol……………………………………………………………………… 63 C. Ethanol………………………………………………………………………... 78 iii D. Dimethyl Ether……………………………………………………………….. 88 E. Formic Acid…………………………………………………………………... 92 F. Acetic Acid…………………………………………………………………… 96 G. Styrene……………………………………………………………………….. 100 H. Methylamines………………………………………………………………… 105 I. Lower Hydrocarbons………………………………………………………….. 107 J. Formaldehyde…………………………………………………………………. 117 K. Graphite………………………………………………………………………. 119 L. Hydrogen……………………………………………………………………... 122 M. Other Reactions……………………………………………………………… 129 N. Summary……………………………………………………………………... 130 Chapter Four. Results from Evaluating New Processes………………………. 132 A. Economic Analysis…………………………………………………………… 132 B. HYSYS Simulations………………………………………………………….. 133 C. Propylene Production………………………………………………………… 135 1. Propylene from Propane and CO2…………………………………………. 135 2. Propylene from Propane Dehydrogenation………………………………... 137 D. Methanol Production…………………………………………………………. 140 1. Methanol from CO2 Hydrogenation over Cu(100) Catalyst………………. 140 2. Methanol from CO2 Hydrogenation over Cu - Zr Catalyst………………... 142 3. Methanol from CO2 Hydrogenation over Cu/ZnO/ZrO2/Al2O3/Ga2O3 Catalyst………………………………………………………………………. 145 4. Methanol from Hydrogenation over Cu/ZnO/Cr2O3 and CuNaY Zeolite Catalyst………………………………………………………………………. 148 5. Methanol from Hydrogenation over Pd/SiO2 Catalyst……………………. 150 6. Summary of Methanol Processes………………………………………….. 153 E. Ethanol Production…………………………………………………………… 153 1. Ethanol from CO2 Hydrogenation over Cu-Zn-Fe-K catalyst…………….. 154 2. Ethanol from CO2 Hydrogenation over K/Cu-Zn-Fe-Cr oxide catalyst…... 156 3. Comparison of Ethanol Processes…………………………………………. 159 F. Dimethyl Ether Production…………………………………………………… 159 1. Dimethyl Ether from CO2 Hydrogenation………………………………… 159 G. Formic Acid Production……………………………………………………… 162 1. Formic Acid from CO2 Hydrogenation……………………………………. 162 H. Acetic Acid Synthesis………………………………………………………... 164 1. Acetic Acid from Methane and CO2………………………………………. 165 I. Styrene Production…………………………………………………………….. 167 1. Styrene from Dehydrogenation over Vanadium Catalyst…………………. 167 2. Styrene from Dehydrogenation over Fe/Ca/Al oxides Catalyst…………… 169 3. Comparison of Styrene Plants……………………………………………... 172 J. Methylamines Production……………………………………………………... 172 1. Methylamines from CO2, H2 and NH3 over Cu/Al2O3 catalyst……………. 172 K. Graphite Production………………………………………………………….. 175 1. Graphite from Catalytic Fixation………………………………………….. 175 L. Production of Synthesis Gas………………………………………………….. 177 iv 1. Synthesis Gas Production by CO2 Reforming of CH4 over Ni/Al2O3 Catalyst………………………………………………………………………. 178 2. Synthesis Gas Production by CO2 Reforming of CH4 over Alumina Catalyst………………………………………………………………………. 180 3. Synthesis Gas Production over ZrO2 catalyst……………………………… 182 4. Synthesis Gas Production over Nickel-Magnesia catalyst………………… 185 5. Comparison of Synthesis Gas Plants……………………………………… 187 M. Comparison with Other, New CO2 Processes……………………………….. 188 N. Summary……………………………………………………………………... 190 Chapter Five. Results from Integrating New Processes in the Chemical Complex…………………………………………………………. 192 A. Application of Chemical Complex and Cogeneration Analysis System…….. 192 B. Case Study One – Optimal Configuration of Plants………………………….. 202 C. Case Study Two – Consuming All of the CO2 from Ammonia Plant………... 207 D. Case Study Three – Consuming All of the CO2 from Ammonia Plant Operating at Full Production Capacity………………………………………. 211 E. Summary 216 Chapter Six. Conclusions and Suggestions for Future Research…………….. 219 A. Conclusions…………………………………………………………………... 219 B. Suggestions for Future Research……………………………………………... 221 References ……………………………………………………………………….. 223 Appendix A. Cost Estimation Procedure for Carbon Monoxide……………... 234 Appendix B. Cost Estimation Procedure for Hydrogen………………………. 235 Appendix C. Procedure for Value Added Economic Analysis for a Process… 236 Appendix D. Stream Flow Rates Among Plants in the Chemical Complex…. 240 Vita……………………………………………………………………………… 248 v LIST OF TABLES 1.1: Global atmospheric concentration (ppm unless otherwise specified) and rate of concentration change (ppb/year) of selected greenhouse gases………………… 8 1.2: Global Warming Potentials (GWP) and Atmospheric Lifetimes (Years) of various greenhouse gases……………………………………………………….. 8 1.3: U.S. Greenhouse gas emissions from 1990 – 2001……………………………... 9 1.4: Sources of CO2 Emissions……………………………………………………… 10 1.5: World Carbon Dioxide Emissions from the Consumption and Flaring of Fossil Fuels in 1999 (Unit: Million Metric Tons Carbon Equivalent)………………… 11 1.6: U.S. CO2 Gas Emissions and Sinks from 1990 to 2000 (Tg CO2 Eq)…………. 11 1.7: U.S. CO2 emissions from different sectors (million metric tons of carbon equivalent)……………………………………………………………………… 12 1.8: CO2 Emissions and Utilization (Million Metric Tons Carbon Equivalent/Year). 15 1.9: Major Chemical Complexes around the world…………………………………. 24 1.10: Greenhouse gas emissions reduction targets of some U.S. companies………... 28 2.1: Physical and Chemical Properties of Carbon Dioxide………………………….. 33 2.2: Chemical Synthesis from CO2 from Various Sources…………………………... 36 2.3: Catalytic Reactions of Carbon Dioxide from Various Sources………………… 39 3.1: Potential Energy Savings through Improved Catalysts…………………………. 56 3.2: Distribution of Products among Total Hydrocarbons Produced………………... 110 3.3: Potentially New Processes Selected for HYSYS Simulation…………………... 131 4.1: Economic Results for the HYSYS Simulated Propylene Production Process described by Takahara, et al., 1998…………………………………………….. 137 4.2: Economic Results for the HYSYS Simulated Propylene Production Process described in C & EN, June 2003, p.15………………………………………….. 138 4.3: Economic Results for the HYSYS Simulated Methanol Production Process by vi Nerlov and Chokendorff, 1999…………………………………………………. 142 4.4: Economic Results for the HYSYS