Organotransition Metal Chemistry : from Bonding to Catalysis
Total Page:16
File Type:pdf, Size:1020Kb
Organotransition Metal Chemistry From Bonding to Catalysis John R Hartwig UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN University Science Books Mill Valley, California Contents Chapter 1. Structure and Bonding 1 2.2.2. Types of Metal Carbonyl Complexes 28 1.1. General Properties of the Ligands 1 2.2.3. Models for CO Binding: Introduction of 1.1.1. Classification of Ligands as Dative or Covalent, Backbonding 29 Neutral or Anionic, Even- or Odd-Electron, 2.2.4. Evidence for Backbonding in Terminal L-Type or X-Type 1 Carbonyls 30 1.1.2. Classification by Number of Electrons Donated 2.2.5. Infrared and X-Ray Diffraction Data for to the Metal 3 Complexes with Bridging Carbonyls 31 1.1.3. n-Bonded Ligands 4 2.2.6. Thermodynamics of the M-CO Bond 31 2.2.7. Isoelectronic CO: and 1.1.4. Combinations of <r- and ir-Donors 5 Analogs of Isocyanides 1.1.5. Cationic Ligands 6 Thiocarbonyls 32 1.2. Properties of the Metal 6 2.3. Dative Phosphorus Ligands and Heavier 1.2.1. Oxidation State 6 Congeners 33 1.2.2. The Relationship Between Oxidation State and 2.3.1. Tertiary Phosphines and Related Ligands 33 the Number of d-Electrons 7 2.3.2. Chelating Phosphines 34 1.2.3. Trends in the Properties of Transition Metals 8 2.3.3. Properties of Free Phosphines 35 1.2.3.1. Trends in Ionization Potentials 8 2.3.4. Properties of Phosphine Complexes 36 1.2.3.2. Trends in Size 9 2.3.4.1. Bonding and Electronic Properties 36 1.2.3.3. Trends in Bond Strengths 9 2.3.4.2. Steric Properties 38 1.3. Metal-Ligand Complexes 10 2.3.4.3. Effects of Phosphine Steric and Electronic 1.3.1. Electron Counting 10 Properties on Structure and Reactivity 39 1.3.2. The 18-Electron Rule 13 2.3.5. Pathways for the Decomposition of Phosphorus 1.3.3. Metal-Metal Bonding and Electron Counting in Ligands 39 Polynuclear Complexes 13 2.3.6. NMR Spectroscopic Properties of 1.3.4. Geometries of Transition Metal Complexes 14 Phosphines 40 1.3.5. Isoelectronic and Isolobal Analogies 15 2.3.7. Heavier Congeners of Phosphorus Ligands 41 1.3.6. Molecular Orbitals for Transition Metal 2.4. Carbenes 41 Complexes 17 2.4.1. Classes of Free and Coordinated Carbenes 41 1.3.7. u-Bonding in Organotransition Metal 2.4.1.1. Properties of Free Carbenes 41 Complexes 19 2.4.1.2. Properties of Carbene Complexes 41 1.3.7.1. TT-Bonding of CO and its Analogs 19 2.4.2. Bonding of Carbenes 44 1.3.7.2. Tr-Bonding of Carbene and Carbyne 2.4.3. Spectroscopic Characteristics of Carbene Complexes 20 Complexes 45 1.3.7.3. n:-Bonding in Olefin Complexes 21 2.5. Transition Metal Carbyne Complexes 45 1.3.7.4. Tr-Bonding with Other Unsaturated Ligands 22 2.5.1. Bonding and Structure of Carbyne 1.3.8. ir-Donor Ligands 22 Complexes 45 References and Notes 26 2.5.2. Spectroscopic Characteristics of Carbyne Complexes 46 Chapter 2. Dative Ligands 27 2.6. Organic Ligands Bound Through More than 2.1. Introduction 27 One Atom 47 2.2. Carbon Monoxide and Related Ligands 27 2.6.1. Olefin Complexes 47 47 2.2.1. Properties of Free Carbon Monoxide 27 2.6.1.1. Stability ofMetal-Olefin Complexes vii viii CONTENTS 2.6.1.2. Structures of Metal-Olefin Complexes 49 3.2.1.3.2. Synthesis of Alkyl Complexes by 2.6.1.2.1. Structural Changes Upon Binding 49 Alkylation 88 2.6.1.2.2. Orientation of Coordinated 3.2.1.3.3. Synthesis of Alkyl Complexes by Olefins 49 Other Methods 89 2.6.1.3. Spectral Properties of Metal-Olefin 3.2.1.4. Selected Reactions of Metal-Alkyl Complexes 90 Complexes 51 3.2.2. Aryl, Vinyl, and Alkynyl Complexes (Written 2.6.2. Alkyne Complexes 51 with Prof. Jack R. Norton) 92 2.6.2.2. Structural Characteristics of Alkyne 3.2.2.2. Synthesis of Complexes Containing Terminal Complexes 51 Aryl Ligands 92 2,6.2.2. Physical and Chemical Properties of Alkyne 3.2.2.2. Complexes with Bridging Aryl Ligands 94 Ligands 52 3.2.2.3. Properties of Metal-Aryl Complexes 95 2.6.3. Complexes of Organic Carbonyl 3.2.3. Vinyl Complexes (Written with Prof. Jack R. Compounds 53 Norton) 96 2.6.4. Ti6-Arene and Related Complexes 53 3.2.4. Alkynyl Complexes 97 2.7. Complexes of Ligands Bound Through N,0 and S 57 3.3. Enolate Complexes (Written with 2.7.1. Neutral Nitrogen Donor Ligands 57 Prof. Erik J. Alexanian) 98 2.7.1.1. Amine Complexes 57 3.3.1. Overview 98 2.7.1.2. Pyridine and Imine Complexes 58 3.3.2. Structure of Enolate Complexes 98 2.7.1.3. Dinitrogen Complexes 59 3.3.3. Spectral Features of Enolate 2.7.1.4. Complexes of Neutral Oxygen Donors 62 Complexes 100 2.7.1.5. Complexes of Neutral Sulfur Donors 63 3.3.4. Synthesis of Enolate Complexes 101 2.8. Sigma Complexes 64 3.4. Cyanide Complexes (Written with 2.8.1. Overview of Sigma Complexes 64 Prof. Jesse W. Tye) 102 2.8.2. Dihydrogen Complexes 66 3.4.1. Overview 102 2.8.2.1. Properties that Lead to Stable H2 Complexes 67 3.4.2. Properties of the Free Molecule 102 2.8.2.2. Spectroscopic Signatures ofH2 Complexes 67 3.4.3. Structures and Electron Counting of Metal- 2.8.2.3. Reactivity cfH2 Complexes 68 Cyanide Complexes 102 2.8.3. Alkane and Silane Complexes 70 3.4.4. Thermodynamics of M-CN Linkages 102 2.8.3.1. Stability Relative to Hz Complexes 70 3.4.5. Spectral Features of M-CN Complexes 103 2.8.3.2. Evidence for Alkane Complexes 70 3.4.6. Synthesis of CN~ Complexes 103 2.8.3.3. Intramolecular Coordination ofAliphatic C-H 3.5. Allyl, T|3-Benzyl, Pentadienyl, and Bonds (Agostic Interactions) 71 Trimethylenemethane Ligands (Written with References and Notes 73 Dr. Mark J. Pouy) 104 3.5.1. Allyl Ligands 104 Chapter 3. Covalent (X-Type) Ligands Bound Through 3.5.2.2. Overview 104 Metal-Carbon and Metal-Hydrogen Bonds 85 3.5.1.2. Structures of Allyl Ligands 104 3.1. Introduction 85 3.5.1.3. Dynamics of Metal-Allyl Complexes 106 3.2. Transition Metal Hydrocarbyl Ligands 85 3.5.1.4. Synthesis of tt-Allyl Complexes 107 3.2.1. Alkyl Ligands (Written with Prof. Jack R. 3.5.1.5. Reactions of Allyl Complexes 108 Norton) 86 3.5.2. r,3-Benzyl Complexes 108 3.2.2.2. History of Transition Metal-Alkyl 3.5.3. Higher Anionic ir-Ligands 109 Complexes 86 3.5.4. ^-Trimethylenemethane (TMM) Complexes 110 3.2.1.2. Thermodynamic Properties ofM-Alkyl 3.6. Cyclopentadienyl and Related Compounds Bonds 86 (Written with Prof. Jack R. Norton) 111 3.2.2.3. Synthesis of Metal-Alkyl Complexes 87 3.6.1. Overview 111 3.2.1.3.1. Synthesis of Alkyl Complexes by 3.6.2. Bonding and Thermodynamics of Cp Transmetallation 87 Ligands 111 CONTENTS ix 3.6.3. Synthesis of Ti5-Cyclopentadienyl 4.2.1.1.3. Thermodynamic Properties of Complexes 111 Late-Metal-Amido Complexes 149 3.6.4. Examples of Substituted Cyclopentadienyl 4.2.1.1.4. Spectral Properties of Late-Metal- Ligands 112 Amido Complexes 150 3.7. Ansa Metallocenes 113 4.2.1.1.5. Synthesis of Late-Metal-Amido 3.7.1. Types of Cyclopentadienyl Complexes 113 Complexes 150 3.7.1.1. Cp^A and Their Permethyl Derivatives 4.2.1.1.6. Reactivity of Late-Metal-Amido Cp*M 114 Complexes 151 3.7.1.2. Metallocenes Cpjtf. and their Permethyl 4.2.1.2. Amido Complexes of the Early Transition Metals Derivatives Cp*M 114 (Written with Prof. Seth B. Herzon) 152 3.7.1.3. Structures of "Sandwich Complexes" 114 4.2.1.2.1. Overview 152 3.7.1.4. Bent Metallocenes Cp^AL^and Related 4.2.1.2.2. Thermodynamic Properties of Early- Compounds 115 Metal-Amido Complexes 153 3.7.1.5. 117 4.2.1.2.3. Synthesis of Early-Metal-Amido "Half-Sandwich" Compounds CpMLy 3.7.1.6. OtherModes of Binding of Cyclopentadienyl Complexes 154 Ligands 118 4.2.1.2.4. Reactivity of Early-Metal-Amido 3.7.2. Ligands That Are Electronically Similar to the Complexes 154 Cyclopentadienyl Ligand 118 4.2.2. Amidate and Amidinate Complexes of the 3.7.3. Reactions of Cyclopentadienyl Complexes 120 Early Transition Metals (Written with Prof. Seth 3.8. Hydride Ligands (Written by Prof. Jack R. B. Herzon) 155 Norton) 122 4.2.3. Complexes of Anionic Nitrogen Heterocycles 3.8.1. Structural Features 122 (Written with Prof. Jianrong (Steve) Zhou) 155 3.8.1.1. Terminal Hydrides 122 4.2.3.1. Overview 155 3.8.1.2. Bridging Hydrides 123 4.2.3.2. Metal-Azolyl Bonding 155 3.8.1.3. Spectroscopic Properties 124 4.2.3.3. Synthesis of Metal-Azolyl Complexes 156 3.8.2. Synthesis of Metal-Hydride Complexes 124 4.2.3.4. Reactivity of Metal-Azolyl Complexes 157 3.8.2.1. From Hydrogen 124 4.2.4. Nitrosyl Complexes (Written with 3.8.2.2. By Protonation 126 Prof. Jesse W.