The Organometallic Chemistry of the Transition Metals

Total Page:16

File Type:pdf, Size:1020Kb

The Organometallic Chemistry of the Transition Metals THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS Sixth Edition ROBERT H. CRABTREE Yale University, New Haven, Connecticut Copyright © 2014 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging-in-Publication Data: Crabtree, Robert H., 1948– The organometallic chemistry of the transition metals / by Robert H. Crabtree.— Sixth edition. pages cm Includes bibliographical references and index. ISBN 978-1-118-13807-6 (cloth) 1. Organometallic chemistry. 2. Organotransition metal compounds. I. Title. QD411.8.T73C73 2014 547′.056–dc23 2013046043 Printed in the United States of America ISBN: 9781118138076 10 9 8 7 6 5 4 3 2 1 CONTENTS Preface xi List of Abbreviations xiii 1 Introduction 1 1.1 Why Study Organometallic Chemistry?, 1 1.2 Coordination Chemistry, 3 1.3 Werner Complexes, 4 1.4 The Trans Effect, 9 1.5 Soft versus Hard Ligands, 10 1.6 The Crystal Field, 11 1.7 The Ligand Field, 19 1.8 The sdn Model and Hypervalency, 21 1.9 Back Bonding, 23 1.10 Electroneutrality, 27 1.11 Types of Ligand, 29 References, 37 Problems, 38 2 Making Sense of Organometallic Complexes 40 2.1 The 18-Electron Rule, 40 2.2 Limitations of the 18-Electron Rule, 48 2.3 Electron Counting in Reactions, 50 2.4 Oxidation State, 51 v vi COnTEnTS 2.5 Coordination Number and Geometry, 57 2.6 Effects of Complexation, 60 2.7 Differences between Metals, 63 References, 66 Problems, 67 3 Alkyls and Hydrides 69 3.1 Alkyls and Aryls, 69 3.2 Other σ-Bonded Ligands, 84 3.3 Metal Hydrides, 86 3.4 Sigma Complexes, 89 3.5 Bond Strengths, 92 References, 95 Problems, 96 4 Carbonyls, Phosphines, and Substitution 98 4.1 Metal Carbonyls, 98 4.2 Phosphines, 109 4.3 n-Heterocyclic Carbenes (nHCs), 113 4.4 Dissociative Substitution, 115 4.5 Associative Substitution, 120 4.6 Redox Effects and Interchange Substitution, 122 4.7 Photochemical Substitution, 124 4.8 Counterions and Solvents in Substitution, 127 References, 129 Problems, 131 5 Pi-Complexes 134 5.1 Alkene and Alkyne Complexes, 134 5.2 Allyls, 140 5.3 Diene Complexes, 144 5.4 Cyclopentadienyl Complexes, 147 5.5 Arenes and Other Alicyclic Ligands, 154 5.6 Isolobal Replacement and Metalacycles, 158 5.7 Stability of Polyene and Polyenyl Complexes, 159 References, 160 Problems, 161 6 Oxidative Addition and Reductive Elimination 163 6.1 Introduction, 163 6.2 Concerted Additions, 166 COnTEnTS vii 6.3 Sn2 Pathways, 168 6.4 Radical Mechanisms, 170 6.5 Ionic Mechanisms, 172 6.6 Reductive Elimination, 173 6.7 σ-Bond Metathesis, 179 6.8 Oxidative Coupling and Reductive Fragmentation, 180 References, 182 Problems, 182 7 Insertion and Elimination 185 7.1 Introduction, 185 7.2 CO Insertion, 187 7.3 Alkene Insertion, 192 7.4 Outer Sphere Insertions, 197 7.5 α, β, γ, and δ Elimination, 198 References, 201 Problems, 201 8 Addition and Abstraction 204 8.1 Introduction, 204 8.2 nucleophilic Addition to CO, 207 8.3 nucleophilic Addition to Polyenes and Polyenyls, 208 8.4 nucleophilic Abstraction in Hydrides, Alkyls, and Acyls, 215 8.5 Electrophilic Addition and Abstraction, 216 8.6 Single-Electron Transfer and Radical Reactions, 219 References, 221 Problems, 222 9 Homogeneous Catalysis 224 9.1 Catalytic Cycles, 224 9.2 Alkene Isomerization, 231 9.3 Hydrogenation, 233 9.4 Alkene Hydroformylation, 242 9.5 Alkene Hydrocyanation, 245 9.6 Alkene Hydrosilylation and Hydroboration, 246 9.7 Coupling Reactions, 248 9.8 Organometallic Oxidation Catalysis, 250 9.9 Surface, Supported, and Cooperative Catalysis, 251 References, 253 Problems, 256 viii COnTEnTS 10 Physical Methods 259 10.1 Isolation, 259 10.2 1H NMR Spectroscopy, 260 10.3 13C NMR Spectroscopy, 264 10.4 31P NMR Spectroscopy, 266 10.5 Dynamic NMR, 268 10.6 Spin Saturation Transfer, 271 10.7 T1 and the Nuclear Overhauser Effect, 272 10.8 IR Spectroscopy, 276 10.9 Crystallography, 279 10.10 Electrochemistry and EPR, 281 10.11 Computation, 283 10.12 Other Methods, 285 References, 287 Problems, 288 11 M–L Multiple Bonds 290 11.1 Carbenes, 290 11.2 Carbynes, 302 11.3 Bridging Carbenes and Carbynes, 305 11.4 N-Heterocyclic Carbenes, 306 11.5 Multiple Bonds to Heteroatoms, 310 References, 313 Problems, 315 12 Applications 317 12.1 Alkene Metathesis, 317 12.2 Dimerization, Oligomerization, and Polymerization of Alkenes, 324 12.3 Activation of CO and CO2, 332 12.4 C–H Activation, 336 12.5 Green Chemistry, 343 12.6 Energy Chemistry, 344 References, 347 Problems, 349 13 Clusters, Nanoparticles, Materials, and Surfaces 353 13.1 Cluster Structures, 354 13.2 The Isolobal Analogy, 364 13.3 nanoparticles, 368 COnTEnTS ix 13.4 Organometallic Materials, 371 References, 379 Problems, 381 14 Organic Applications 383 14.1 Carbon–Carbon Coupling, 384 14.2 Metathesis, 391 14.3 Cyclopropanation and C–H Insertion, 393 14.4 Hydrogenation, 394 14.5 Carbonylation, 396 14.6 Oxidation, 399 14.7 C–H Activation, 401 14.8 Click Chemistry, 405 References, 406 Problems, 408 15 Paramagnetic and High Oxidation-State Complexes 411 15.1 Magnetism and Spin States, 413 15.2 Polyalkyls and Polyhydrides, 420 15.3 Cyclopentadienyl Complexes, 425 15.4 f-Block Complexes, 426 References, 433 Problems, 435 16 Bioorganometallic Chemistry 436 16.1 Introduction, 437 16.2 Coenzyme B12, 442 16.3 nitrogen Fixation, 449 16.4 nickel Enzymes, 457 16.5 Biomedical and Biocatalytic Applications, 463 References, 465 Problems, 467 Appendix A: Useful Texts on Allied Topics 469 Appendix B: Major Reaction Types and Hints on Problem Solving 472 Solutions to Problems 475 Index 493 PREFACE This book is a study of the logic of organometallic chemistry as well as some of its leading applications. It should give starting scholars every- thing they need to set out on this field and develop their own approaches and ideas. I would again like to thank the many colleagues and readers who kindly pointed out errors in the fifth edition or otherwise contrib- uted: Professors Pat Holland, Jack Faller, Yao Fu, Lin Pu, Samuel Johnson, Odile Eisenstein, Ann Valentine, Gary Brudvig, Alan Goldman, Ulrich Hintermair, and Nilay Hazari, as well as students Liam Sharn- inghausen, Nathan Schley, Jason Rowley, William Howard, Joshua Hummel, Meng Zhou, Jonathan Graeupner, Oana Luca, Alexandra Schatz, and Kari Young. I also thank the Department of Energy for funding our work in this area. Robert H. Crabtree New Haven, Connecticut August 2013 xi LIST OF ABBREVIATIONS [ ] Encloses complex molecules or ions □ Vacant site or labile ligand ° Degrees Celsius 1°, 2°, 3° . Primary, secondary, tertiary A Associative substitution (Section 4.5) acac Acetylacetonate AO Atomic orbital at. Pressure in atmospheres bipy 2,2′-Bipyridyl Bu Butyl ca. about cata Catalyst CIDNP Chemically induced dynamic nuclear polarization (Section 6.4) CN Coordination number cod 1,5-Cyclooctadiene coe Cyclooctene cot Cyclooctatetraene Cp, Cp* C5H5, C5Me5 Cy Cyclohexyl D Dissociative substitution mechanism (Section 4.4) D-C Dewar–Chatt model of M(C=C) bonding involving weak back donation (Section 5.1) n d Electron configuration (Section 1.4) dσ, dπ σ-Acceptor and π-donor metal orbitals (see Section 1.4) diars Me2AsCH2CH2AsMe2 dmf Dimethylformamide dmg Dimethyl glyoximate dmpe Me2PCH2CH2PMe2 DMSO Dimethyl sulfoxide dpe or dppe Ph2PCH2CH2PPh2 xiii xiv LISt Of ABBrEVIAtIONS e Electron, as in 18e rule E, E+ Generalized electrophile such as H+ e.e. Enantiomeric excess (Section 9.3) en H2NCH2CH2NH2 EPr Electron paramagnetic resonance eq Equivalent
Recommended publications
  • 5.111 Principles of Chemical Science, Fall 2005 Transcript – Lecture 28
    MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science, Fall 2005 Please use the following citation format: Sylvia Ceyer and Catherine Drennan, 5.111 Principles of Chemical Science, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science, Fall 2005 Transcript – Lecture 28 All right. We have a few more PowerPoint things before I am going to attempt using the board. Again, we are in the transition metal unit. And today we are going to introduce something called crystal field theory. And this is in Chapter 16 in your book. Let me just tell you about two different theories. Again, chemistry is an experimental science. We collect data and then we try to come up with theories that explain the data, so the theories are not sort of 100%. And some are more simple and some are more complicated to try to explain what we observe. And some of these theories, although they are pretty simple approximations of what is really going on, do a pretty good job of explaining the things that we are observing. All right. There are two different kinds of theories that you will hear about with transition metals. You will hear about crystal field theory and ligand field theory.
    [Show full text]
  • Covalent and Noncovalent Intermediates of an NAD Utilizing Enzyme, Human CD38
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Chemistry & Biology Article Covalent and Noncovalent Intermediates of an NAD Utilizing Enzyme, Human CD38 Qun Liu,1 Irina A. Kriksunov,1 Hong Jiang,2 Richard Graeff,4 Hening Lin,2 Hon Cheung Lee,4,5,* and Quan Hao1,3,5,* 1MacCHESS, Cornell High Energy Synchrotron Source 2Department of Chemistry and Chemical Biology 3School of Applied & Engineering Physics Cornell University, Ithaca, NY 14853, USA 4Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA 5Department of Physiology, University of Hong Kong, Hong Kong, China *Correspondence: [email protected] (H.C.L.), [email protected] (Q.H.) DOI 10.1016/j.chembiol.2008.08.007 SUMMARY These processes are known to have important cellular and physiological functions in DNA repair (Lombard et al., 2005; Enzymatic utilization of nicotinamide adenine dinu- Michan and Sinclair, 2007), transcriptional regulation (Blander cleotide (NAD) has increasingly been shown to have and Guarente, 2004), cellular differentiation and proliferation, fundamental roles in gene regulation, signal trans- aging (Hassa et al., 2006), and calcium signaling (Lee, 2001; duction, and protein modification. Many of the pro- Lee et al., 1999). cesses require the cleavage of the nicotinamide moi- Although NAD is a substrate for multiple enzymes, the initial ety from the substrate and the formation of a reactive steps of the cleavage and release of the nicotinamide moiety are conserved. The nature of the subsequent intermediates intermediate. Using X-ray crystallography, we show formed, on the other hand, has been a widely debatable issue.
    [Show full text]
  • Recommending Hartree-Fock Theory with London- Dispersion and Basis
    Recommending Hartree-Fock Theory with London- Dispersion and Basis-Set-Superposition Corrections for the Optimization or Quantum Refinement of Protein Structures Lars Goerigk,a* Charles A. Collyer,b Jeffrey R. Reimersc,d* a School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia b School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia c School of Physics and Advanced Materials, The University of Technology, Sydney, NSW 2007, Australia d Centre for Quantum and Molecular Structure, College of Sciences, Shanghai University, Shanghai 200444, China 1 ABSTRACT We demonstrate the importance of properly accounting for London-dispersion and basis-set superposition-error (BSSE) in quantum-chemical optimizations of protein structures, factors that are often still neglected in contemporary applications. We optimize a portion of an ensemble of conformationally flexible lysozyme structures obtained from highly accurate X-ray crystallography data that serves as a reliable benchmark. We not only analyze root-mean-square deviations from the experimental Cartesian coordinates, but, for the first time, also demonstrate how London-dispersion and BSSE influence crystallographic R factors. Our conclusions parallel recent recommendations for the optimization of small gas-phase peptide structures made by some of the present authors: Hartree-Fock theory extended with Grimme’s recent dispersion and BSSE corrections (HF-D3-gCP) is superior to popular density-functional-theory (DFT) approaches. Not only are statistical errors on average lower with HF-D3-gCP, but also its convergence behavior is much better. In particular, we show that the BP86/6-31G* approach should not be relied upon as a black-box method, despite its widespread use, as its success is based on an unpredictable cancellation of errors.
    [Show full text]
  • Introduction to Aromaticity
    Introduction to Aromaticity Historical Timeline:1 Spotlight on Benzene:2 th • Early 19 century chemists derive benzene formula (C6H6) and molecular mass (78). • Carbon to hydrogen ratio of 1:1 suggests high reactivity and instability. • However, benzene is fairly inert and fails to undergo reactions that characterize normal alkenes. - Benzene remains inert at room temperature. - Benzene is more resistant to catalytic hydrogenation than other alkenes. Possible (but wrong) benzene structures:3 Dewar benzene Prismane Fulvene 2,4- Hexadiyne - Rearranges to benzene at - Rearranges to - Undergoes catalytic - Undergoes catalytic room temperature. Faraday’s benzene. hydrogenation easily. hydrogenation easily - Lots of ring strain. - Lots of ring strain. - Lots of ring strain. 1 Timeline is computer-generated, compiled with information from pg. 594 of Bruice, Organic Chemistry, 4th Edition, Ch. 15.2, and from Chemistry 14C Thinkbook by Dr. Steven Hardinger, Version 4, p. 26 2 Chemistry 14C Thinkbook, p. 26 3 Images of Dewar benzene, prismane, fulvene, and 2,4-Hexadiyne taken from Chemistry 14C Thinkbook, p. 26. Kekulé’s solution: - “snake bites its own tail” (4) Problems with Kekulé’s solution: • If Kekulé’s structure were to have two chloride substituents replacing two hydrogen atoms, there should be a pair of 1,2-dichlorobenzene isomers: one isomer with single bonds separating the Cl atoms, and another with double bonds separating the Cl atoms. • These isomers were never isolated or detected. • Rapid equilibrium proposed, where isomers interconvert so quickly that they cannot be isolated or detected. • Regardless, Kekulé’s structure has C=C’s and normal alkene reactions are still expected. - But the unusual stability of benzene still unexplained.
    [Show full text]
  • On the Harmonic Oscillator Model of Electron Delocalization (HOMED) Index and Its Application to Heteroatomic Π-Electron Systems
    Symmetry 2010, 2, 1485-1509; doi:10.3390/sym2031485 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article On the Harmonic Oscillator Model of Electron Delocalization (HOMED) Index and its Application to Heteroatomic π-Electron Systems Ewa D. Raczyñska 1, *, Małgorzata Hallman 1, Katarzyna Kolczyñska 2 and Tomasz M. Stêpniewski 2 1 Department of Chemistry, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 159c, 02-776 Warszawa, Poland 2 Interdisciplinary Department of Biotechnology, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-776 Warszawa, Poland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +48-22-59-37623; Fax: +49-22-59-37635. Received: 23 April 2010; in revised form: 19 May 2010 / Accepted: 7 July 2010 / Published: 12 July 2010 Abstract: The HOMA (Harmonic Oscillator Model of Aromaticity) index, reformulated in 1993, has been very often applied to describe π-electron delocalization for mono- and polycyclic π-electron systems. However, different measures of π-electron delocalization were employed for the CC, CX, and XY bonds, and this index seems to be inappropriate for compounds containing heteroatoms. In order to describe properly various resonance effects (σ-π hyperconjugation, n-π conjugation, π-π conjugation, and aromaticity) possible for heteroatomic π-electron systems, some modifications, based on the original HOMA idea, were proposed and tested for simple DFT structures containing C, N, and O atoms. An abbreviation HOMED was used for the modified index. Keywords: geometry-based index; π -electron delocalization; σ - π hyperconjugation; n-π conjugation; π-π conjugation; aromaticity; heteroatomic compounds; DFT 1.
    [Show full text]
  • Nobel Lecture, 8 December 1981 by ROALD HOFFMANN Department of Chemistry, Cornell University, Ithaca, N.Y
    BUILDING BRIDGES BETWEEN INORGANIC AND ORGANIC CHEMISTRY Nobel lecture, 8 December 1981 by ROALD HOFFMANN Department of Chemistry, Cornell University, Ithaca, N.Y. 14853 R. B. Woodward, a supreme patterner of chaos, was one of my teachers. I dedicate this lecture to him, for it is our collaboration on orbital symmetry conservation, the electronic factors which govern the course of chemical reac- tions, which is recognized by half of the 1981 Nobel Prize in Chemistry. From Woodward I learned much: the significance of the experimental stimulus to theory, the craft of constructing explanations, the importance of aesthetics in science. I will try to show you how these characteristics of chemical theory may be applied to the construction of conceptual bridges between inorganic and organic chemistry. FRAGMENTS Chains, rings, substituents - those are the building blocks of the marvelous edifice of modern organic chemistry. Any hydrocarbon may be constructed on paper from methyl groups, CH 3, methylenes, CH 2, methynes, CH, and carbon atoms, C. By substitution and the introduction of heteroatoms all of the skeletons and functional groupings imaginable, from ethane to tetrodotoxin, may be obtained. The last thirty years have witnessed a remarkable renaissance of inorganic chemistry, and the particular flowering of the field of transition metal organo- metallic chemistry. Scheme 1 shows a selection of some of the simpler creations of the laboratory in this rich and ever-growing field. Structures l-3 illustrate at a glance one remarkable feature of transition metal fragments. Here are three iron tricarbonyl complexes of organic moie- ties - cyclobutadiene, trimethylenemethane, an enol, hydroxybutadiene - which on their own would have little kinetic or thermodynamic stability.
    [Show full text]
  • Preparation and Characterization of Iridium Hydride and Dihydrogen Complexes Relevant to Biomass Deoxygenation
    Preparation and Characterization of Iridium Hydride and Dihydrogen Complexes Relevant to Biomass Deoxygenation Jonathan M. Goldberg A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: D. Michael Heinekey, Chair Karen I. Goldberg, Chair Brandi M. Cossairt Program Authorized to Offer Degree: Department of Chemistry © Copyright 2017 Jonathan M. Goldberg University of Washington Abstract Preparation and Characterization of Iridium Hydride and Dihydrogen Complexes Relevant to Biomass Deoxygenation Jonathan M. Goldberg Chairs of the Supervisory Committee: Professor D. Michael Heinekey Professor Karen I. Goldberg Department of Chemistry This thesis describes the fundamental organometallic reactivity of iridium pincer complexes and their applications to glycerol deoxygenation catalysis. These investigations provide support for each step of a previously proposed glycerol deoxygenation mechanism. Chapter 1 outlines the motivations for this work, specifically the goal of using biomass as a chemical feedstock over more common petroleum-based sources. A discussion of the importance of transforming glycerol to higher value products, such as 1,3-propanediol, is discussed. Chapter 2 describes investigations into the importance of pincer ligand steric factors on the coordination chemistry of the iridium metal center. Full characterization of a five-coordinate iridium-hydride complex is presented; this species was previously proposed to be a catalyst resting state for glycerol deoxygenation. Chapter 3 investigates hydrogen addition to R4(POCOP)Ir(CO) R4 3 t i R4 R4 3 [ POCOP = κ -C6H3-2,6-(OPR2)2 for R = Bu, Pr] and (PCP)Ir(CO) [ (PCP) = κ -C6H3-2,6- t i (CH2PR2)2 for R = Bu, Pr] to give cis- and/or trans-dihydride complexes.
    [Show full text]
  • Bimetallic Catalyst Catalyzed Carbonylation of Methanol to Acetic Acid
    materials Article Study on Rh(I)/Ru(III) Bimetallic Catalyst Catalyzed Carbonylation of Methanol to Acetic Acid Shasha Zhang 1, Wenxin Ji 1,2,*, Ning Feng 2, Liping Lan 1, Yuanyuan Li 1,2 and Yulong Ma 1,2 1 College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China; [email protected] (S.Z.); [email protected] (L.L.); [email protected] (Y.L.); [email protected] (Y.M.) 2 State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; [email protected] * Correspondence: [email protected]; Tel.: +86-135-1957-9989; Fax: +86-951-206-2323 Received: 13 July 2020; Accepted: 3 September 2020; Published: 11 September 2020 Abstract: In this study, a Rh(I)/Ru(III) catalyst with a bimetallic space structure was designed and synthesized. The interaction between the metals of the bimetallic catalyst and the structure of the bridged dimer can effectively reduce the steric hindrance effect and help speed up the reaction rate while ensuring the stability of the catalyst. X-ray photoelectron spectroscopy (XPS) results show that rhodium accepts electrons from chlorine, thereby increasing the electron-rich nature of rhodium and improving the catalytic activity. This promotes the nucleophilic reaction of the catalyst with methyl iodide and reduces the reaction energy barrier. The methanol carbonylation performance of the Rh/Ru catalyst was evaluated, and the results show that the conversion rate of methyl acetate and the yield of acetic acid are 96.0% under certain conditions. Furthermore, during the catalysis, no precipitate is formed and the amount of water is greatly reduced.
    [Show full text]
  • Organometrallic Chemistry
    CHE 425: ORGANOMETALLIC CHEMISTRY SOURCE: OPEN ACCESS FROM INTERNET; Striver and Atkins Inorganic Chemistry Lecturer: Prof. O. G. Adeyemi ORGANOMETALLIC CHEMISTRY Definitions: Organometallic compounds are compounds that possess one or more metal-carbon bond. The bond must be “ionic or covalent, localized or delocalized between one or more carbon atoms of an organic group or molecule and a transition, lanthanide, actinide, or main group metal atom.” Organometallic chemistry is often described as a bridge between organic and inorganic chemistry. Organometallic compounds are very important in the chemical industry, as a number of them are used as industrial catalysts and as a route to synthesizing drugs that would not have been possible using purely organic synthetic routes. Coordinative unsaturation is a term used to describe a complex that has one or more open coordination sites where another ligand can be accommodated. Coordinative unsaturation is a very important concept in organotrasition metal chemistry. Hapticity of a ligand is the number of atoms that are directly bonded to the metal centre. Hapticity is denoted with a Greek letter η (eta) and the number of bonds a ligand has with a metal centre is indicated as a superscript, thus η1, η2, η3, ηn for hapticity 1, 2, 3, and n respectively. Bridging ligands are normally preceded by μ, with a subscript to indicate the number of metal centres it bridges, e.g. μ2–CO for a CO that bridges two metal centres. Ambidentate ligands are polydentate ligands that can coordinate to the metal centre through one or more atoms. – – – For example CN can coordinate via C or N; SCN via S or N; NO2 via N or N.
    [Show full text]
  • Electron Ionization
    Chapter 6 Chapter 6 Electron Ionization I. Introduction ......................................................................................................317 II. Ionization Process............................................................................................317 III. Strategy for Data Interpretation......................................................................321 1. Assumptions 2. The Ionization Process IV. Types of Fragmentation Pathways.................................................................328 1. Sigma-Bond Cleavage 2. Homolytic or Radical-Site-Driven Cleavage 3. Heterolytic or Charge-Site-Driven Cleavage 4. Rearrangements A. Hydrogen-Shift Rearrangements B. Hydride-Shift Rearrangements V. Representative Fragmentations (Spectra) of Classes of Compounds.......... 344 1. Hydrocarbons A. Saturated Hydrocarbons 1) Straight-Chain Hydrocarbons 2) Branched Hydrocarbons 3) Cyclic Hydrocarbons B. Unsaturated C. Aromatic 2. Alkyl Halides 3. Oxygen-Containing Compounds A. Aliphatic Alcohols B. Aliphatic Ethers C. Aromatic Alcohols D. Cyclic Ethers E. Ketones and Aldehydes F. Aliphatic Acids and Esters G. Aromatic Acids and Esters 4. Nitrogen-Containing Compounds A. Aliphatic Amines B. Aromatic Compounds Containing Atoms of Nitrogen C. Heterocyclic Nitrogen-Containing Compounds D. Nitro Compounds E. Concluding Remarks on the Mass Spectra of Nitrogen-Containing Compounds 5. Multiple Heteroatoms or Heteroatoms and a Double Bond 6. Trimethylsilyl Derivative 7. Determining the Location of Double Bonds VI. Library
    [Show full text]
  • A Biomimetic Approach to Okilactomycin and Chrolactomycin and the Hexadehydro-Diels–Alder (HDDA) Reaction
    A Biomimetic Approach to Okilactomycin and Chrolactomycin and The Hexadehydro-Diels–Alder (HDDA) Reaction A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Dawen Niu IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Thomas R. Hoye December 2013 © Dawen Niu 2013 Acknowledgements So many things could have happened differently in the past 27 years and if any of them had, my career would have taken totally different pathways. I am so glad to be where I am today and need to acknowledge many people that made me here. First of all, I thank my parents. Born in remote villages, neither of them was able to receive good school education. They have been making very little money for what they do. To pay my (and my sister’s) tuition, they chose to work extremely hard. While I was in college, my father worked ca. 12 hours a day and >300 days a year even though he was suffering severe back pain. They tried all they could to make ends meet and yet never complained. But they started to complain after I left for US and stopped asking for tuition. They complain because they aren’t sure if I could get used to the American lifestyle and because they fear my feet will be dragged in US. “Mother worries when son travels a thousand miles.” This recent five years passed really fast to me, but it must have been the longest five years to them. I understand all these better after being a parent myself.
    [Show full text]
  • Organometallic and Catalysis
    ORGANOMETALLIC AND CATALYSIS Dr. Malay Dolai, Assistant Professor, Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur-721404, WB, India. 1.Introduction Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkaline, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and tin, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide (metal carbonyls), cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. In 1827, Zeise's salt is the first platinum- olefin complex: K[PtCl3(C2H4)].H2O, the first invented organometallic compound. Organometallic compounds find wide use in commercial reactions, both as homogeneous catalysis and as stoichiometric reagents For instance, organolithium, organomagnesium, and organoaluminium compounds, examples of which are highly basic and highly reducing, are useful stoichiometrically, but also catalyze many polymerization reactions. Almost all processes involving carbon monoxide rely on catalysts, notable examples being described as carbonylations. The production of acetic acid from methanol and carbon monoxide is catalyzed via metal carbonyl complexes in the Monsanto process and Cativa process. Most synthetic aldehydes are produced via hydroformylation. The bulk of the synthetic alcohols, at least those larger than ethanol, are produced by hydrogenation of hydroformylation- derived aldehydes.
    [Show full text]