(Ex Aster Spp.) S. Laeve ; S. Lanceolatum ; S. Novae-Angliae ; S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Occurrence of Symphyotrichum Squamatum (Spreng.) G.L.Nesom in Uttar Pradesh, India: a New Record
ISSN 2226-3063 e-ISSN 2227-9555 Modern Phytomorphology 13: 26–29, 2019 REVIEW ARTICLE Occurrence of Symphyotrichum squamatum (Spreng.) G.L.Nesom in Uttar Pradesh, India: A new record Amit Kumar Tripathi*, Jyoti Kumar Sharma Center for Environmental Sciences and Engineering, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India; * [email protected] Received: 01.01.2019 | Accepted: 02.02.2019 | Published: 07.02.2019 Abstract Symphyotrichum squamatum (Spreng.) G.L.Nesom, is an erect herb of the Compositae family, recorded from the campus of the Shiv Nadar University, Uttar Pradesh, India. The species is being recorded for the first time from India as there are no earlier reports of its occurrence in the literature. The taxonomic description of the plant along with colored illustrations of morphological characteristics such as habit, leaf, flower, root etc. are provided for easy identification of the species in wild. As the plant is known to have a tendency to spread rapidly, it may become an aggressive weed in India in near future. Keywords: Symphyotrichum squamatum, compositae, new record, Shiv Nadar University, India Introduction Subsequently, the occurrence of the species was also recorded at a few more places outside the SNU campus. The paper The genus Symphyotrichum belonging to the family Compositae, reports the addition of S. squamatum to the flora of India for contains about 108 accepted species (The Plant List 2013); most the first time and describes its distribution and morphological of the species are distributed in the North, Central and South characteristics. The paper also discusses the possible impact of Americas (Tunçkol et al. -
Astereae, Asteraceae) Using Molecular Phylogeny of ITS
Turkish Journal of Botany Turk J Bot (2015) 39: 808-824 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1410-12 Relationships and generic delimitation of Eurasian genera of the subtribe Asterinae (Astereae, Asteraceae) using molecular phylogeny of ITS 1, 2,3 4 Elena KOROLYUK *, Alexey MAKUNIN , Tatiana MATVEEVA 1 Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia 2 Institute of Molecular and Cell Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia 3 Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia 4 Department of Genetics & Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia Received: 12.10.2014 Accepted/Published Online: 02.04.2015 Printed: 30.09.2015 Abstract: The subtribe Asterinae (Astereae, Asteraceae) includes highly variable, often polyploid species. Recent findings based on molecular methods led to revision of its volume. However, most of these studies lacked species from Eurasia, where a lot of previous taxonomic treatments of the subtribe exist. In this study we used molecular phylogenetics methods with internal transcribed spacer (ITS) as a marker to resolve evolutionary relations between representatives of the subtribe Asterinae from Siberia, Kazakhstan, and the European part of Russia. Our reconstruction revealed that a clade including all Asterinae species is paraphyletic. Inside this clade, there are species with unresolved basal positions, for example Erigeron flaccidus and its relatives. Moreover, several well-supported groups exist: group of the genera Galatella, Crinitaria, Linosyris, and Tripolium; group of species of North American origin; and three related groups of Eurasian species: typical Eurasian asters, Heteropappus group (genera Heteropappus, Kalimeris), and Asterothamnus group (genera Asterothamnus, Rhinactinidia). -
Diversity of Tribe Astereae (Asteraceae) of Jammu and Kashmir
International Journal of Botany Studies International Journal of Botany Studies ISSN: 2455-541X; Impact Factor: RJIF 5.12 Received: 19-04-2019; Accepted: 23-05-2019 www.botanyjournals.com Volume 4; Issue 4; July 2019; Page No. 100-103 Diversity of tribe Astereae (Asteraceae) of Jammu and Kashmir BL Bhellum Department of Botany, Govt. College for Women, Parade, Jammu, Jammu & Kashmir, India Abstract Introduction: The present paper deals with tribe Astereae comprising of 62 species representing 17 genera of family Asteraceae. The study of this tribe is based on the species within the limits of Jammu and Kashmir State. Many of the species are confined to the alpine zones of Kashmir Himalayas. Tribe Astereae is rich one and studies regarding the number of species in each genus are given. Material and Methods: The study of species of this tribe was made in different parts of Jammu and Kashmir. The genera and species were identified with the help of taxonomic literature and compilation of works of other authors wherever required. The change in colour of the florets on drying causes difficulty to know the identity of species. Result: The tribe Astereae is compiled for the first time from the state of Jammu and Kashmir. Astereae constitutes 2.06% and 2.53% of the species in Jammu and Kashmir and India respectively in comparison to 3000 species of this tribe reported from the world. Eight genera of the tribe Astere have been reported from the state of Jammu and Kashmir with single species. Keywords: astereae, Asteraceae, flora, Jammu and Kashmir, India Introduction species) and Conyza (5 species). -
Asters of Yesteryear (Updated April 2018)
Asters of Yesteryear (Updated April 2018) About this Update: The document was originally posted in a shorter version, to accompany the brief article "Where Have all our Asters Gone?" in the Fall 2017 issue of Sego Lily. In that version it consisted simply of photos of a number of plants that had at some time been included in Aster but that no longer are, as per Flora of North America. In this version I have added names to the photos to indicate how they have changed since their original publication: Date and original name as published (Basionym) IF name used in Intermountain Flora (1994) UF name used in A Utah Flora (1983-2016) FNA name used in Flora of North America (2006) I have also added tables to show the renaming of two groups of species in the Astereae tribe as organized in Intermountain Flora. Color coding shows how splitting of the major genera largely follows fault lines already in place No color Renamed Bright Green Conserved Various Natural groupings $ Plant not in Utah It is noteworthy how few species retain the names used in 1994, but also how the renaming often follows patterns already observed. Asters of Yesteryear (Updated April 2018) Here are larger photos (16 inches wide or tall at normal screen resolution of 72 dpi) of the plants shown in Sego Lily of Fall 2017, arranged by date of original publication. None of them (except Aster amellus on this page) are now regarded as true asters – but they all were at one stage in their history. Now all are in different genera, most of them using names that were published over 100 years ago. -
Weed Categories for Natural and Agricultural Ecosystem Management
Weed Categories for Natural and Agricultural Ecosystem Management R.H. Groves (Convenor), J.R. Hosking, G.N. Batianoff, D.A. Cooke, I.D. Cowie, R.W. Johnson, G.J. Keighery, B.J. Lepschi, A.A. Mitchell, M. Moerkerk, R.P. Randall, A.C. Rozefelds, N.G. Walsh and B.M. Waterhouse DEPARTMENT OF AGRICULTURE, FISHERIES AND FORESTRY Weed categories for natural and agricultural ecosystem management R.H. Groves1 (Convenor), J.R. Hosking2, G.N. Batianoff3, D.A. Cooke4, I.D. Cowie5, R.W. Johnson3, G.J. Keighery6, B.J. Lepschi7, A.A. Mitchell8, M. Moerkerk9, R.P. Randall10, A.C. Rozefelds11, N.G. Walsh12 and B.M. Waterhouse13 1 CSIRO Plant Industry & CRC for Australian Weed Management, GPO Box 1600, Canberra, ACT 2601 2 NSW Agriculture & CRC for Australian Weed Management, RMB 944, Tamworth, NSW 2340 3 Queensland Herbarium, Mt Coot-tha Road, Toowong, Qld 4066 4 Animal & Plant Control Commission, Department of Water, Land and Biodiversity Conservation, GPO Box 2834, Adelaide, SA 5001 5 NT Herbarium, Department of Primary Industries & Fisheries, GPO Box 990, Darwin, NT 0801 6 Department of Conservation & Land Management, PO Box 51, Wanneroo, WA 6065 7 Australian National Herbarium, GPO Box 1600, Canberra, ACT 2601 8 Northern Australia Quarantine Strategy, AQIS & CRC for Australian Weed Management, c/- NT Department of Primary Industries & Fisheries, GPO Box 3000, Darwin, NT 0801 9 Victorian Institute for Dryland Agriculture, NRE & CRC for Australian Weed Management, Private Bag 260, Horsham, Vic. 3401 10 Department of Agriculture Western Australia & CRC for Australian Weed Management, Locked Bag No. 4, Bentley, WA 6983 11 Tasmanian Museum and Art Gallery, GPO Box 1164, Hobart, Tas. -
The Naturalized Vascular Plants of Western Australia 1
12 Plant Protection Quarterly Vol.19(1) 2004 Distribution in IBRA Regions Western Australia is divided into 26 The naturalized vascular plants of Western Australia natural regions (Figure 1) that are used for 1: Checklist, environmental weeds and distribution in bioregional planning. Weeds are unevenly distributed in these regions, generally IBRA regions those with the greatest amount of land disturbance and population have the high- Greg Keighery and Vanda Longman, Department of Conservation and Land est number of weeds (Table 4). For exam- Management, WA Wildlife Research Centre, PO Box 51, Wanneroo, Western ple in the tropical Kimberley, VB, which Australia 6946, Australia. contains the Ord irrigation area, the major cropping area, has the greatest number of weeds. However, the ‘weediest regions’ are the Swan Coastal Plain (801) and the Abstract naturalized, but are no longer considered adjacent Jarrah Forest (705) which contain There are 1233 naturalized vascular plant naturalized and those taxa recorded as the capital Perth, several other large towns taxa recorded for Western Australia, com- garden escapes. and most of the intensive horticulture of posed of 12 Ferns, 15 Gymnosperms, 345 A second paper will rank the impor- the State. Monocotyledons and 861 Dicotyledons. tance of environmental weeds in each Most of the desert has low numbers of Of these, 677 taxa (55%) are environmen- IBRA region. weeds, ranging from five recorded for the tal weeds, recorded from natural bush- Gibson Desert to 135 for the Carnarvon land areas. Another 94 taxa are listed as Results (containing the horticultural centre of semi-naturalized garden escapes. Most Total naturalized flora Carnarvon). -
How Faster to Master the Aster Disaster: a Primer on the Changing Nomenclature of Missouri Asters
26 Missouriensis, Volume 25 2004 [2005] HOW FASTER TO MASTER THE ASTER DISASTER: A PRIMER ON THE CHANGING NOMENCLATURE OF MISSOURI ASTERS George Yatskievych Flora of Missouri Project Modern plant systematists are botanical genealogists. Their work is often expressed as cladistic phylogenies (cladograms), which are branched diagrams that detail the relationships among taxonomic groups as lineages derived from hypothetical ancesters. The concept of a “natural” taxonomic group has come to mean a hypothesis that two or more taxa have a direct shared common ancestry. The tools used to develop these phylogenies are broad and often involve some combination of data from morphological, anatomical, cytological, phytochemical, and molecular studies. Phylogenetic systematists tend to operate under a set of basic assumptions that may not be intuitive to those outside the field. The technical term for a phylogenetically “natural group” is “mono- phyletic,” which means that a given lineage is discrete and ultimately can be traced back to a single originating branchpoint. A taxonomic group (such as a genus) that can be shown to have been derived directly as a specialized portion within some other lineage renders that lineage “paraphyletic” and should be reclassified as a subgroup of that lineage (or the whole thing should be split up into a series of discrete monophyletic groups). Taxonomic groups that include members of two or more distantly related lineages are categorized as “polyphyletic” and are not tolerated. In large taxonomic groups, like the Asteraceae, the basic units (tribes, genera, and species) may be more or less recognizable morph- ologically based upon one or several unusual features. -
FERNS and FERN ALLIES Dittmer, H.J., E.F
FERNS AND FERN ALLIES Dittmer, H.J., E.F. Castetter, & O.M. Clark. 1954. The ferns and fern allies of New Mexico. Univ. New Mexico Publ. Biol. No. 6. Family ASPLENIACEAE [1/5/5] Asplenium spleenwort Bennert, W. & G. Fischer. 1993. Biosystematics and evolution of the Asplenium trichomanes complex. Webbia 48:743-760. Wagner, W.H. Jr., R.C. Moran, C.R. Werth. 1993. Aspleniaceae, pp. 228-245. IN: Flora of North America, vol.2. Oxford Univ. Press. palmeri Maxon [M&H; Wagner & Moran 1993] Palmer’s spleenwort platyneuron (Linnaeus) Britton, Sterns, & Poggenburg [M&H; Wagner & Moran 1993] ebony spleenwort resiliens Kunze [M&H; W&S; Wagner & Moran 1993] black-stem spleenwort septentrionale (Linnaeus) Hoffmann [M&H; W&S; Wagner & Moran 1993] forked spleenwort trichomanes Linnaeus [Bennert & Fischer 1993; M&H; W&S; Wagner & Moran 1993] maidenhair spleenwort Family AZOLLACEAE [1/1/1] Azolla mosquito-fern Lumpkin, T.A. 1993. Azollaceae, pp. 338-342. IN: Flora of North America, vol. 2. Oxford Univ. Press. caroliniana Willdenow : Reports in W&S apparently belong to Azolla mexicana Presl, though Azolla caroliniana is known adjacent to NM near the Texas State line [Lumpkin 1993]. mexicana Schlechtendal & Chamisso ex K. Presl [Lumpkin 1993; M&H] Mexican mosquito-fern Family DENNSTAEDTIACEAE [1/1/1] Pteridium bracken-fern Jacobs, C.A. & J.H. Peck. Pteridium, pp. 201-203. IN: Flora of North America, vol. 2. Oxford Univ. Press. aquilinum (Linnaeus) Kuhn var. pubescens Underwood [Jacobs & Peck 1993; M&H; W&S] bracken-fern Family DRYOPTERIDACEAE [6/13/13] Athyrium lady-fern Kato, M. 1993. Athyrium, pp. -
Microbiological Insights Into Ecology and Taphonomy of Prehistoric Wetlands
Microbiological insights into ecology and taphonomy of prehistoric wetlands. By © 2018 Ashley A Klymiuk M.Sc. Systematics & Evolution, University of Alberta, 2011 B.Sc. Paleontology, University of Alberta, 2009 Submitted to the graduate degree program in Ecology & Evolutionary Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chair: Benjamin Sikes Mark Holder Ari Jumpponen Leonard Krishtalka Jennifer Roberts Date Defended: 04 December 2018 ii The dissertation committee for Ashley A Klymiuk certifies that this is the approved version of the following dissertation: Microbiological insights into ecology and taphonomy of prehistoric wetlands. Chair: Benjamin Sikes Date Approved: 7 December 2018 iii Abstract In the course of this dissertation, I present investigations of the microbial constituents of fossil plants preserved at an anatomical level of detail, and detail the results of an ecological survey of root-endogenous fungi within the cosmopolitan emergent macrophyte, Typha. These studies together elucidate processes in the taphonomy of fossil plants. Biostratinomy is addressed through descriptions of saprotrophic communities within the Eocene Princeton Chert mire assemblage, and within a Carboniferous fern which previous studies had suggested contained fossilized actinobacteria. Re-investigation of the ‘actinobacteria’ suggests instead that the structures are disordered ferrous dolomites, raising implications for the contribution of sulfate- reducing bacteria to the early-diagenesis mineralization of plants preserved in carbonaceous concretions. The fossilized remains of saprotrophic and putatively endophytic fungi within roots of in-situ plants from the Princeton Chert also provide insight into early diagenesis. Some of the fungi described herein are preserved in several co-occurring developmental phases, providing evidence that early phases of silicification in this assemblage were rapid. -
Aster Feuillu Symphyotrichum Frondosum
Évaluation et Rapport de situation du COSEPAC sur l’Aster feuillu Symphyotrichum frondosum au Canada ESPÈCE EN VOIE DE DISPARITION 2006 COSEPAC COSEWIC COMITÉ SUR LA SITUATION DES COMMITTEE ON THE STATUS OF ESPÈCES EN PÉRIL ENDANGERED WILDLIFE AU CANADA IN CANADA Les rapports de situation du COSEPAC sont des documents de travail servant à déterminer le statut des espèces sauvages que l’on croit en péril. On peut citer le présent rapport de la façon suivante : COSEPAC. 2006. Évaluation et Rapport de situation du COSEPAC sur l’aster feuillu (Symphyotrichum frondosum) au Canada. Comité sur la situation des espèces en péril au Canada. Ottawa. vi + 23 p. (www.registrelep.gc.ca/status/status_f.cfm). Note de production : Le COSEPAC aimerait remercier Chris Sears, Brian Klinkenberg et Rose Klinkenberg qui ont rédigé le rapport de situation sur l’aster feuillu (Symphyotrichum frondosum), en vertu d’un contrat avec Environnement Canada. Erich Haber, coprésident (plantes vasculaires) du Sous-comité de spécialistes des plantes et lichens du COSEPAC, a supervisé le présent rapport et en a fait la révision. Pour obtenir des exemplaires supplémentaires, s’adresser au : Secrétariat du COSEPAC a/s Service canadien de la faune Environnement Canada Ottawa (Ontario) K1A 0H3 Tél. : (819) 997-4991 / (819) 953-3215 Téléc. : (819) 994-3684 Courriel : COSEWIC/[email protected] http://www.cosepac.gc.ca Also available in English under the title COSEWIC Assessment and Status Report on the Short-rayed Alkali AsterSymphyotrichum frondosum in Canada. Illustration de la couverture : Aster feuillu — Source, Douglas et al., 1998, publié avec autorisation Sa Majesté la Reine du chef du Canada, 2006 No de catalogue CW69-14/497-2006F-PDF ISBN 0-662-71798-8 Papier recyclé COSEPAC Sommaire de l’évaluation Sommaire de l’évaluation — Avril 2006 Nom commun Aster feuillu Nom scientifique Symphyotrichum frondosum Statut Espèce en voie de disparition Justification de la désignation Une plante herbacée annuelle de rives de lacs présente seulement dans quelques sites restants dans des habitats restreints. -
Where Have All Our Asters Gone? by William R
Sego Lily Spring 2018 41(2) Spring 2018 Volume 41 Number 2 Where Have All Our Asters Gone? by William R. Gray, Submitted to Sego Lily April 2018 ABSTRACT: the genus Aster traditionally contained numerous species from both North America and Eurasia. Based on morphological evidence and DNA sequencing in the 1990s it became clear that the North American species evolved separately, and would need to be assigned to other genera. This paper outlines the evidence, and the disposition of species as carried out in the Flora of North America in 2006. Whatever happened to Aster??? It used to be easy leading wildflower walks for UNPS. Yes, truly, all 21 Asters described by Cronquist in People would ask how to distinguish Asters from Intermountain Flora (Cronquist, 1994) have been Daisies – and I would tell them to look behind the reassigned to other genera by Flora of North America flower and check out the little greenish things (2006). According to FNA there is only a single true surrounding the petals (Fig. 1). If they were all about native Aster in the whole of North America, down from the same length, and skinny, it was probably a daisy or well over a hundred before the dis-Aster. The name is fleabane (Erigeron). If they varied in length, were wider now used almost exclusively for Eurasian plants and overlapped, it was probably an aster (Aster). because Linnaeus chose a well-known European plant For many people that was all they wanted to know and and named it Aster amellus as typical of the genus. -
Plant Species and Communities in Poyang Lake, the Largest Freshwater Lake in China
Collectanea Botanica 34: e004 enero-diciembre 2015 ISSN-L: 0010-0730 http://dx.doi.org/10.3989/collectbot.2015.v34.004 Plant species and communities in Poyang Lake, the largest freshwater lake in China H.-F. WANG (王华锋)1, M.-X. REN (任明迅)2, J. LÓPEZ-PUJOL3, C. ROSS FRIEDMAN4, L. H. FRASER4 & G.-X. HUANG (黄国鲜)1 1 Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resource, Ministry of Education, College of Horticulture and Landscape Agriculture, Hainan University, CN-570228 Haikou, China 2 College of Horticulture and Landscape Architecture, Hainan University, CN-570228 Haikou, China 3 Botanic Institute of Barcelona (IBB-CSIC-ICUB), pg. del Migdia s/n, ES-08038 Barcelona, Spain 4 Department of Biological Sciences, Thompson Rivers University, 900 McGill Road, CA-V2C 0C8 Kamloops, British Columbia, Canada Author for correspondence: H.-F. Wang ([email protected]) Editor: J. J. Aldasoro Received 13 July 2012; accepted 29 December 2014 Abstract PLANT SPECIES AND COMMUNITIES IN POYANG LAKE, THE LARGEST FRESHWATER LAKE IN CHINA.— Studying plant species richness and composition of a wetland is essential when estimating its ecological importance and ecosystem services, especially if a particular wetland is subjected to human disturbances. Poyang Lake, located in the middle reaches of Yangtze River (central China), constitutes the largest freshwater lake of the country. It harbours high biodiversity and provides important habitat for local wildlife. A dam that will maintain the water capacity in Poyang Lake is currently being planned. However, the local biodiversity and the likely effects of this dam on the biodiversity (especially on the endemic and rare plants) have not been thoroughly examined.