FANS: A/G Data Link Applications Over ACARS &

Total Page:16

File Type:pdf, Size:1020Kb

FANS: A/G Data Link Applications Over ACARS & FANS: A/G Data link Applications over ACARS & ATN Presented by Thierry TIN HIN Airline CNS/ATM Support [email protected] © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. Data Link Communication Reminders Complete Range of AIRBUS FANS Solutions AIRBUS FANS Roadmap AIRBUS Customer Support © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 FANS concept – Ground networks Aircraft Communication and Addressing Reporting System Initially used for airline communication – AOC ACARS (Airline OperationsOceanic and Control). Remote areas UsedAIRBUS (but not solution designed) : FANSfor CPDLC A+ package since 1995. Oceanic and remote airspaces Aeronautical Telecommunication Network Designed for CPDLC (performances & reliability). ATN 1st implementationContinental areas : Maastricht since end UAC of in 2006 2000. ContinentalAIRBUS airspaces solution with : FANS high B+density package of traffic. Page 3 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 Architecture in ACARS Environment – FANS A+ SATCOM ATSU Avionics VDL-A Air/Ground media VDL-2 HFDL Ground network Ground users Page 4 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 Architecture in ATN Environment – FANS B+ ATSU SATCOM Avionics VDL-A VDL-2 VDL-2 Air/Ground media HFDL Ground network Ground users Page 5 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. If installed AIRBUS Solutions and Roadmap for FANS September 2012 CPDLC & ADS-C in the World In case of errors or omissions, please inform [email protected] Page 6 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 The Data Link Mandates Published or Expected Europe • Forwardfit: 01JAN2011 / Retrofit: 05FEB2015 LINK 2000+ • Details on EUROCONTROL website: ATN B1 Published • AIRBUS solution: FANS B+ North Atlantic • Organized Track System: 2013 / MNPS: 2017 • Requirements for CPDLC and ADS-C: FANS 1/A Published • AIRBUS solution: FANS A or A+ • FAA: Forwardfit and Retrofit from 06DEC2010 Data Link • EASA: Forwardfit from 08APR2014 (not yet published) Recording • AIRBUS solutions available on all aircraft Page 7 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. Data Link Communication Reminders Complete Range of AIRBUS FANS Solutions AIRBUS FANS Roadmap AIRBUS Customer Support © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 AIRBUS FANS Solutions FANS A+ over ACARS FANS B+ over ATN in oceanic and remote areas in continental areas FANS A+ applications FANS B+ applications COM : CPDLC COM : CPDLC SURV : ADS-C ATS 623 applications ATS 623 applications Digital ATIS – D-ATIS Digital ATIS – D-ATIS Departure Clearance – DCL Departure Clearance – DCL Page 9 Oceanic Clearance – OCL Oceanic Clearance – OCL © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 Reminder about ADS-B and ADS-C Operations Airspace Avionics Range Data Link Page 10 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 Introduction to FANS A+ • 1st AIRBUS product capable of CPDLC over ACARS • Certified in 2000 on A330/A340 FANS A • Initial CPDLC & ADS-C operations in the Pacific • FMS link: Route clearance upload • Upgrade series of FANS A and former FANS A+ versions • 1st version certified in 2004 on A330/A340 aircraft, later on A320 Family aircraft and A380 aircraft FANS A+ • Latest version certified in 2011 • Enhancements (in-service experiences) from FANS operations all over the world • HF Data Link (HFDL) • VHF Data Link Mode 2 (VDL 2): Higher data rate compared to VDL Mode A FANS A+ • Frequency loading into RMP Options • Data link recording by CVR (FAA/EASA) • ATS 623 Departure & Oceanic Clearances, D-ATIS Page 11 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 Introduction to FANS B+ • 1st AIRBUS product capable of ATN/VDL2 for CPDLC FANS B • Certified in OCT 2006 on A320 Family • LINK 2000+ Pioneer phase • Upgrade of FANS B • Certified in DEC 2010 on A320 Family FANS B+ • Eligible to European LINK 2000+ mandate (EC 29/2009) • Protected Mode (PM): Voice read-back no longer required • Frequency loading into RMP FANS B+ • Data link recording by CVR (FAA, EASA) Options • ATS 623 Departure & Oceanic Clearances, D-ATIS Page 12 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 AIRBUS FANS in A320/A330/A340 Cockpit Your keyboard Your mailbox DCDU: Datalink Control & Display Unit Page 13 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 A350 will apply the same with integrated HMI for FANS A+ and FANS B+, to be AIRBUS FANS in A380 Cockpit retrofitted on A380 afterwards. Commonality with A320/330/340 operating principles A380 Cockpit interactivity = Page 14 More efficient workflow © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 Receiving an Uplink Message ATC ATC MSG MSG Page 15 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 Sending a Downlink Message Page 16 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 Functional Architecture of Current Solutions Cockpit Cockpit Interfaces FMS CVR RMP Interfaces CVR RMP A623 FANS A+ A623 FANS B+ AOC D-ATIS AFN AOC D-ATIS CM DCL CPDLC DCL CPDLC OCL ADS-C OCL A/C Router A/C Router ACARS ACARS ATN Comm Means Comm Means VDL A VDL2 VDL A VDL2 SATCOM HFDL SATCOM HFDL Page 17 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 System Architecture of Current Solutions Cockpit Interfaces Applications IMA ATC Applications LRU ATSU A/G Router ACR VDR SDU HFDR Comm Means VDR SDU HFDR Page 18 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. Data Link Communication Reminders Complete Range of AIRBUS FANS Solutions AIRBUS FANS Roadmap AIRBUS Customer Support © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 AIRBUS FANS Roadmap 2010 2015 2020 Data link Recording Page 20 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 Architecture in ACARS Environment – FANS A+ SATCOM ATSU Avionics VDL-A Air/Ground media VDL-2 HFDL Ground network Ground users Page 21 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 Architecture in ATN Environment – FANS B+ ATSU SATCOM Avionics VDL-A VDL-2 VDL-2 Air/Ground media HFDL Ground network Ground users Page 22 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. If installed AIRBUS Solutions and Roadmap for FANS September 2012 The AIRBUS FANS Alphabet Uploadable Aircraft FANS Applications clearances Std ATN ACARS into the FMS AFN CM CPDLC ADS-C A330/A340 A FANS 1/A A320/A330/A340 A+ FANS 1/A /A380 B ATN B1 A320 B+ * ATN B1 FANS 1/A A350/A380 A+B * ATN B1 A320/A330/A340 FANS 1/A A+C /A380/A350 * ATN B2 A320/A330/A340 A623 DCL, OCL, D-ATIS /A380/A350 Page 23 * Protected Mode (PM) CPDLC © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 FANS A+ over Iridium Iridium 66 Low Earth Orbit satellites Full globe coverage Voice and Data services Eligible for FANS 1/A operations www.iridium.com AIRBUS Feasibility Study Evaluation of Iridium solution at aircraft level (interference, integration, etc) For routine (e.g. AOC) and safety (e.g. FANS 1/A or ATC voice) communications First availability: 1Q2014 on A320 Page 24 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. Data Link Communication Reminders Complete Range of AIRBUS FANS Solutions AIRBUS FANS Roadmap AIRBUS Customer Support © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 The AIRBUS Support for our Customers • Support to aircraft definition and retrofit Engineering • In-service support • Flight operations expertise • Assistance to EIS and operational approval, in-service Flight support Operations • Academic briefing • Full set of Flight Operations documents Assistance to • Turnkey solution “A la carte” Operational • Engineering & Flight Operations expertise Approval • By QUOVADIS subsidiary Page 26 © AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. AIRBUS Solutions and Roadmap for FANS September 2012 AIRBUS AIRBUS Customer Data Link Solutions Roadmap Support FANS 1/A over FANS A+ over ACARS Development Engineering & Flight ACARS on roadmap consistent Operations Support AFN, CPDLC, ADS-C A320/A330/A340/A380 with GANP/ASBUs available FANS A+C compliant Turnkey solution ATN B1 over ATN FANS B+ over
Recommended publications
  • Communications
    The Essentials of Datalink Communications The origins and course of Air-to-Ground Messaging The Essentials of Datalink Communications Contents international Trip Support | international Trip The Technology that HR Created 02 Inmarsat Satellite 06 Growing into an Operational Necessity 03 Iridium Satellite 07 UAS Communications Mechanisms 04 Upcoming Regulations 10 VHF Radio 05 The Future of ACARS 11 © Copyright 2016 Page 1/12 The Technology that HR Created t one time in the not-so-distant past, pilots and other ARINC’s solution was an automated system, called the A flight crew members were paid different rates for the ARINC Communications Addressing and Reporting System, time they were airborne versus the time they were performing or ACARS for short, which sent short text data from the ground operations. Events like aircraft pushback, taxi, takeoff, avionics of the aircraft directly to the ground-based entities landing, and gate arrival were transmitted via voice over radio through Very High Frequency (VHF) radio frequencies frequencies to operators who would relay this information back without any crewmember involvement. The aircraft was to the airlines. The pilots were responsible for self-reporting programmed to take advantage of switches and automation their own times and movements. Understanding that people points on the aircraft, resulting in the creation of a set of can sometimes be forgetful, or worse, willfully manipulative, messages referred to as the OOOI report. An OOOI report is the major airlines began searching for a solution that tracked any of four messages: Out, Off, On and In. Still in wide-scale crewmember pay in a more structured and accurate way.
    [Show full text]
  • ACARS Aeronautical Radio, Inc
    Introducing ACARS Aeronautical Radio, Inc. (commonly known as: "ARINC") maintains a huge VHF and HF voice network throughout the United States and overseas to provide operational radio communications for the aircraft industry. In the early eighties they developed an addressable, digital data link for commercial and business jets and their respective companies known as ACARS. ACARS stands for Aircraft Communications Addressing and Reporting System. It was produced to reduce the flight crew's work-load by using modern computer technology to exchange many routine reports and messages. This improves the safety and efficiency of modern air travel. ACARS uses the AM mode because the same airborne VHF radio is often also used for voice communications. Burst transmissions are used with a limit of 220 ■ ACARS FREQUENCIES characters per message. Transmissions often last less than one second! MHz Function Therefore when monitoring ACARS it is important to leave your receiver's 131.550 Primary USA/Canada squelch off. To monitor ACARS transmissions you will need a VHF scanner or 130.025 Secondary USA receiver capable of tuning the VHF (AM) aircraft band 118 to 136 MHz. 129.125 Tertiary USA 131.725 Primary Europe ACARS messages are very structured. Each position in the message has a 131.450 Primary Japan specific function. The very common Q0 Link Test is shown as an example below. 131.475 Private Air Canada Address Field Message Label Downlink Block Identifier ■ ACARS DECODERS .N9009U Q01 5400UA1750 Message Sequence Number Carrier & Flight Number There are nearly one hundred "standard" ACARS message formats plus a virtually unlimited number of airline specific company formatted message types.
    [Show full text]
  • Flight Deck Solutions and Technologies Moving the Industry Forward
    FLIGHT DECK SOLUTIONS AND TECHNOLOGIES MOVING THE INDUSTRY FORWARD GARMIN INTERNATIONAL, INC. Garmin.com 1200 East 151st Street, Olathe, KS 66062 GARMIN (EUROPE) LTD. GARMIN SINGAPORE PTE. LTD. p: 866.739.5687 f: 913.397.8282 Liberty House, Hounsdown Business Park 46 East Coast Road #05-06, Singapore 428766 Southampton, Hampshire, SO40 9LR, U.K. p: 65.63480378 f: 65.63480278 p: +44 (0)87.0850.1243 f: +44 (0)23.8052.4004 e: [email protected] ©2018 Garmin Ltd. or its subsidiaries. All rights reserved. Specifications and descriptions are preliminary and subject to change without notice. The Bluetooth word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Garmin is under license. iPad, iPhone and Apple are trademarks of Apple Inc., registered in the U.S. and other countries. Android™ is a trademark of Google Inc® GARMIN INTEGRATED FLIGHT SYSTEMS: SOLUTIONS SCALED FOR ANY SIZE AIRCRAFT Whether you fly a large business jet, a hard-working helicopter, a light jet, a turboprop, piston twin or single-engine aircraft – whatever size or shape your cockpit takes, you can be sure there’s a Garmin glass flight deck solution perfectly scaled to fit. No other leading avionics manufacturer offers such breadth of capability – or such versatile configurability – in its lineup of glass-integrated suites for new aircraft and aftermarket installation. Designed to help pilots make better decisions faster, each of these Garmin glass systems seamlessly integrates control and presentation of virtually all “big picture” flight references used in the cockpit. Information once scattered across myriad instruments and gauges is now consolidated for easy viewing on a pilot’s primary flight display (PFD) and multifunction display (MFD).
    [Show full text]
  • Basic's to Decoding Inmarsat L-Band Signals Using The
    Basic’s to decoding Inmarsat L-Band signals using the RSP CHECK YOUR LOCAL LAWS BEFORE DECODIING ANY SIGNALS FROM THE INMARSAT SYSTEM Hardware used SDR: RSP1a SDR from SDRplay https://www.sdrplay.com/rsp1a/ Antenna: Modified GPS patch antenna for L-Band from SDR-Kits, model A154. https://www.sdr-kits.net/L-Band-Receive%20Antenna www.sdrplay.com 1 Basic’s to decoding Inmarsat L-Band signals using the RSP Software used SDRuno v1.32 https://www.sdrplay.com/downloads/ VBcable (Donationware) vPack43 https://www.vb-audio.com/Cable/ VAC (Paid for use) v4.60 https://vac.muzychenko.net/en/ JAERO (Free) v1.0.4.9 https://github.com/jontio/JAERO/releases Tekmanoid STD-C Decoder (Paid for use) v1.5.1 Requires Java JRE, check your local laws before using this decoder. http://www.tekmanoid.com/egc.shtml https://www.java.com/en/download/ Introduction (some text taken and edited from the RTL-SDR Blog website) This document is not a definitive guide to Satcom, L-Band transmission or the Inmarsat system. This is a collection of information that I have found scatter throughout the internet and re- compiled into a document, this document. My aim is to help you get started and hopefully guide you in the right direction. Expect typographical mistakes, inaccuracies, or omissions Inmarsat is a communications service provider with several geostationary satellites in orbit. Inmarsat provides services such as satellite phone communications, broadband internet, and short text and data messaging services. Geostationary means that the Inmarsat satellites are in a fixed position in the sky and do not move.
    [Show full text]
  • ICAO Abbreviations and Codes
    Doc 8400 Procedures for Air Navigation Services ICAO Abbreviations and Codes This edition incorporates all amendments approved by the Council prior to 24 July 2010 and supersedes, on 18 November 2010, all previous editions of PANS-ABC (Doc 8400). Eighth Edition — 2010 International Civil Aviation Organization Suzanne Doc 8400 Procedures for Air Navigation Services ICAO Abbreviations and Codes ________________________________ This edition incorporates all amendments approved by the Council prior to 24 July 2010 and supersedes, on 18 November 2010, all previous editions of PANS-ABC (Doc 8400). Eighth Edition — 2010 International Civil Aviation Organization Published in separate English, French, Russian and Spanish editions by the INTERNATIONAL CIVIL AVIATION ORGANIZATION 999 University Street, Montréal, Quebec, Canada H3C 5H7 For ordering information and for a complete listing of sales agents and booksellers, please go to the ICAO website at www.icao.int First edition,1964. Seventh edition, 2007. Eighth edition, 2010. Doc 8400, Procedures for Air Navigation Services — ICAO Abbreviations and Codes Order Number: 8400 ISBN 978-92-9231-626-6 © ICAO 2010 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, without prior permission in writing from the International Civil Aviation Organization. AMENDMENTS Amendments are announced in the supplements to the Catalogue of ICAO Publications; the Catalogue and its supplements are available on the ICAO website at www.icao.int. The space below is provided to keep a record of such amendments. RECORD OF AMENDMENTS AND CORRIGENDA AMENDMENTS CORRIGENDA Date Date Entered Date Date Entered No.
    [Show full text]
  • 767 ACARS Revision
    MONTHLY NEWS REVIEW February 2015 L2 Aviation Completes 767-300 ACARS Supplemental Type Certificate Revision to Support CPDLC over ATN Austin, Texas – January 26th, 2015 L2 Consulting Services, Inc. (L2) is pleased to announce that the company has successfully completed a revision of its existing 767-300 Aircraft Communications Addressing and Reporting Systems (ACARS) FAA Supplemental Type Certificate (ST11124SC). The certification program involved upgrading the current ARINC 724B ACARS with a new ARINC 758 ACARS system and upgraded the legacy ARINC 716 VHF Radio to the latest ARINC 750 VHF Data Radio for Controller-Pilot Data Link Communications (CPDLC) operations. The state of the art communications management system operates over Aeronautical Telecommunication Network VHF Digital Link (ATN VDL) Mode 2 (CPDLC-ATN-B1 VDLM2). Additionally, the certification included the installation/activation of a Cockpit Voice Recorder – Data Link (CVR-DL) interface, and installation/activation of an independent Global Navigation Satellite System (GNSS) receiver to support CPDLC operations to meet EUROCONTROL CPDLC (formerly known as Link 2000+). L2 President, Mark Lebovitz said, “CPDLC has been deployed to decrease voice channel occupancy and increase flight safety and efficiency through more effective datalink communications.” He added, “Future CPDLC uses will likely include route clearance uplink, 4D trajectories, continuous descent approaches, and constraint coordination.” Overall the system is designed to supplement voice communication between aircraft pilots and air traffic controllers allowing for an increase in air traffic management capacity by automating routine tasks and improving safety. L2 Consulting developed the engineering design, coordinated the certification requirements with the FAA, produced the installation kits for the end airline customer and provided project management for the program.
    [Show full text]
  • Inmarsat Classic Aero
    AVIATION SAFETY – Inmarsat satcom update ICAO YUL Sept 28th_Oct 2nd 2015 Comms Working Group/1, ICAO Montreal, Canada Gary Colledge, Head ofDanny Aviation Bharj, Safety Aviation Product Product Development, & Inmarsat Service Specialist, Inmarsat and Iris Precursor Project Inmarsat Classic Aero ‘refresh’, FANS1/A over SwiftBroadband evaluation I-3 and I-4 Network Harmonization New Classic I-3 Ground Stations at Burum/Perth since mid-2013 Burum Fucino Paumalu Perth Inmarsat MMP-New York MMP-Amsterdam MSC-Burum Data-2 & Data-3 Data-2 & Data-3 Voice – H+ DP1 DP…n PSTN ACARS Processer + ACARS Processer Network Voice Switch + Voice Switch Common network access to Classic Aero on I-3 and I-4 Access to SwiftBroadband/SB Safety on I-4 2 Inmarsat satcom update ICAO YUL Sept 28th_Oct 2nd 2015 I-3 Classic Aero Coverage Map (L-Band) Burum Perth This map depicts Inmarsat’s expectations of coverage, but does not Swift 64, Aero I Aero H/H+ services are provided in the full represent a guarantee of service. The availability of service at the edge of coverage areas fluctuates depending on various conditions. Coverage footprint of the global beams 3 Inmarsat satcom update ICAO YUL Sept 28th_Oct 2nd 2015 I-3/I-4 Classic Aero Dual Constellation Classic I-3 and I-4 networks, having identical infrastructure, can now be supported ‘as one’ by network operations team − In support of PBCS monitoring, Inmarsat can now utilise common analytic tools across I3 and I4 networks − Inmarsat can now administer satcom short codes in the same way across the I-3/I-4 GESs.
    [Show full text]
  • 10-12 September, 2012
    ARINC PROPRIETARY ICAO South American Region Data Link Applications Workshop 10-12 September, 2012 This document is the exclusive property of ARINC Incorporated, and all information contained herein is confidential and proprietary to ARINC. It is not to be published, reproduced, copied, distributed, disclosed, or used, in whole or in any part thereof, without the prior written consent of a duly authorized representative of ARINC. The information herein is supplied ARINC is a portfolio company of The Carlyle Group. without representation or warranty of any kind. ARINC disclaims all liability of any kind arising from the use of this document or reliance on the information contained therein. History of ARINC Incorporated in 1929 Served as the airline industry’s single licensee and coordinator of radio communication Responsible for all ground-based, aeronautical radio stations and compliance with FRC rules and regulations Originally owned by airlines Revenue of $1 billion USD, with more than 3,000 employees worldwide Customers in over 102 countries Employees in 143 locations Proprietary Information Page 2 Worldwide Products & Services Aerospace & Defense Commercial Aviation Airports Networks Public Safety Security Transportation Video en Español: Aviación y Aeropuertos - Panorama Global Mission-critical solutions for Communications, Engineering and Systems Integration Proprietary Information Page 3 AGENDA GLOBALink Media and Coverage Applications Central and South American Trails and Implementation Proprietary Information
    [Show full text]
  • Aeromacs: a Common Platform for Air Traffic Management Applications
    White paper AeroMACS: A common platform for air traffic management applications AeroMACS: A common platform for air traffic management applications By Monica Paolini, Senza Fili Sponsored by: © 2014 Senza Fili Consulting • www.senzafiliconsulting.com |1| White paper AeroMACS: A common platform for air traffic management applications 1. Introduction. Widening the scope of ground communications with wireless applications The communications infrastructure in airports is bursting at the seams. It is a collection of legacy technologies not designed to cope with today’s traffic volumes and connectivity needs of aircraft, mobile and fixed assets, sensors, and staff throughout the airport and on the aircraft. Some airports try to cope with the limitations of these old narrowband technologies by complementing them with more advanced cellular and Wi-Fi technologies. These technologies have wider bandwidth, but they do not meet the stringent requirements of air traffic management and control, so they can take on only a complementary role. Airlines, airports, air traffic agencies, and airport authorities use them when and where they are available and have sufficient capacity, but cannot rely exclusively on them for mission-critical applications. This fragmented and inefficient coexistence of multiple wireless technologies leaves all Methodology stakeholders dissatisfied. A complete overhaul of airports’ ground wireless communications infrastructure is necessary to support the air traffic control and management envisioned by the This paper identifies a set of applications that are necessary FAA’s Next Generation Air Transportation System (NextGen) in the United States, the Single to air traffic management and that AeroMACS can support European Sky ATM Research (SESAR) in Europe, and traffic control authorities in Asia-Pacific in terms of performance and cost efficiency.
    [Show full text]
  • Advisory Circular U.S
    Advisory Circular U.S. Department of Transportation Federal Aviation Administration Subject: GUIDELINES FOR DESIGN APPROVAL Date: 8/16/99 AC No: 20-140 OF AIRCRAFT DATA COMMUNICATIONS SYSTEMS Initiated by: AIR-100 Change: 1. PURPOSE. This advisory circular (AC) is issued to support the introduction of data communications applications for air traffic services (ATS). Ultimately, the International Civil Aviation Organization (ICAO) will use data communications applications to implement the communication, navigation, and surveillance (CNS) concepts that describe the future air navigation system (FANS). This AC provides guidelines for design approval of aircraft data communications systems and applications primarily used for air traffic services (ATS). Like all advisory material, this AC is not, in itself, mandatory and does not constitute a regulation. It is issued to provide guidelines and to outline a method of compliance with airworthiness standards contained in the Title 14, Code of Federal Regulations (CFR), subchapter C. This AC will also ensure standardization among the Aircraft Certification Offices (ACO) in their assessment of aircraft data communications systems and applications for design approval. This AC was developed in consideration of the ICAO standards and recommended practices (SARPs) and in cooperation with foreign civil air authorities (FCAA). A comment form is included in appendix 5 of this AC to allow ACO’s and other users to offer comments during the use of this AC. 2. BACKGROUND. Aircraft operators have been using very high frequency (VHF) based aircraft communications addressing and reporting system (ACARS) data communications systems for aircraft operational control (AOC) and aeronautical administrative control (AAC) for more than a decade.
    [Show full text]
  • Airline Benefits of Satcom
    The benefits of satcom to airlines Prepared by Helios for contents INTRODUCTION 3...........................What is satcom? 4…………………………..the evolution of satcom Atc benefits 5………………………….benefits from datalink applications in oceanic ATC 6………………………….SATCOM enabled ATC operational improvements 7………………………….Monetary breakdown of atc benefits 8………………………….Reducing separation minima AOC BENEFITS INSERT TEXT HERE 9………………………….SATCOM enabled AIRLINE operational improvements through aoc Overview of benefits 10……………………..Annual BENEFIT GROWTH 11………………………breakdown of benefits enabled by satcom in oceanic regions THE FUTURE OF SATCOM 12………………………..The future of SATCOM in and beyond the oceanic regions 13………………………..acronyms The benefit of satcom to airlines 2 Introduction What is SATCOM? Satellite Communication, or satcom in short, is a voice and data service allowing aircraft to communicate with Air Traffic Control and its Airline Operations Centre when outside coverage of conventional ground radar and VHF stations. Over the past 16 years, Inmarsat has revolutionised Air Traffic Control (ATC) and Airline Operational Communications (AOC) in remote regions. With a 95% market share, it is the leading service provider and processes over 100,000 air traffic messages a day. Many of these are to service the 1.5 million annual oceanic flights. Given traffic growth, increasing numbers of operational procedures using satcom and the development of a new generation of AOC applications, the importance of satcom in the aviation industry will only On behalf of Inmarsat, Helios has valued the benefit that continue to grow. Inmarsat is also constantly improving their service satcom has brought to airlines over the period 2001 to 2016. provision by introducing new capabilities to their network to The work has quantified the benefits arising from the use of accommodate growing demand.
    [Show full text]
  • Potential Data Link Candidates for Civilian Unmanned Aircraft
    1 Potential Data Link Candidates for Civilian Unmanned Aircraft Systems: A Survey Maede Zolanvari, Student Member, IEEE, Raj Jain, Life Fellow, IEEE, Tara Salman, Student Member, IEEE Abstract— This survey studies the potential data link candidates vary. for unmanned aircraft vehicles (UAVs). There has been A UAS consists of a UAV connected via a data link to a pilot tremendous growth in different applications of UAVs such as on the ground. The pilot guides the UAV and may lifesaving and rescue missions, commercial use, recreations, etc. communicate with the air traffic control (ATC). By data link, Unlike the traditional wireless communications, the data links for these systems do not have any general standardized framework yet we mean the connection link between the pilot and UAV, where to ensure safe co-existence of UAVs with other flying vehicles. This the pilot may have direct access to the aircraft or indirect access motivated us to provide a comprehensive survey of potential data through a network of data links such as cellular or satellite link technologies available for UAVs. Our goal is to study the communications [2]. We will discuss these technologies later in current trends and available candidates and carry out a this paper. The UAS architecture is shown in Fig. 1, where comprehensive comparison among them. The contribution of this different dashed line types show different possible data links. survey is to highlight the strength and weakness of the current data link options and their suitability to satisfy the UAVs The pilot may be in communication with the ATC to have a communication requirements.
    [Show full text]