Flight Deck Solutions and Technologies Moving the Industry Forward
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GFC 700 AFCS Supplement
GFC 700 AFCS Supplement GFC 700 AFCS Supplement Autopilot Basics Flight Director vs. Autopilot Controls Activating the System Modes Mode Awareness What the GFC 700 Does Not Control Other Training Resources Automation Philosophy Limitations Modes Quick Reference Tables Lateral Modes Vertical Modes Lateral Modes Roll Hold Heading Select (HDG) Navigation (NAV) Approach (APR) Backcourse Vertical Modes Pitch Hold Altitude Hold (ALT) Glidepath (GP) Glideslope (GS) Go Around (GA) Selected Altitude Capture (ALTS) Autopilot Procedures Preflight Takeoff / Departure En Route Arrival/Approach Approaches Without Vertical Guidance Approaches With Vertical Guidance Revised: 02/08/2021 Missed Approach Autopilot Malfunctions/Emergencies Annunciations Cautions (Yellow) Warnings (Red) Emergency Procedures Manual Electric Trim Control Wheel Steering C172 w/ GFC700 Autopilot Checklist Piper Archer w/ GFC700 Autopilot Checklist Supplement Profile Addenda Autopilot Basics Flight Director vs. Autopilot ATP’s newer Cessna 172s and Piper Archers come factory-equipped with the GFC 700 Automatic Flight Control System (AFCS). The GFC 700 AFCS, like most autoflight systems, includes both a flight director (FD) and an autopilot (AP). The FD calculates the pitch and bank angles needed to fly the desired course, heading, altitude, speed, etc., that the pilot has programmed. It then displays these angles on the primary flight display (PFD) using magenta command bars. The pilot can follow the desired flight path by manipulating the control wheel to align the yellow aircraft symbol with the command bars. Alternately, the pilot can activate the AP, which uses servos to adjust the elevators, ailerons, and elevator trim as necessary to follow the command bars. Controls The AFCS is activated and programmed using buttons on the left bezel of the PFD and the multifunction display (MFD). -
Communications
The Essentials of Datalink Communications The origins and course of Air-to-Ground Messaging The Essentials of Datalink Communications Contents international Trip Support | international Trip The Technology that HR Created 02 Inmarsat Satellite 06 Growing into an Operational Necessity 03 Iridium Satellite 07 UAS Communications Mechanisms 04 Upcoming Regulations 10 VHF Radio 05 The Future of ACARS 11 © Copyright 2016 Page 1/12 The Technology that HR Created t one time in the not-so-distant past, pilots and other ARINC’s solution was an automated system, called the A flight crew members were paid different rates for the ARINC Communications Addressing and Reporting System, time they were airborne versus the time they were performing or ACARS for short, which sent short text data from the ground operations. Events like aircraft pushback, taxi, takeoff, avionics of the aircraft directly to the ground-based entities landing, and gate arrival were transmitted via voice over radio through Very High Frequency (VHF) radio frequencies frequencies to operators who would relay this information back without any crewmember involvement. The aircraft was to the airlines. The pilots were responsible for self-reporting programmed to take advantage of switches and automation their own times and movements. Understanding that people points on the aircraft, resulting in the creation of a set of can sometimes be forgetful, or worse, willfully manipulative, messages referred to as the OOOI report. An OOOI report is the major airlines began searching for a solution that tracked any of four messages: Out, Off, On and In. Still in wide-scale crewmember pay in a more structured and accurate way. -
ACARS Aeronautical Radio, Inc
Introducing ACARS Aeronautical Radio, Inc. (commonly known as: "ARINC") maintains a huge VHF and HF voice network throughout the United States and overseas to provide operational radio communications for the aircraft industry. In the early eighties they developed an addressable, digital data link for commercial and business jets and their respective companies known as ACARS. ACARS stands for Aircraft Communications Addressing and Reporting System. It was produced to reduce the flight crew's work-load by using modern computer technology to exchange many routine reports and messages. This improves the safety and efficiency of modern air travel. ACARS uses the AM mode because the same airborne VHF radio is often also used for voice communications. Burst transmissions are used with a limit of 220 ■ ACARS FREQUENCIES characters per message. Transmissions often last less than one second! MHz Function Therefore when monitoring ACARS it is important to leave your receiver's 131.550 Primary USA/Canada squelch off. To monitor ACARS transmissions you will need a VHF scanner or 130.025 Secondary USA receiver capable of tuning the VHF (AM) aircraft band 118 to 136 MHz. 129.125 Tertiary USA 131.725 Primary Europe ACARS messages are very structured. Each position in the message has a 131.450 Primary Japan specific function. The very common Q0 Link Test is shown as an example below. 131.475 Private Air Canada Address Field Message Label Downlink Block Identifier ■ ACARS DECODERS .N9009U Q01 5400UA1750 Message Sequence Number Carrier & Flight Number There are nearly one hundred "standard" ACARS message formats plus a virtually unlimited number of airline specific company formatted message types. -
Basic's to Decoding Inmarsat L-Band Signals Using The
Basic’s to decoding Inmarsat L-Band signals using the RSP CHECK YOUR LOCAL LAWS BEFORE DECODIING ANY SIGNALS FROM THE INMARSAT SYSTEM Hardware used SDR: RSP1a SDR from SDRplay https://www.sdrplay.com/rsp1a/ Antenna: Modified GPS patch antenna for L-Band from SDR-Kits, model A154. https://www.sdr-kits.net/L-Band-Receive%20Antenna www.sdrplay.com 1 Basic’s to decoding Inmarsat L-Band signals using the RSP Software used SDRuno v1.32 https://www.sdrplay.com/downloads/ VBcable (Donationware) vPack43 https://www.vb-audio.com/Cable/ VAC (Paid for use) v4.60 https://vac.muzychenko.net/en/ JAERO (Free) v1.0.4.9 https://github.com/jontio/JAERO/releases Tekmanoid STD-C Decoder (Paid for use) v1.5.1 Requires Java JRE, check your local laws before using this decoder. http://www.tekmanoid.com/egc.shtml https://www.java.com/en/download/ Introduction (some text taken and edited from the RTL-SDR Blog website) This document is not a definitive guide to Satcom, L-Band transmission or the Inmarsat system. This is a collection of information that I have found scatter throughout the internet and re- compiled into a document, this document. My aim is to help you get started and hopefully guide you in the right direction. Expect typographical mistakes, inaccuracies, or omissions Inmarsat is a communications service provider with several geostationary satellites in orbit. Inmarsat provides services such as satellite phone communications, broadband internet, and short text and data messaging services. Geostationary means that the Inmarsat satellites are in a fixed position in the sky and do not move. -
ICAO Abbreviations and Codes
Doc 8400 Procedures for Air Navigation Services ICAO Abbreviations and Codes This edition incorporates all amendments approved by the Council prior to 24 July 2010 and supersedes, on 18 November 2010, all previous editions of PANS-ABC (Doc 8400). Eighth Edition — 2010 International Civil Aviation Organization Suzanne Doc 8400 Procedures for Air Navigation Services ICAO Abbreviations and Codes ________________________________ This edition incorporates all amendments approved by the Council prior to 24 July 2010 and supersedes, on 18 November 2010, all previous editions of PANS-ABC (Doc 8400). Eighth Edition — 2010 International Civil Aviation Organization Published in separate English, French, Russian and Spanish editions by the INTERNATIONAL CIVIL AVIATION ORGANIZATION 999 University Street, Montréal, Quebec, Canada H3C 5H7 For ordering information and for a complete listing of sales agents and booksellers, please go to the ICAO website at www.icao.int First edition,1964. Seventh edition, 2007. Eighth edition, 2010. Doc 8400, Procedures for Air Navigation Services — ICAO Abbreviations and Codes Order Number: 8400 ISBN 978-92-9231-626-6 © ICAO 2010 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, without prior permission in writing from the International Civil Aviation Organization. AMENDMENTS Amendments are announced in the supplements to the Catalogue of ICAO Publications; the Catalogue and its supplements are available on the ICAO website at www.icao.int. The space below is provided to keep a record of such amendments. RECORD OF AMENDMENTS AND CORRIGENDA AMENDMENTS CORRIGENDA Date Date Entered Date Date Entered No. -
767 ACARS Revision
MONTHLY NEWS REVIEW February 2015 L2 Aviation Completes 767-300 ACARS Supplemental Type Certificate Revision to Support CPDLC over ATN Austin, Texas – January 26th, 2015 L2 Consulting Services, Inc. (L2) is pleased to announce that the company has successfully completed a revision of its existing 767-300 Aircraft Communications Addressing and Reporting Systems (ACARS) FAA Supplemental Type Certificate (ST11124SC). The certification program involved upgrading the current ARINC 724B ACARS with a new ARINC 758 ACARS system and upgraded the legacy ARINC 716 VHF Radio to the latest ARINC 750 VHF Data Radio for Controller-Pilot Data Link Communications (CPDLC) operations. The state of the art communications management system operates over Aeronautical Telecommunication Network VHF Digital Link (ATN VDL) Mode 2 (CPDLC-ATN-B1 VDLM2). Additionally, the certification included the installation/activation of a Cockpit Voice Recorder – Data Link (CVR-DL) interface, and installation/activation of an independent Global Navigation Satellite System (GNSS) receiver to support CPDLC operations to meet EUROCONTROL CPDLC (formerly known as Link 2000+). L2 President, Mark Lebovitz said, “CPDLC has been deployed to decrease voice channel occupancy and increase flight safety and efficiency through more effective datalink communications.” He added, “Future CPDLC uses will likely include route clearance uplink, 4D trajectories, continuous descent approaches, and constraint coordination.” Overall the system is designed to supplement voice communication between aircraft pilots and air traffic controllers allowing for an increase in air traffic management capacity by automating routine tasks and improving safety. L2 Consulting developed the engineering design, coordinated the certification requirements with the FAA, produced the installation kits for the end airline customer and provided project management for the program. -
Garmin Reveals Autoland Feature Rotorcraft Industry Slams Possible by Matt Thurber NYC Helo Ban Page 45
PUBLICATIONS Vol.50 | No.12 $9.00 DECEMBER 2019 | ainonline.com Flying Short-field landings in the Falcon 8X page 24 Regulations UK Labour calls for bizjet ban page 14 Industry Forecast sees deliveries rise in 2020 page 36 Gratitude for Service Honor flight brings vets to D.C. page 41 Air Transport Lion Air report cites multiple failures page 51 Rotorcraft Garmin reveals Autoland feature Industry slams possible by Matt Thurber NYC helo ban page 45 For the past eight years, Garmin has secretly Mode. The Autoland system is designed to Autoland and how it works, I visited been working on a fascinating new capabil- safely fly an airplane from cruising altitude Garmin’s Olathe, Kansas, headquarters for ity, an autoland function that can rescue an to a suitable runway, then land the airplane, a briefing and demo flight in the M600 with airplane with an incapacitated pilot or save apply brakes, and stop the engine. Autoland flight test pilot and engineer Eric Sargent. a pilot when weather conditions present can even switch on anti-/deicing systems if The project began in 2011 with a Garmin no other safe option. Autoland should soon necessary. engineer testing some algorithms that could receive its first FAA approval, with certifi- Autoland is available for aircraft manu- make an autolanding possible, and in 2014 cation expected shortly in the Piper M600, facturers to incorporate in their airplanes Garmin accomplished a first autolanding in followed by the Cirrus Vision Jet. equipped with Garmin G3000 avionics and a Columbia 400 piston single. In September The Garmin Autoland system is part of autothrottle. -
Flight Deck Solutions, Technologies and Services Moving the Industry Forward Garmin Innovation Brings Full Integration to Business Flight Operations and Support
FLIGHT DECK SOLUTIONS, TECHNOLOGIES AND SERVICES MOVING THE INDUSTRY FORWARD GARMIN INNOVATION BRINGS FULL INTEGRATION TO BUSINESS FLIGHT OPERATIONS AND SUPPORT From web-based flight planning, fleet scheduling and tracking services to integrated flight display technology, head-up displays, advanced RNP navigation, onboard weather radar, Data Comm datalinks and much more — Garmin offers an unrivaled range of options to help make flying as smooth, safe, seamless and reliable as it can possibly be. Whether you operate a business jet, turboprop or hard-working helicopter, you can look to Garmin for industry-leading solutions scaled to fit your needs and your cockpit. The fact is, no other leading avionics manufacturer offers such breadth of capability — or such versatile configurability — in its lineup of flight deck solutions for aircraft manufacturers and aftermarket upgrades. When it comes to bringing out the best in your aircraft, Garmin innovation makes all the difference. CREATING A VIRTUAL REVOLUTION IN GLASS FLIGHT DECK SOLUTIONS By presenting key aircraft performance, navigation, weather, terrain routings and so on. The map function is designed to interface with a and traffic information, in context, on large high-resolution color variety of sensor inputs, so it’s easy to overlay weather, lightning, traffic, displays, today’s Garmin glass systems bring a whole new level of terrain, towers, powerlines and other avoidance system advisories, as clarity and simplicity to flight. The screens offer wide viewing angles, desired. These display inputs are selectable, allowing the pilot to add advanced backlighting and crystal-sharp readability, even in bright or deselect overlays to “build at will” the map view he or she prefers for sunlight. -
Inmarsat Classic Aero
AVIATION SAFETY – Inmarsat satcom update ICAO YUL Sept 28th_Oct 2nd 2015 Comms Working Group/1, ICAO Montreal, Canada Gary Colledge, Head ofDanny Aviation Bharj, Safety Aviation Product Product Development, & Inmarsat Service Specialist, Inmarsat and Iris Precursor Project Inmarsat Classic Aero ‘refresh’, FANS1/A over SwiftBroadband evaluation I-3 and I-4 Network Harmonization New Classic I-3 Ground Stations at Burum/Perth since mid-2013 Burum Fucino Paumalu Perth Inmarsat MMP-New York MMP-Amsterdam MSC-Burum Data-2 & Data-3 Data-2 & Data-3 Voice – H+ DP1 DP…n PSTN ACARS Processer + ACARS Processer Network Voice Switch + Voice Switch Common network access to Classic Aero on I-3 and I-4 Access to SwiftBroadband/SB Safety on I-4 2 Inmarsat satcom update ICAO YUL Sept 28th_Oct 2nd 2015 I-3 Classic Aero Coverage Map (L-Band) Burum Perth This map depicts Inmarsat’s expectations of coverage, but does not Swift 64, Aero I Aero H/H+ services are provided in the full represent a guarantee of service. The availability of service at the edge of coverage areas fluctuates depending on various conditions. Coverage footprint of the global beams 3 Inmarsat satcom update ICAO YUL Sept 28th_Oct 2nd 2015 I-3/I-4 Classic Aero Dual Constellation Classic I-3 and I-4 networks, having identical infrastructure, can now be supported ‘as one’ by network operations team − In support of PBCS monitoring, Inmarsat can now utilise common analytic tools across I3 and I4 networks − Inmarsat can now administer satcom short codes in the same way across the I-3/I-4 GESs. -
10-12 September, 2012
ARINC PROPRIETARY ICAO South American Region Data Link Applications Workshop 10-12 September, 2012 This document is the exclusive property of ARINC Incorporated, and all information contained herein is confidential and proprietary to ARINC. It is not to be published, reproduced, copied, distributed, disclosed, or used, in whole or in any part thereof, without the prior written consent of a duly authorized representative of ARINC. The information herein is supplied ARINC is a portfolio company of The Carlyle Group. without representation or warranty of any kind. ARINC disclaims all liability of any kind arising from the use of this document or reliance on the information contained therein. History of ARINC Incorporated in 1929 Served as the airline industry’s single licensee and coordinator of radio communication Responsible for all ground-based, aeronautical radio stations and compliance with FRC rules and regulations Originally owned by airlines Revenue of $1 billion USD, with more than 3,000 employees worldwide Customers in over 102 countries Employees in 143 locations Proprietary Information Page 2 Worldwide Products & Services Aerospace & Defense Commercial Aviation Airports Networks Public Safety Security Transportation Video en Español: Aviación y Aeropuertos - Panorama Global Mission-critical solutions for Communications, Engineering and Systems Integration Proprietary Information Page 3 AGENDA GLOBALink Media and Coverage Applications Central and South American Trails and Implementation Proprietary Information -
Single Engine | Pressurized Turboprop Avionics Enhanced Automatic Flight Control System (Afcs)
CABIN CLASS | SINGLE ENGINE | PRESSURIZED TURBOPROP AVIONICS ENHANCED AUTOMATIC FLIGHT CONTROL SYSTEM (AFCS) GARMIN G1000 NXi IS THE NEXT GENERATION OF GLASS COCKPITS No pilot help The G1000 NXi system takes the legacy G1000 glass flight deck platform to a higher level of performance and capability. It combines added processing power Light righting force with brighter, smoother high resolution displays and enhanced optional features including; SurfaceWatch runway identification and alerting technology, Connext Stronger righting force (Flight Stream 510) wireless cockpit connectivity, HSI mapping on your primary flight display, animated NEXRAD datalink weather and autopilot coupled visual Electronic Stability Automatic Level Mode Protection (ESP) (Optional) (Blue Button) approaches down to pilot selectable minimums. Any pilot who’s ever been startled Level Mode will return the aircraft to a to attention by a stall warning horn wings level attitude with zero vertical in a busy cockpit will appreciate the speed with the push of a button. It M500 G1000 NXi SHOWN *Shown with Aspen EFD1000 Standby Flight. Garmin GI-275 now standard. proactive stability augmentation of automatically engages the autopilot to the ESP monitoring technology. This return the aircraft to straight and level CONNECTED AIRCRAFT downloading to your mobile device — Flight Stream 510 (Optional) feature functions independently of the flight in case of pilot disorientation. G1000 NXi’s ability to simplify and then transfer the data to your aircraft Assemble all flight information on your mobile autopilot system ó although it uses the streamline your piloting workload when you get to the airport. device in advance, then wirelessly sync with HSI MAPPING NEXRAD DATALINK WEATHER same control servos to gently nudge the Approach and Landing starts even before you climb into the the cockpit once you get to the airport. -
GARMIN LTD. (Exact Name of Registrant As Specified in Its Charter)
UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10‐K [X] ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended December 25, 2010 or [ ] TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from to Commission file number 0‐31983 GARMIN LTD. (Exact name of registrant as specified in its charter) Switzerland 98‐0229227 (State or other jurisdiction (I.R.S. Employer Identification No.) of incorporation or organization) Vorstadt 40/42 8200 Schaffhausen N/A Switzerland (Zip Code) (Address of principal executive offices) Registrant’s telephone number, including area code: +41 52 620 1401 Securities registered pursuant to Section 12(b) of the Act: Registered Shares, CHF 10.00 Per Share Par Value NASDAQ Global Select Market (Title of each class) (Name of each exchange on which registered) Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the registrant is a well‐known seasoned issuer, as defined in Rule 405 of the Securities Act. YES [√] NO [ ] Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. YES [ ] NO [√ ] Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days.