International Journal of Geobotanical Research, Vol. nº 1, December 2011, pp. 1-20

Bioclimatic and phytosociological diagnosis of the species of the genus (Nothofagaceae) in South America

Javier AMIGO(1) & Manuel A. RODRÍGUEZ-GUITIÁN(2)

(1) Laboratorio de Botánica, Facultad de Farmacia, Universidad de Santiago de Compostela (USC). E-15782 Santiago de Com- postela (Galicia, España). Phone: 34-881 814977. E-mail: [email protected] (2) Departamento de Producción Vexetal. Escola Politécnica Superior de Lugo-USC. 27002-Lugo (Galicia, España). E-mail: [email protected]

Abstract

The Nothofagus genus comprises 10 species recorded in the South American subcontinent. All are important species in the ex- tratropical, Mediterranean, temperate and boreal forests of Chile and . This paper presents a summary of data on the phyto- coenotical behaviour of these species and relates the communities to the measurable or inferable thermoclimatic and ombrocli- matic conditions which affect them. Our aim is to update the phytosociological knowledge of the South American temperate forests and to assess their suitability as climatic bioindicators by analysing the behaviour of those species belonging to their most represen- tative genus.

Keywords: Argentina, boreal forests, Chile, mediterranean forests, temperate forests.

Introduction tually give rise to a temperate territory with rainfall rates as high as those of regions with a Tropical pluvial bio- The South American subcontinent is usually associa- climate; iii. finally, towards the apex of the American ted with a tropical environment because this is in fact the Southern Cone, this temperate territory progressively dominant bioclimatic profile from Panamá to the north of gives way to a strip of land with a Boreal bioclimate. Argentina and Chile. However, south of the 30th parallel, This parallelism between the climatic sequences in the grosso modo, more variable climatic conditions arise. northern and the southern hemispheres presents a signifi- Surrounding Río de La Plata there is an area with a Tem- cant difference, however. As a result of the increasingly perate bioclimate forming a large semicircle facing the narrower strip of land at the southern tip of South Atlantic ocean and extending from the southernmost America, genuinely continental bioclimates never arise outskirts of Brasil, Uruguay and the province of Buenos- and all the variants of the Mediterranean, Temperate or Aires to the Colorado river mouth. In addition, beyond a Boreal climates range from hyperoceanic to oceanic long and extremely arid strip of land –the so-called “Arid subtypes. Diagonal”– extending from Perú to the Argentinian The singular character of the flora of the American Patagonia, there is a territory with not only peculiar flora Southern Cone has been squarely captured in the des- and vegetation but also with ecosystems adapted to the 3 criptive name of “biogeographical island” frequently large macrobioclimatic categories (other than the Tropi- given to the Chilean territory (ARMESTO ET AL. 1996). cal one) according to RIVAS-MARTÍNEZ (1993, On-line): The Atacama desert to the north, the impressive and Mediterranean, Temperate and Boreal continuous Andean Cordillera to the east, the subantar- This territory shows, on a much smaller scale, the ctic ice to the south and the Pacific Ocean to the west same macroclimatic series as seen in the northern hemis- have induced a scenario where the plant biota has phere, from the Palaeotropical Kingdom to the North evolved independently from the rest of the continent Pole: i. a desert or hyperarid zone (where the change since the time when Australia and Antarctica separated from a Tropical to a Mediterranean bioclimate takes from the American Southern Cone and the Andean ba- place); ii. a zone with a variably and progressively more rrier emerged in the Eocene-Miocene epochs (STUESSY humid, Mediterranean climate, to such an extent that the & TAYLOR, 1995). increasing summer rains from the Pacific Ocean even-

Correspondence: Javier Amigo. Laboratorio de Botánica, Facultad de Farmacia, Universidad de Santiago de Compostela (USC). E- 15782 Santiago de Compostela (Galicia, España). Phone: 34-881 814977. E-mail: [email protected] ISSN: 2253-6302 print/ISSN 2253-6515 on line ©Editaefa DOI: 10.5616/ijgr110001 2 J. Amigo & M. A. Rodríguez-Guitián

This territory, the Austro-American Subkingdom in Background the biogeographical mapping of RIVAS-MARTÍNEZ & Given the significant contribution of the Nothofagus NAVARRO (1994) and RIVAS-MARTÍNEZ ET AL. (2011), species to the Chilean and Argentinian temperate forests, exhibits a flora with a high endemicity rate, as high as there is no shortage of studies dealing with the ecological 46% at species level (MARTICORENA 1991). The Notho- and dynamic features of the natural populations. This is fagus genus is one of the most outstanding groups in this particularly true not only of the timber-yielding species peculiar flora and links the southern half of Chile with growing in rainy, temperate areas (for a summary, see the Holantarctic Floristic Kingdom (sensu TAKHTAJAN VEBLEN ET AL. 1996), but also of species occurring in the 1986). The genus is included in the monotypic Nothofa- Chilean mediterranean territory (DONOSO 1996). Since gaceae family and in the order , whose morpho- all these species are of great interest for the timber in- logical similarities with the Fagaceae of the northern dustry (DONOSO 1998), the quantitative aspects of their hemisphere earned them the geobotanical name of autoecology (DONOSO 2006), genetic variability (DONO- “southern beech ”. SO ET AL. 2004), ecophysiology (ALBERDI ET AL. 1985; The Nothofagus genus with its 36 known species has ALBERDI 1996) and even palaeohistory (MARKGRAF ET been considered as one of the key genera in showing the AL. 1996) have already been studied. migration and evolutionary patterns of the southern The phytosociological behaviour of each of these hemisphere biota. The genus is of great interest for pa- Nothofagus species has also been studied. Since laeobotany on account of three relevant features: 1) it is OBERDORFER (1960) clearly established the syntaxono- made up of tree species which are usually important mical arrangement of the mediterranean and temperate components of the climatophilous forests; 2) the has vegetation of Chile, some later contributions by Argen- low dispersal ability which largely limits its propagation tinian authors, such as ESKUCHE (1968, 1969, 1973, 1999, to land routes; and 3) there are abundant fossil records of 2002) or ROIG (1998), and Chilean authors, such as the genus, and particularly of its unmistakable pollen PISANO (1970, 1977), DOLLENZ (1982a), RAMÍREZ ET AL. grains (HILL & DETTMANN, 1996). (1983, 1989), SAN MARTÍN ET AL. (1984, 1991b, 1991c), There are 10 species belonging to the Nothofagus ge- have described particular associations for clearly-defined nus which can be found in the South American extratro- territories. However, a great variety of names of associa- pical territory (either Mediterranean, Temperate or Bo- tions (RAMÍREZ ET AL. 1987; SAN MARTÍN & RAMÍREZ real). They are the following (the order corresponds more 1987), communities (GAJARDO 1994) or vegetation belts or less to the occurrence of the species from north to (LUEBERT & PLISCOFF 2006) have been published in south): wide-ranging studies dealing with large territories but no 1. Nothofagus macrocarpa supportive relevés have been published to adequately 2. N. glauca support those names or has there been adequate nomen- 3. N. alessandri clatural validation. To avoid possible misinterpretations, 4. N. obliqua there is urgent need of a careful syntaxonomical revision 5. N. alpina using the International Code of Phytosociological No- 6. N. dombeyi menclature (WEBER ET AL. 2000). 7. N. nitida This paper provides a description of the phytosocio- 8. N. betuloides logical behaviour of the South American Nothofagus 9. N. pumilio species and co-relates their communities with the biocli- 10. N. antarctica matic belts suggested by RIVAS-MARTÍNEZ (1993, On- line). The species can also be arranged to reflect the 3 large ecological groups involved (RAMÍREZ 1987): i. large- leaved, deciduous species peculiar either to the “Medite- Brief description of the territory rranean region” or to areas with a submediterranean-like In Chilean territory the Nothofagus forests extend summer (species 1 to 5); ii. perennial species associated right across the country, from latitude 33° south to Tierra with the “Valdivean region” (6 to 8); and iii. small- del Fuego (Figure 1). Meanwhile, on the other side of the leaved, deciduous species peculiar to the “Subantarctic Andean Cordillera, in Argentina, their presence is res- region” (9 and 10). Although some publications by Chi- tricted to a narrow strip of land that originates at latitude lean authors support the existence of an eleventh taxon, 35° south and runs parallel to the impressive Andean viz., Nothofagus leonii Espinosa, considering it a forest range up to the south apex of the continent. In Chile, in species on account of its distinct morphological features addition to the Andes, there is the so-called Cordillera de (RAMÍREZ ET AL. 1997) and auto-ecological profile la Costa, a group of mountain ranges running parallel to (DONOSO 2006), in all cases they have recognized its the Pacific coast. This cordillera is much older than the hybrid character. The taxon is the result of the natural Andes and, consequently, the peaks are much lower as a crossing of N. obliqua and N. glauca, and has obviously result of long-term erosion. been found where these two species overlap. For this In the land strip between latitudes 32° and 37° south reason we have not included it in our study nor have we the Andean Cordillera has imposing peaks. These are the included other hybrids that do not always have an ortho- Mediterranean Andes, with peaks above 5,000 and 6,000 dox name, despite having begun to be recognized and masl (for example, Aconcagua, 6,959 m). Going south, described in the last decades (DONOSO & ATIENZA 1984; between latitudes 37° and 41° south, we find the so- DONOSO ET AL. 1990; GRANT & CLEMENT 2004; called Andes de la Araucanía, with peaks above 2,000 QUIROGA ET AL. 2005). and 3,000 m. The territory is punctuated with a conside-

Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America 3 raable number of volcanoes which have been active in the Cordillera Pelada (40° south) and 800 m in the Cor- historic times. Finally, southwards from the latitude of dillera Piuchué (Isla Grande de Chiloé, 42° south). From Puerto Montt the Patagonian Andes form the frontier that point to the south the coastline is indented with nu- between Chile and Argentina. Although these peaks are merous inlets. The Cordillera de la Costa disappears as very rarely above 2,500 m, they are permanently covered such and there remain only a few recognizable geologi- by more than 18,000 km2 of ice. Despite the progressi- cal outcrops as far as 47º south. Nearer Cape Horn the vely decreasing height of the great cordillera, the west- coastline adopts the form of a series of islands and fiords to-east rain shadow effect induced by the topography as a result of Holocene glacial activity. The orographical inevitably restricts the occurrence of temperate forests in profile of this emerged land is remarkable only for the Argentinian territory to a 10 to 45 km wide land strip to extensive cover rate of the pristine vegetation, namely, the east of the frontier. On the other side of that land peatlands and hyperhumid forests. strip, the bioclimate changes abruptly from Temperate In Chile there is a plain between the Andean Cordi- oceanic to Mediterranean xeric conditions. llera and the Cordillera de la Costa. This is the Valle Central, which constitutes a uniform landscape of low- lands made up of Terciary and Quaternary deposits ex- tending from the capital city of Santiago to Puerto Montt, 1,000 km to the south. The territory is excellent for ex- tensive agriculture and live-stock rearing. For this rea- son, this strip of land has the most densely populated urban settlements and the highest replacement rate of natural vegetation. In this man-induced landscape alloc- hthonous trees are more abundant than aboriginal trees. As you cross the Andes towards Argentina the mountain ranges disappear fairly quickly and give way to sedi- mentary piedmonts. After a few kilometres the hyperhu- mid ombroclimate changes to semiarid and, towards the east, the disappearance of forests and scrublands with Nothofagus signals the transit to a Mediterranean macro- climate and the extensive Patagonian plains.

Methods This is an in situ study of a wide variety of commu- nities with different species of the Nothofagus genus. The study area covers a large biogeographical area, from the 33rd to the 53rd parallel. Our sampling technique and ecological interpretation approach has always followed the phytosociological method of BRAUN-BLANQUET (1979), updated by GÉHU & RIVAS-MARTÍNEZ (1981). For each Nothofagus species we provide: + Information of each one of the species, summarized in the form of: A) A biotype with an evaluation of the size range. For this purpose, besides the distinction deciduous/ ever- green, in line with the classification of ELLENBERG & MÜELLER-DOMBOIS (1967) we have also distinguished mesophanerophytes (5-50 m high), microphanerophytes (2-5 m) and nanophanerophytes (< 2 m). Figure 1: Map showing latitudinal and longitudinal B) The recorded distribution area plotted on indivi- position of Chilean territory with indication of the admi- nistrative Chilean regions and neighbour Argentinian dual maps with the logical limitations as far as the dis- provinces. Thick-dotted lines mark borders between ma- play scale is concerned. The main sources of these crobioclimatic territories (sensu RIVAS-MARTÍNEZ ET AL. graphical data correspond to relatively recent publica- 2011). Green straight lines show the precise route whose tions, such as DONOSO (2006), CONAF (1998), ALBRIEU vegetation is detailed along 1 to 4 West-East Transects. & FERRARI (2000), GARCÍA & ORMAZABAL (2008), or have been prepared in-house. Unfortunately, these are The Cordillera de la Costa has its highest points, not the result of an exhaustive monitoring of bibliogra- about 2,000 masl, at the latitude of the Chilean capital (La Campana, for example, is 33° south), where the phical records or herbaria, since geobotanists have not ombroclimate ranges from semiarid to dry at basal level. yet produced a published map with a detailed and geo- Further south, the cordillera exhibits a discontinuous referenced distribution of the trees of Chile. As fre- profile with lower peaks. These peaks reach 1,500 in the quently happens with biogeographical surveys dealing Cordillera de Nahuelbuta (38° south) where the climate with Chilean territory, numerical references are usually conditions are temperate and hyperhumid, or 1,000 m in expressed in degrees of latitude south.

4 J. Amigo & M. A. Rodríguez-Guitián

+ A classification of the communities involved. This Results and Discussion includes: In compliance with the species arrangement given in C) The type of bioclimate and bioclimatic belts the Introduction, here we provide the phytosociological (thermo- and ombroclimatic) where these communities and bioclimatic allocation ascribed to each of the genus occur. For this purpose, we have used the climatic crite- species. The mention of a bioclimate or a bioclimatic belt ria and parameters of the classification suggested by (thermoclimate or ombroclimate) in brackets means that RIVAS-MARTÍNEZ (1993, On-line). The bioindicator the species has been recorded in it only exceptionally or capability of each species has been estimated in terms of out of its optimum location. In our view the “optimum the co-relation recorded between their communities and location” is applied to plant communities in which the the particular bioclimatic conditions involved. There are species is a member and has developed in a climatophi- not sufficient weather stations for all the areas where lous position in a particular territory, in contrast with Nothofagus communities occur and all the less for An- other possibilities: edaphoxerophilous or edaphohygro- dean areas. Consequently, the presumed relationship philous. That means, when the Nothofagus species is between particular climate conditions and the presence of included in or is the dominant tree in a woodland com- a given forest association, at a latitude and for a measu- munity which is found on mature soils in accordance rable altitude range, must not be interpreted as a catego- with the mesoclimate and only receives rain water. The rical but as a probabilistic statement. The fundamental non-optimum positions take place in edaphoxerophilous point here is that the most reliable bioclimatic indicator communities (xerophytic soils, lithosols, rocky slopes, is not the particular Nothofagus species, but the plant etc.) or in edaphohygrophilous ones (wet soils in river community in which that species takes place in each beds, banks of lakes and ponds, peat bogs, etc.). Well territory. Climate data from different weather stations all defined concepts applied to vegetation series can be over Chile and heavily reliant on the bioclimatic indices found in RIVAS-MARTÍNEZ (2005). used in the classification of RIVAS-MARTÍNEZ (op. cit.) can be obtained from LUEBERT & PLISCOFF (2006). D) The plant communities in which the tree is one of the dominant species or, at least, occurs as a member of the forest canopy. In this respect, we have used prefera- bly phytosociological associations if available, or higher rank phytosociological categories if not. With regard to all this information, which constitutes the main body of our paper, we have only considered associations either validly published or supported by a published table of relevés. In some cases, the surplus of associations with phytosociological names already pu- blished has led us to adopt the syntaxonomical rank at alliance or order level, in the hope that further studies will eventually clarify the character of the particular associations validly published and recognizable in no- menclatural terms. The literature dealing with these Chilean-Argentinian forests sometimes includes an ex- cessive number of associations for forests whose undis- putable floristic and biogeographical variations cannot, in our opinion, justify such a nomenclatural diversity. However, we do not intend to solve these problems here. That aim would require an extensive and monographic study with a previous collection of tables of relevés and a comparison of nomenclatural typus, etc. We simply aim at providing a general overview for world phytosociolo- gists not particularly acquainted with these Nothofagus forests and Chilean-Argentinian knowledgeable experts Figure 2: Map showing the distribution of three Chilean already acquainted with them but still unfamiliar with endemic Nothofagus. Red dotted line marks Tempera- phytosociological sistematics. te/Mediterranean border Needless to say, the main source of information has The schematically plotted transects 1 to 4 shown in been the publications by botanists who conducted explo- Figure 1 are intended to reflect the spatial catenae of rations and systematic surveys in our study area using many of the communities dealt with here. European methods. However, despite the fact that the first Code of Phytosociological Nomenclature was pu- 1. Nothofagus macrocarpa (DC.) F.M.Vázquez & R.A. blished over three decades ago (BARKMAN ET AL. 1976), Rodr. (Roble de Santiago) not all the researchers have complied with the standards of the orthodox nomenclature. For a list of the main Life form: summergreen mesophanerophyte. references, see the Background subsection. Distribution area: Figure 2

Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America 5

Bioclimate: Pluviseasonal oceanic Mediterranean contact is sclerophyllous forests of a dry ombroclimate Bioclimatic belts: Meso–Supramediterranean subhu- The N. macrocarpa forests represent the rainfall stan- mid-humid dards of a subhumid character up to their northernmost Communities: Elymo andini-Nothofagetum macro- limit (Parque Nacional La Campana), because even there carpae (Oberdorfer 1960) corr. their lower catenal contact is sclerophyllous forests under This is the northernmost species. Its presence in the a dry ombroclimate. However, in their southernmost for- Cordillera de la Costa around latitude 33° south marks mations (with altitudes as high as 1,600 m) records the absolute northern limit of the Nothofagus genus in clearly correspond to a humid rainfall pattern. This is the the American continent. It gives rise to interesting deci- case, for example, of the Reserva Natural Altos de Lir- duous forests on the shady hill slopes in the region of cay. Valparaíso (Vª). This is the case of the Cerro La Campa- na, included in the National Park of the same name. 2. Nothofagus glauca (Phil.) Krasser (Hualo) Although the southern limit of its distribution area is unclear, there is no doubt that it is found in the Andean Life form: summergreen mesophanerophyte. Cordillera, at the approximate latitude of the region of Distribution area: Figure 2 Maule (VIIª), i.e., just beyond latitude 35° south, in con- Bioclimate: Pluviseasonal oceanic Mediterranean tact with the dividing line between the Mediterranean Bioclimatic belts: Meso–(Supra)Mediterranean hu- and the Temperate bioclimates. At that latitude N. ma- mid crocarpa can occur in catenal contact with three other Communities: Bomareo salsillae-Nothofagetum glau- deciduous species of the same genus: at lower altitudes, cae Amigo, San Martín & Quintanilla 2000 with N. glauca; and near the upper limit of the forest, This is another species endemic to Chile which can- with N. pumilio and even N. antarctica (SAN MARTÍN ET not occur on the eastern side of the Andes because the AL. 1991c; see Transect 1/ Figure 3). In addition, when territory in Argentina does not provide the bioclimatic the topography is favourable enough, the evergreen N. conditions required, namely, a mesomediterranean belt dombeyi can also occur at a similar altitudinal level. and a humid ombroclimate. In forestry, the formations of this species endemic to It is basically located throughout the region of Maule Chile have been traditionally regarded as the northern- (VIIª), where it gives rise to forests where it dominates most version (the mediterranean version) of the oak both in the Cordillera de la Costa and the Andes. Along forests of Chile. This viewpoint was further supported by the coastal cordillera it also extends through the region the fact that the species was taxonomically considered as of O’Higgins (VIª), where it reaches its northernmost a mere variant of that oak tree, namely: Nothofagus obli- limit, and along the Andean Cordillera it reaches the qua (Mirb.) Oerst. var. macrocarpa (DC.) Reiche (see north of the region of Bío-Bío (VIIIª) as its southernmost DONOSO, 1982). In phytosociological terms there is only limit. Latitudes 34° and 37° south can be taken as the one association dominated by this species. It is repre- limits of the distribution area of this plant which is sented by 2 relevés taken in Sierra de Bella Vista, in the nowadays regarded as one of the vulnerable species of region of O’Higgins (VIª). The association was correctly the Chilean flora. Capable of producing one-species subordinated to the Wintero-Nothofagetea class. Howe- forest masses, it can also occur in combination with N. ver, both the subordination to order and alliance, and the obliqua and N. macrocarpa. In the coastal cordillera it association’s name itself are still under revision. Some also occurs embedded in the forest masses of N. alessan- published data on its formations in the northernmost sites dri. of its distribution area (VILLASEÑOR & SEREY 1980) The main association described for the forests domi- support the inclusion in Elymo andini-Nothofagetum, as nated by N. glauca is Bomareo-Nothofagetum glaucae, LUEBERT & PLISCOFF (2006) suggest. However, further which belongs to the Laurelietalia philippianae order, sampling and more relevés are needed for the rest of its included in the Wintero-Nothofagetea class. In other area of distribution to check either the invariability of the words, the association exhibits a clearly mediterranean floristic composition or the suitability of recognizing profile, but the components of its flora are indisputably more than one association for these mediterranean oak temperate in origin and character (AMIGO ET AL. 2000). forests. Some samples have been already taken in the For that reason, and very noticeably, it presents a seral south of the Metropolitan Region, but the compilatory scrub community peculiar to the vegetation class of the work still remains unpublished (AVILEZ, 2001).. sclerophyllous forests of the Mediterranean territory of There are as yet no reliable records as to its biocli- Chile: the Lithraeo-Cryptocaryetea class. matic behaviour. Weather stations are extremely rare in It thrives ideally at altitudes ranging between 100 m the mountainous areas of Chile (AMIGO & RAMÍREZ 1998). As with other Nothofagus species, in the case of and 1,000 masl, particularly where the territory lies these forests we have inevitably to infer, by extrapolation within the mesomediterranean belt, and reaches the of the presumed altitudinal variation, their bioclimatic lower limits of the supramediterranean belt in the An- features from the data provided by weather stations lo- dean Cordillera. The ombroclimate records remain cated at lower altitudes. In their northernmost sites of within humid standard levels but in hyperoceanic envi- occurrence, the documented N. macrocarpa forests pre- ronments they can also reach subhumid levels in the sent a subhumid rainfall pattern. Their lower catenal Cordillera de la Costa. (Figure 3/Transect 1).

6 J. Amigo & M. A. Rodríguez-Guitián

Figure 3: Transect 1: Middle Chilean-Patagonian Region, Central Chilean Province. Potential natural vegetation at latitude 35º 50’ south. Horizontal coloured stripes show thermoclimatic belts: Mesomediterranean (dark orange), Supramediterranean (light yellow) and Oromediterranean (olive green). Gap at Central Valley means the complete natural woodland absence by human activities. 1/ Sclerophyllous woodland (Lithraeo-Cryptocaryetea). 2/ Nothofagetum alessandri. 3/ Bomareo-Nothofagetum glaucae. 4/ Scirpo- Nothofagetum antarcticae (edaphohygrophilous). 5/ Pitavio-Nothofagetum dombeyi (edaphohygrophilous). 6/ Nothofagus macro- carpa woodland. 7/ Austrocedrus chilensis (edaphoxerophylous) intermixed with Nothofagus macrocarpa. 8/ Nothofagus pumilio at timberline. 9/ Nothofagus antarctica dwarf woodland. 10/ Orophilous and xerophythic shrubland. 3. Nothofagus alessandrii Espinosa (Ruil) mostly temperate Wintero-Nothofagetea class (where the Nothofagetum alessandrii association is included) and Life form: summergreen mesophanerophyte. the mediterranean Lithraeo-Cryptocaryetea class. These Distribution area: Figure 2 are multi-stratum forests dominated by N. alessandrii, Bioclimate: Pluviseasonal oceanic Mediterranean which is accompanied by N. glauca and several ever- Bioclimatic belts: Mesomediterranean subhumid-hu- green tree species, such as Cryptocarya alba, Aextoxicon mid; hyperoceanic punctatum, Gevuina avellana, Persea lingue and Peumus Communities: Nothofagetum alessandrii San Martín, boldus. As is usual in a humid bioclimate with intense Figueroa & Ramírez 1984 oceanity, there are a great variety of lianas and some This is another species endemic to Chile and one of epiphytes. the most endangered tree species of all the Chilean native Given that, of all the genus, it is the species with the forests and consequently, it has been labelled “Critically most restricted area of occurrence in South America, its endangered” (HECHENLEITNER ET AL. 2005) according to bioclimatic location can be easily defined: its belt is the threat assessment criteria used by the IUCN (2001). lower mesomediterranean, its ombroclimate ranges from Its distribution area is restricted to a strip of land barely upper subhumid to humid, and the corresponding conti- 100 km long and 20 km wide in the Cordillera de la nentality index reveals hyperoceanic standards. Costa. Once over the 35th parallel south, the area extends The exploitation of large areas of the Cordillera de la across the region of Maule, where N. alessandri occurs Costa for the cultivation of exotic , most particu- with a punctuated pattern. The species grows on slopes larly, Pinus radiata, has contributed dramatically to the exposed to the humid wind coming from the Pacific critical situation of this species. Only the 42 ha integra- Ocean. The plant formations, located within a strip of land ted in the Natural Reserve of “Los Ruiles” can be con- at a distance of between 7 and 60 km from the coastline, sidered as under protection (BUSTAMANTE & CASTOR never grow at altitudes above 450 m (OLIVARES ET AL. 1998). 2005). (Figure 3/Transect 1). The deciduous character and leaf size of N. alessan- drii are not very suitable for the mesomediterranean belt 4. (Mirb.) Oerst. (Roble, roble-pellín) environments where the plant develops. These features Life form: summergreen mesophanerophyte. relate it to a more humid and warmer climate and support Distribution area: Figure 4 the idea that the species is a relict of ancient times. Two Bioclimate: hyperoceanic Temperate; oceanic Tem- decades ago the covering area of these forests was esti- perate; oceanic Pluviseasonal Mediterranean mated at less than 350 ha (SAN MARTÍN ET AL. 1991a). Bioclimatic belts: (Thermo) Mesotemperate-Supra- On account of the bioclimatic location of these fo- temperate humid & hyperhumid; Mesomediterranean rests, they are a privileged combination of species of the (sub)-humid

Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America 7

Communities: Boldo-Cryptocaryetum nothofagetosum peculiar to the sclerophyllous forest (Cryptocarya alba, obliquae Oberdorfer 1960; Nothofago obliquae-Per- Peumus boldus, Quillaja saponaria) growing in the me- seetum lingue Oberdorfer 1960; Dioscoreo brachybo- somediterranean belt (in the most oceanic versions, with tryae-Nothofagetum obliquae Eskuche 1999; Notho- an ombroclimate which is at least upper subhumid), the fago obliquae-Prumnopitydetum andinae Amigo, species becomes dominant in large formations of deci- Rodríguez-Guitián & Ramírez 2010 duous forest of the mesotemperate belt. This versatility makes it the most frequent tree in the temperate subme- diterranean territory. When the climate becomes colder and with more intense contrasts in the valleys of the Andean Cordillera, it still forms a community with an endemic conifer (Prumnopitys andina) at the beginning of the supratemperate belt (AMIGO ET AL. 2010). Howe- ver, when climate conditions become more severe, it can give way to the oak forests of Dioscoreo-Nothofagetum between the Chilean region of Araucanía (IXª) and the Argentinian province of Neuquén. To the south, as sub- mediterranean conditions disappear, this last community will progressively give way to hyperhumid forests. Eventually, these deciduous oak forests are replaced by likewise deciduous forests of raulí (N. alpina) or incre- asingly mixed combinations of raulí with the evergreen N. dombeyi.

5. Nothofagus alpina (Poepp. & Endl.) Oerst. (Raulí) [N. procera Oerst.; N. nervosa (Phil.)Krasser] Life form: summergreen mesophanerophyte. Distribution area: Figure 6 Bioclimate: hyperoceanic Temperate, oceanic Tem- perate; (oceanic Pluviseasonal Mediterranean). Bioclimatic belts: Meso-Supratemperate humid & hyperhumid; (Supramediterranean humid). Communities: Dasyphyllo diacanthoides-Nothofagetum alpinae (Frank & Finckh) Pollmann 2001; Nothofa- Figure 4: Map showing the distribution of Nothofagus getum procerae Oberdorfer 1960 + Nothofagetum obliqua. Red dotted line marks Temperate/Mediterranean dombeyi-alpinae Eskuche 1999 border. This is another species recorded in both cordilleras and in Argentinian territory, and has a cover rate even This is a widely distributed tree species that extends, higher than that of N. obliqua. Although present in topo- farthest to the north, through the mediterranean territory graphically suitable mediterranean enclaves of the re- of the region of Maule. There, it is present in the most gions of Maule and Bío-Bío, whose northernmost fron- oceanic areas of the Cordillera de la Costa, where it min- tier lies close to the 35th parallel south, the biggest gles with the elements peculiar to a sclerophyllous forest populations, i.e., the most extensive forests are found in (Boldo-Cryptocaryetum nothofagetosum). From that the Andean Cordillera, where they reach the 41st parallel point it extends southwards, and throughout the biocli- south and beyond. The name of the species has long been matically temperate Valle Central (Nothofago-Persee- disputed. Here we follow the criterion suggested by tum, see Figure 5/Transect 2) to the northern part of the RODRÍGUEZ & QUEZADA (2003). GRANT & CLEMENTS region of Los Lagos (Xª), the species is overwhelmingly (2004) have also endorsed this, but their arguments have dominant. From that point onwards, hyperhumid om- not been universally conclusive. Recent works, particu- broclimate conditions also prevail in the Valle Central. As a result, the forests dominated by deciduous trees larly those by Argentinian authors, have maintained the give way to a combination of evergreen taxa traditionally biname system, i.e., N. nervosa or N. procera. depicted as “Valdivean Forest”. In terms of latitude, the The species can be found in formations dominated by species is present from a strip of land before the 35th the taxon itself. In the most thermophilous variants of parallel south to beyond the 41st south. Although com- these formations, N. alpina mingles with tree species monly associated with low altitudes, it is also capable of peculiar to the oak forests of N. obliqua, such as Persea enduring more continental and colder conditions. When lingue, Dasyphyllum diacanthoides, or Laurelia semper- entering Argentinian territory, for example, it forms virens in the humid mesotemperate belt (Dasyphyllo- remarkable oak forest areas on the eastern slopes of the Nothofagetum). At higher altitudes these species disap- Andes (Dioscoreo-Nothofagetum). pear and N. alpina may form one-species forests or ap- Although accompanied by evergreen thermophilous pear increasingly combined with an evergreen Nothofa- trees peculiar to temperate forests (Persea lingue, Lau- gus: N. dombeyi. This fact has led to the idea of two relia sempervirens, Gevuina avellana), or even by trees different associations catenally juxtaposed in the Andean

8 J. Amigo & M. A. Rodríguez-Guitián

Figure 5: Transect 2: Valdivean-Magellanian Region, Valdivean Province. Potential natural vegetation at latitude 38º 40’ south. Basal coloured bands show thermoclimatic belts: Thermotemperate (orange), Mesotemperate (light green), Supratemperate (dark green) and Orotemperate (violet). Gap at Central Valley means the practically complete natural woodland absence by human activities. 1/ Lapagerio-Aextoxiconetum (evergreen woodland without Nothofagus). 2/ Nothofago obliquae-Perseetum lingue. 3/ Dasyphyllo-Nothofagetum alpinae. 4/ Nothofagetum procerae+ Nothofagetum dombeyi-alpinae. 5/ Carici-Arau- carietum 6/ Nothofagus pumilio + Araucaria araucana woodland. 7/ Orophilous dwarf Nothofagus antarctica woodlands. 8/ Austrocedrus chilensis woodland altitudinal cliseries: firstly, Nothofagetum procerae [a tum by communities dominated by raulí (Dasyphyllo- name taken by its descriptor, Oberdorfer, in 1960, from Nothofagetum, Nothofagetum procerae + Nothofagetum an invalid homonym, viz., N. procera (Poepp. & Endl.) dombeyi-alpinae) before ultimately giving way to the Oerst.], and, secondly, Nothofagetum dombeyi-alpinae, orotemperate forests of araucaria and lenga (Nothofagus at a higher altitude. Both associations occur in the Chi- pumilio) (Figure 5/Transect 2). lean Araucanía and in the Argentinian Neuquén. Howe- ver, we think that closer analysis could eventually reveal 6. (Mirb.) Oerst. (Coihue) that they are simply two variants of the same association. To sum up, moving from north to south through the Life form: evergreen mesophanerophyte. Valle Central, the Mediterranean bioclimate becomes Distribution area: Figure 7 th Bioclimate: hyperoceanic Temperate, oceanic Tem- Temperate at the 38 parallel south, although in the Andean Cordillera the Chilean slopes already exhibit perate; (oceanic Pluviseasonal Mediterranean). temperate conditions from at least the 36th parallel south. Bioclimatic belts: Meso-Supratemperate humid & Once in the area of the Temperate bioclimate, the low hyperhumid; (Meso-Supramediterranean edaphohy- altitude territory is dominated by the oak forest of No- grophilous). thofago-Perseetum and the next forests to be seen in the Communities: Pitavio punctatae-Nothofagetum dom- altitudinal catena towards the supratemperate belt in the beyi San Martín & Ramírez ex Stoll 2008 n.n.; No- band 36°-38° south are variable combinations of Notho- thofagetum procerae Oberdorfer 1960+ Nothofage- fagus obliqua until, when finally entering the orotempe- tum dombeyi-alpinae Eskuche 1999; Myrceugenio- rate belt, other trees comes onto scene. This is because of Nothofagetum dombeyi Eskuche 1999; Austrocedro- the submediterranean Temperate climate of that land Nothofagetum dombeyi Eskuche 1999; Nothofago strip of the Andean Cordillera. However, from the para- dombeyi-Eucryphietum cordifoliae Oberdorfer 1960; llel 38°-38° 30’ south, summer drought episodes are less Laurelio-Weinmannietum trichospermae Oberdorfer intense and the transect Valle Central-Andes undergoes 1960; Chrysosplenio valdivici- Nothofagetum dom- the replacement of the oak forests of Nothofago-Persee- beyi Oberdorfer 1960

Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America 9

This is the evergreen species most widely distributed could be interpreted as one single association). Relevés throughout the temperate territories of Chile and Argen- of this community have already been published, both in tina. It is very abundant from the beginning of the Val- Chile and Argentina (ESKUCHE 1999; POLLMANN 2001). th divean-Magellanian Region, i.e., from the 36 parallel The variable physiognomical profiles recorded reveal th south (in the Andean Cordillera) or the 38 parallel forests under the dominance of N. alpina but also under th south (in the Valle Central), crossing the 47 parallel the overwhelming dominance of N. dombeyi. south in the region of Aisén (XIª). It is also not infre- quent in the foothills of the Andes of the mediterranean territory between the 35th and 36th parallels south (region

Figure 6: Map showing the distribution of Nothofagus alpina. Red dotted line marks Temperate/Mediterranean border. of Maule), even scattered at humid spots slightly further north (region of Libertador O’Higgins). An interesting community (Pitavio-Nothofagetum dombeyi) has even been described for its edaphohigrophilous formations in the topographically suitable sites of the hyperoceanic, mesomediterranean territory of the region of Maule. In these sites it co-dominates the forest with very interes- ting, endangered relict trees, such as punctata or Gomortega keule (STOLL ET AL. 2006) (see Transect 1/ Figure 3). Besides these occurrences in the mediterranean te- rritory, once in the Temperate bioclimate, Nothofagus dombeyi can occur in a submediterranean environment in Figure 7. Map showing the distribution of Nothofagus combination with the oak forests of N. obliqua. In this dombeyi. Red dotted lines mark Temperate/Mediterra- case, clearly visible as an evergreen species intermingled nean and Temperate/Boreal borders. with deciduous forests, it always signals a topographi- cally more humid location. As we go south and to higher To the south, in the Argentinian provinces of Neu- quén and Río Negro, as the supramediterranean belt altitudes in the Andean Cordillera, the temperate climate becomes more and more clearly hyperhumid, the deci- is less and less submediterranean and the deciduous duous-evergreen community of Nothofagetum procerae forest, dominated by raulí (N. alpina), combines incre- + Nothofagetum dombeyi-alpinae gives way to forests asingly with N. dombeyi. As a result, new climatophilous clearly dominated by the evergreen N. dombeyi with the associations of Nothofagetum procerae + Nothofagetum association Myrceugenio-Nothofagetum dombeyi. Howe- dombeyi-alpinae emerge (as already said, these two ver, east of the Andean Cordillera, the decreasing rainfall

Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America 11

Figure 8: Transect 3: Valdivean-Magellanian Region, Valdivean Province. Potential natural vegetation at latitude 40º 45’ – 41º 00’ south. Horizontal coloured stripes show thermoclimatic belts: Mesotemperate (light green), Supratemperate (dark green) and Orotemperate (violet). Gaps at Central Valley are the result of natural woodland absence by human activities. 1/ Lapagerio-Aextoxiconetum (ever- green woodland without Nothofagus). 2/ Laurelio-Weinmannietum (occasionally including N. dombeyi). 3/ Luzuriago-Nothofagetum nitidae. 4/ Nothofago dombeyi-Eucryphietum. 5/ Nothofago obliquae-Perseetum lingue. 6/ Chrysosplenio-Nothofagetum dombeyi. 7/ “Nothofagetum pumilionis”. 8/ Orothilous and discon tinuous dwarf shrubland. 9/ “ Nothofagetum antarcticae” (edaphohygrophilous or as N. dombeyi woodland succesional stage). 10/ Myrceugenio-Nothofagetum dombeyi. 11/ Austrocedro-Nothofagetum dombeyi. 12/ Gavileo-Austrocedretum chilensis (without Nothofagus). gradient is very intense, the increasingly drier hyperhu- liopsis philippiana = Laurelia philippiana) and the tineo mid rainfall pattern eve ntually reaches humid standards ( trichosperma), but there is al so a sign ifi- and the coihue forests g ive rise to a commu nity that cant, although variable, presence of coihue (N. dombeyi) reveals again the presence of a s ubmediterranean scena- Finally, in the Andean catena, between the 38th and rio with the association Austrocedro-Nothofagetum dom- 40th parallels south and still i n Chile, a supratemperate, beyi (Figure 8/ Transect 3). In this latter association, the hyperhumid forest c ommunity, floristically different presence of Austrocedrus chilensis, a Cupressaceae, from the Argentinian Myrceugenio-Nothofagetum, can indicates lower rainfall rates an d the transition to the be found. It is described as an i ndependent association submediterranean cypress forests. After these forests, the with the name of Chrysosplenio-Nothofagetum dombeyi tree vegetation will decline dramatically to give way to and is a one-s pecies coihue forest, which makes altitu- the typical scrub-like pampas of Argentinian Patagonia. dinal contact with the orotemperate deciduous forests of Here the conditions are clearly those of a Mediterranean, Nothofagus pumilio. dry or semiarid bioclimate. On the other hand, in Chile, when the Temperate bio- 7. Nothofagus nitida (Phil.) Krasser (Coihue de Chiloé) climate becomes hyperhumid, even at the lowest altitu- des, the deciduous oak forest of N. obliqua is replaced by Life form: evergreen mesophanerophyte. an evergreen forest, without deciduous taxa. This forma- Bioclimate: hyperoceanic Temperate, oceanic Tem- tion is an integral part of the so-called Valdivean Forest. perate. This phenomenon occurs from latitude 39° south on the Bioclimatic belts: (Meso)Supratemperate hyperhumid slopes of both cordilleras. The forest formed in this way & ultrahyperhumid. has been ascribed to two ass ociations which alternate in Distribution area: Figure 9 the altitudinal cliseries. At lo wer and warmer altitudes Communities: Luzuriago polyphyllae-Nothofagetum but still within the range of the mesotemperate belt, we nitidae Amigo, Ramírez & Quintanilla 2004; find Nothofago dombeyi-Eucryphietum cordifoliae, with Pilgerodendronetum uviferi Oberdorfer 1960; Fitzro- the presence of coihue (N. dombeyi) and other evergreen yetum cupressoidis Oberdorfer 1960 taxa of similar size, such as the ulmo (Eucryphia cordi- As with ot her evergreen Nothofagus species, it has folia) or the tepa (Laureliopsis philippiana). At altitudes the common name of coihue. The geographical tag of de above those of Nothofago-Eucryphietum the evergreen Chiloé in the name reveals in this case the geographical forest takes th e form of an other association: Laurelio- territory where the species is particularly abundant as a Weinmannietum. The name reveals the important role substitute to the northern coihue (N. dombeyi). N. nitida played by two large-sized trees, such as the tepa (Laure- is another large-sized tree th at either produces one -spe-

Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America 11 cies forests or occurs in combination with other ever- Temperate climate, which explains why this species green taxa commonly found in the Valdivean Forest. endemic to Chile does not cross the Andes to colonize This latter is a forest which can occur at supratemperate territory in Argentina. altitudes in both cordilleras (C. de la Costa and the An- A climatophilous association, Luzuriago polyphyllae- des) from latitude 40° south and reaches beyond 48° Nothofagetum has been recognized. In this association south. From this last point southwards, the forest gives the dominance of N. nitida is accompanied by other way to the forests of the third Chilean coihue, namely, N. broad-leaved, evergreen taxa, such as Laureliopsis betuloides. philippiana or Drimys winteri and even some conifers, such as Podocarpus nubigena. The species is not at all infrequent either in edaphohigrophilous locations, which can be even found in its northern distribution area, e.g., the provinces of Llanquihue and Palena. In this type of sites it can intermingle with associations commonly seen in terrains with blocked drainage, a habitat particularly suitable for swamp gymnosperms. This is the case of the community named Pilgerodendronetum uviferi and also of frequent instances of the Fitzroyetum cupressoidis, which is dominated by an emblematic and magnificent Cupressaceae, viz., Fitzroya cupressoides, the Chilean larch. Larch formations thrive in the supratemperate, ultrahyperhumid bioclimate; but Fitzroya cupressoides can grow even under orotemperate conditions. So that in the rainiest areas of the region of Los Lagos the larch forests usually colonize altitudes higher than those re- corded for Luzuriago polyphyllae-Nothofagetum (AMIGO ET AL. 2004). However, both communities (Fitzroyetum and Luzuriago-Nothofagetum) converge perfectly in topographically flat sites, such as valleys carved by gla- ciers. These formations form the so-called “Fitzroya- Nothofagus nitida-forest” (HILDEBRAND-VOGEL ET AL. 1995). In the form of a climatophilous community, the N. nitida forests tend to occur in the supratemperate belt. However, these forests are not unusual in the upper mesotemperate belt on account of their variable adapta- tions as an edaphohigrophilous forest. This is particularly true on the southern edge of the region of Los Lagos (43° south). HOLDGATE (1961) studied N. nitida forests in combination with the swamp Myrtaceae Tepualia stipu- laris. His survey covered sites as far from each other as the western coast of the Island de Chiloé (42° south) and the most southerly limit of the species (49° south). In both extremes of this territory the soils presented a thick peat layer and low pH values. This explains the abun- dance of N. nitida all over the islands and ultrahyperhu- mid channels of the indented Chilean coast to the south of Isla Grande de Chiloé (from 43° south). From the 45th parallel south onwards, the presence of a supratemperate belt at sea level provides conditions even better suited to the species (AMIGO ET AL. 2007).

8. Nothofagus betuloides (Mirb.) Oerst. (Coihue de Magallanes) Figure 9: Map showing the distribution of Nothofagus Life form: evergreen mesophanerophyte. nitida. Red dotted lines mark Temperate/Mediterranean Distribution area: Figure 10. and Temperate/Boreal borders. Bioclimate: hyperoceanic Temperate, oceanic Tem- Another peculiarity of N. nitida is that its forests de- perate; hyperoceanic Boreal. velop with rainfall records ranging from hyperhumid to Bioclimatic belts: Supra-Orotemperate hyperhumid & ultrahyperhumid standards and cover large areas. This is ultrahyperhumid; Thermo-(Meso) Boreal humid-ul- the case of some areas in the south of the region of Los trahyperhumid. Lagos, where annual rainfall records range from 5,000 to Communities: Nothofagetum betuloidis Oberdorfer 6,000 mm. (M.O.P. 1987). On the other hand, its distri- 1960; Pilgerodendronetum uviferi Oberdorfer 1960; bution area reveals a strong liking for a hyperoceanic Nothofagion betuloidis Roig, Dollenz & Méndez 1985

12 J. Amigo & M. A. Rodríguez-Guitián

48° south to 53-54° south in Tierra del Fuego. Except for the relevés taken at latitude 48° south, where N. nitida is also present, no other forest includes any other Nothofa- gus species. After the contribution of OBERDORFER (op. cit.), up to 3 forest associations dominated by N. betuloides were described. These were different stages of shrub degrada- tion as a result of human action. All these variants were described across a transect from the Pacific to the Atlan- tic along latitude 51°-52° south (ROIG ET AL. 1985b). Although these forest associations dominated by the coihue de Magallanes need to be correctly re-arranged and probably simplified, we support the proposal of the Argentinian authors. They defend the existence of an alliance, viz. Nothofagion betuloidis, for this set of hy- peroceanic and hyperhumid most southerly associations, whose borderline with the Boreal macroclimate still needs to be properly determined according to the floris- tic, structural and dynamic changes observed in the com- position of these forests. N. betuloides thrives ideally in a Boreal macroclima- te. Not surprisingly, it is in Tierra del Fuego, the south- ernmost part of the continent, where the species tolerates the widest range of ombroclimates. According to MCQUEEN (1976), the species is found in a full range of forests along the Straits of Magellan, where rainfall rates range from upper humid standards to hyperhumid re- cords to the west of Punta Arenas (Figure 11/Transect 4). From this boreal territory the species also extends to the north, but always in ombroclimatically hyper- and ultra- hyperhumid conditions. It occurs on coastal hyperocea- nic slopes and in the foothills of the Andean Cordillera, altitudinally on top, in the hyperoceanic temperate terri- tory, of the forests of N. nitida, and appearing in some scattered spots as far as the Cordillera de la Costa at parallel 40° south. At this latitude, the northernmost limit of the species, ultrahyperhumid larch forests of Fitzro- yetum cupressoidis are intertwined in a hilltop position with vegetation of Magellanic origin. There we can find small patches of N. betuloides and Magellanic peatlands belonging to the class Myrteolo-Sphagnetea, which is dominated by sod-forming vascular plants, with Donatia fascicularis as the most prominent representative taxon (RAMÍREZ & RIVEROS 1975). The identification of such northerly instances with the same association Nothofa- Figure 10: Map showing the distribution of Nothofa- getum betuloidis (RAMÍREZ & FIGUEROA 1987) needs gus betuloides. Red dotted lines mark Temperate/ further discussion. Mediterranean and Temperate/Boreal borders. 9. Nothofagus pumilio (Poepp. & Endl.) Krasser South of latitude 49° south, the forests of coihue de (Lenga) Chiloé are replaced by other evergreen, (ultra) hyperhu- mid taxa dominated by the coihue de Magallanes. These Life form: summergreen (micro)-mesophanerophyte. can be found throughout the hyperoceanic islands of the Distribution area: Figure 12. channels and fiords of the Chilean coast as far as Tierra Bioclimate: hyperoceanic Temperate, oceanic Tem- del Fuego. OBERDORFER (1960) was the first to provide a perate; (oceanic Boreal). phytosociological name for these forests. He ascribed all Bioclimatic belt: (Supra)-Orotemperate humid & hy- these formations to one single association, which he perhumid; (Mesoboreal subhumid –humid) named Nothofagetum betuloidis, and supported his view- Communities: Adenocaulo-Nothofagetalia pu- point with floristic arguments. However, he did not pro- milionis Oberd. 1960 em. Hildebrand-Vogel, Go- vide any relevés of his own but simply used relevés of doy & Vogel 1990; Violo magellanicae-Nothofagion other authors (REICHE 1907; SKOTTSBERG 1916; pumilionis Roig, Anchorena, Dollenz, Faggi & Mén- ROIVAINEN 1954). These relevés covered the area from dez 1985

Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America 13

Figure 11: Transect 4: Valdivean-Magellanian Region, Boreal-Austromagellanian Province/Temperate Magellanian Province. Ve- getation at latitude 53º 30’ south. Coloured basement shows bioclimate territories: Boreal (green) and Temperate (violet). 1/ Magellanic moorland (Myrteolo-Sphag- netea). 2/ Escallonio-Nothofagion antarcticae 3/ Nothofagion betuloidis 4/ Violo-Nothofagion pumilionis. 5/ Agropyro-Nothofagion antarcticae 6/ Patagonian graminoid steppe (Festucetea gracillimae).

This is the most widely distributed of all the tree spe- Andean land strip where these larch forests have been cies growing in the South American extratropical territo- recorded, that is, between latitudes 41° and 43° south. ry. It can be found from the middle of the region of There are records of these formations, for example, in the Maule, i.e., from latitude 35° 30’ south to Tierra del region of Los Lagos, in the National Park of Vicente Fuego, at the southernmost tip of the continent beyond Pérez Rosales, around latitude 41° (VILLAGRÁN 1980). 55° south. Consequently, it covers about 20 latitudinal D) N. betuloides. Where the ultrahyperhumid condi- degrees. In this immense geographical area the species tions reach the Andean Cordillera in the region of Los usually appears forming one-species forests and its pres- Lagos (40°- 43° south), the orotemperate lenga forests ence always signals the altitudinal limit for the forests can occasionally make contact with this species. But throughout the Andean Cordillera. these contacts are more frequent in the Magellanian These one-species lenga forests, the most orophilous territory, where a decreasing rainfall gradient from the of all temperate forests, are ideal bioindicators for the fiords and western islands to the border between Chile orotemperate belt (AMIGO ET AL. 2007). In this belt we and Argentina provides suitable conditions for the mas- can only find N. pumilio forests frequently accompanied sive occurrence of ultra- and hyperhumid, boreal forests in the timber-line by chaparrals of the same species in of Nothofagion betuloidis to the west and south, and the form of dwarf groves. Only four other tree species humid or subhumid lenga forests to the east and north. In can be seen in these orotemperate forests: the transitional land strips lenga forests can co-exist with A) Nothofagus antarctica in its shrub-like, stunted intrusions of N. betuloides. Near the city of Punta Are- morphotype. Occasionally, on mountain peaks, the high- nas, at latitude 53° south, some cases of this kind have est limit of an orotemperate lenga forest is edged with already been studied (DOLLENZ 1982b). scrublands of this species of 2 m or less (RAMÍREZ ET AL. At latitude 37° south the orotemperate belt typically 1985). associated with the one-species lenga forest occurs from B) Araucaria araucana, which forms mixed forests 1,700 m. However, at latitude 52° south we find the where this gymnosperm easily surpasses the height of the same conditions at sea level. As one would expect, given lengas. These mixed orotemperate forests can only be the lower altitudinal limit of these lengales, N. pumilio found in the latitudinal strip ranging from 37° 30’ to 39° and other dominant Nothofagus species of the catenally 40’ south, i.e., the north and south borderlines respecti- lower forests (N. dombeyi, N. alpina, N. obliqua; see vely of this Chilean-Argentinian gymnosperm (see Figu- Transect 3/ Fig. 8) intertwine. However, these scenarios re 5/Transect 2). The association Carici trichodes-Arau- must be interpreted as “variants of N. pumilio”, perhaps carietum araucanae, previously described by OBER- as a subassociation in some cases, of the corresponding DORFER (1960), was intended to reflect this situation. supratemperate forests. However, some associations combining Araucaria arau- cana and Nothofagus pumilio have since been published The syntaxonomical debate and we now need a syntaxonomical reconsideration of There are numerous communities already described the question. which can be used to make a syntaxonomical analysis of C) Fitzroya cupressoides. In mountain environments these lenga forests. However, this group of vegetation in ultrahyperhumid conditions, stunted lenga groves can badly needs a detailed revision to clarify, in the first also grow on the highest slopes, either in contact or even place, how many distinct units are involved and how intertwining with larch forests (Fitzroyetum cupressoi- they should be named. Two are the most widely used dis). These formations can only be found in the narrow criteria, namely:

14 J. Amigo & M. A. Rodríguez-Guitián

criterion: Adenocaulo-Nothofagetalia pumilio- nis for the communities of the Valdivean Province, and Nothofagetalia pumilionis-antarcticae for the Magellanian Province. This last unit was floristically depicted in a classic study by ROIG ET AL. (1985a). These authors provided data on the lenga forests growing in Chile and Argentina within the latitudinal strip between the 51st and 52nd parallels south. However, as far as the Valdivean lengales are concer- ned, the syntaxonomical debate became more and more complicated with every new study of these forest com- munities. First, ESKUCHE (1968) reformulated the origi- nal Oberdorfer’s invalid name (“Pumilietalia”) as No- hofagetalia pumilionis-dombeyi to include not only the Argentinian forests of N. dombeyi but also those of Aus- trocedrus chilensis. Subsequently, after taking relevés on the slopes of the volcanoes within the Chilean land strip between 38° 50’ and 41° 50’ south, FREIBERG (1985) divided the class into Nothofagetea pumilionis and No- thofagetea antarcticae, accepted the name of the order suggested by ESKUCHE (op. cit.) –but as included in his Nothofagetea pumilionis– and finally put forward the proposal of up to 7 associations of lenga forests as mem- bers of one single alliance. In his research, Freiberg also defended the existence of a new association. Soon after, HILDEBRAND-VOGEL ET AL. (1990) proposed a more correct name for the order, Adenocaulo-Nothofagetalia pumilionis, and recognized 6 associations for the lenga- les studied between the 38th and 45th parallels south. These same authors also defended the existence of a new association. Later, FINCKH (1996), in a detailed study conducted in the National Park of Villarrica uses the name Nothofagetalia pumilionis for the order. However, Finckh recognized 5 associations of Nothofagus pumilio forests in the Andean strip between parallels 39° 18’ and 39° 38’ south, and put forward two new associations for such small a territory. In a later review made from the perspective of an Argentinian phytosociologist, ESKUCHE (2002) defended the name of Nothofagetalia pumilionis encompassing, in the same latitudinal strip between pa- rallels 38° and 45° south, up to 11 associations of Ar- gentinian-Chilean lenga forests (with the inclusion of two associations dominated by Araucaria araucana). In his review, Eskuche proposed 3 new associations. More Figure 12: Map showing the distribution of Nothofa- recently, FLORES & HILDEBRAND-VOGEL (2006) recog- gus pumilio. Red dotted lines mark Temperate/ nized 3 associations of lengales in Chile between latitu- Mediterranean and Temperate/Boreal borders. des 40° and 43° south. Two of these associations would be new and the third one has a clearly invalid name. 1) that lenga forests must be ascribed to a class other Against this background, we urgently need to clarify than the most common one of temperate forests (viz., the phytocoenotical biodiversity involved in the lengales Wintero-Nothofagetea), a class given the name Nothofa- of the Valdivean Province and adopt an orthodox nomen- getea pumilionis-antarcticae by OBERDORFER (1960). clature for a stable and uniform syntaxonomy. By con- However, following the proposal of FREIBERG (1985), trast, only two associations have been mentioned for the the possibility of breaking this unit down into two Magellanian Province and, in accordance with the impo- classes, namely, Nothofagetea pumilionis and Nothofa- verishment of the flora towards the southern apex of the getea antarcticae, received some consideration. Howe- continent, it is not likely that the present phytocoenotical ver, this proposal is clearly invalid, since it does not diversity of these forests will change significantly with comply with Article 5 of the ICPN. new findings. Nevertheless, we must bear in mind that in 2) that the already recognized lenga forests can be this biogeographical territory there are lenga forests divided into two large units, each with the rank of an growing not only in a Temperate bioclimate but also in a order and differentiated according to a biogeographical Boreal bioclimate, and a detailed phytosociological

Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America 15 analysis (see for example PISANO, 1977) could even- emphasized. These authors distinguished 3 morphotypes: tually lead to changes in an updated syntaxonomy for (a) the tree-like morphotype thrives in supratemperate these forests. environments; (b) the shrub-like and stunted morphotype is peculiar to orotemperate conditions, either in the upper 10. Nothofagus antarctica (G. Forst.) Oerst. (Ñirre, limit of the forests or in sites transitional to the cold and Ñire) drier steppes of the Patagonian south and Magallanes; and (c) the chamaephytic morphotype, up to 1 m high, Life form: summergreen (nano)-micro-mesophanero- that thrives on peat soils. Studies on reproductive fertili- phyte. ty, isoenzymatic and even genetic variability have re- Distribution area: Figure 13. vealed very significant interpopulational variability rates. Bioclimate: hyperoceanic Temperate, oceanic Tem- Tests have proved that the morphological traits remain perate; oceanic Boreal. (oceanic Pluviseasonal Medi- even outside the habitat associated with the correspon- terranean) ding morphotype (DONOSO ET AL. 2006). In specimens of Bioclimatic belt: (Meso)-Supra-Orotemperate sub- the shrub-like morphotype developed in the upper limits humid-hyperhumid; Mesoboreal humid. (Mesomedi- terranean edaphohygrophilous). Communities: Nothofagetum antarcticae Oberdorfer 1960; Lomatio hirsutae-Nothofagetum Berberido-No- thofagetalia antarcticae Eskuche 1968, Nothofageta- lia pumilionis-antarcticae Oberdorfer 1960 Similarly to the previous species, N. antarctica is also very widely distributed. It can be found from antarcticae Eskuche 1969 in Luebert et al. 2003; latitudes 35° to 56° south and on both sides of the Andean Cordillera. Thus, these two deciduous species, N. antarctica and N. pumilio, have been taken as genuine representatives of the subantarctic forest or Magellanian forest, particularly in the description of the northernmost instances of that forest (SAN MARTÍN ET AL. 1991c), which are located in sites with a macroclimate very different from that of Tierra del Fuego in the Magellanian Province. The most distinctive feature of the especies, usually a scrub plant up to 5 m high but sometimes a tree up to 15 m high, is its high endurance of extreme conditions. Thanks to this endurance, the plant has colonized the coldest environments peculiar to temperate or even bo- real forests. Records of the plant have been taken in Tierra del Fuego, at latitude 55° south, in the upper limits of the Andean forest, for example in Puyehue (RAMÍREZ ET AL. 1985), at latitude 40° 45’ south, or in the north- ernmost limit of that species, at 2,000 m masl. (SAN MARTÍN ET AL. 1991c). The plant can also tolerate seve- rely limiting soil conditions, such as those imposed by volcanic ash or highly hydromorphic soils. For this rea- son, Nothofagus antarctica has long been known under the nickname of ‘the beggar’: in the Patagonian forests no other species is able to accept habitats as extreme as those colonized by N. antarctica (KALELA 1941). An analysis of the natural regeneration patterns of all the Chilean Nothofagus species (WEINBERGER 1973) has revealed that this is a particularly continental species, capable of enduring day-long summer frosts, remarkably heliophilous and very abundant in environments with high air humidity saturation deficits. For all these rea- sons, it is the species of the genus most suited to endure the rain shadow conditions to the east of the Andean Cordillera, where the temperate forests progressively give way to the treeless landscape of Patagonia. The extraordinary ecological plasticity exhibited by the specimens ascribed to the species N. antarctica be- Figure 13: Map showing the distribution of Nothofagus comes apparent through its enormous and long recogni- antarctica. Red dotted lines mark Temperate/Medite- zed morphological diversity, as RAMÍREZ ET AL. (1985) rranean and Temperate/Boreal borders.

16 J. Amigo & M. A. Rodríguez-Guitián of the forest, cases of hybridization have been confirmed arranged these associations into three alliances (two of between N. antarctica and N. pumilio; hybrid which is them with provisional names). For these alliances Esku- morphologically closer to the first species mentioned che proposed a special order, viz., Berberido-Nothofa- (QUIROGA ET AL. 2005). Consequently, the existence of getalia antarcticae, which he included in the class No- different taxa under the current concept of Nothofagus thofagetea pumilionis-antarcticae, to which he had as- antarctica, cannot be fully dismissed. A positive confir- cribed all the Argentinian temperate forests. mation of this hypothesis would surely have an impact Some years later an extensive, classic work on the on the syntaxonomical position of the communities in- vegetation of the Magellanian Province was published volved. (ROIG ET AL. 1985a). It covered a land transect crossing South America from the Pacific to the Atlantic along the Syntaxonomical position latitudinal strip between parallels 51°-52° south. The ñirre communities described were arranged, with ecolo- As with the lenga forests, the ñirrantales also present gical and climatic justification, into two phytosociologi- a complex syntaxonomical allocation in need of clarifi- cal alliances. On the one hand, the hyperhumid ñirran- cation. First, OBERDORFER (1960) made the proposal of tales of the islands of the Chilean channels located in the the association Nothofagetum antarcticae with the sup- macrobioclimatical transition Boreal/Temperate were porting evidence of only two relevés made, respectively, ascribed to the alliance Escallonio-Nothofagion antarcti- at latitudes 39° and 45° south. This led to the use of that cae. Meanwhile, the humid, temperate ñirrantales in association name in surveys conducted in Chile for nati- contact with lengales, and even those subhumid ones ve, either tree-like or shrub-like, ñirre formations both th growing in the easternmost limit of the South Patagonian parallel (PISANO for the Magellanian Province, at the 54 forests, were ascribed to the alliance Agropyro-Nothofa- 1977), and for the northernmost populations of the spe- gion antarcticae. As has so often happened, the proposed cies in the Andean Cordillera, that is, at latitude 35° 36’ names were invalidly published (Article 5 of the ICPN). south (SAN MARTÍN ET AL.1991c). New proposals were Almost at the same time, FREIBERG (1985) proposed also made for the following situations: the creation of an independent class, viz., ”Nothofagetea + For formations of a tree-like morphotype in the re- antarcticae”, to allocate two orders: one for the Valdi- gion of Los Lagos (latitudes 40°-41° south) on badly vean scrublands already studied by ESKUCHE (1969) in drained volcanic soils (locally known as “ñadis”), some Argentina, and another for the Magellanian ñirrantales authors defended the existence of the association dealt with by ROIG ET AL. (op. cit.). Apart from the fact ”Chusqueo (tenuiflorae)-Nothofagetum antarcticae” that the nomenclature was invalid (Article 5 of the (RAMÍREZ & FIGUEROA 1987). The corresponding belt is ICPN), the proposal made by FREIBERG (op. cit.) was not humid mesotemperate. taken up by any Argentinian phytosociologists, despite + For clearly finicolous and edaphohigrophilous sites the fact that the communities intended for his class “No- in steep and hyperoceanic valley bottoms within the thofagetea antarcticae” had been recorded mainly in mesomediterranean territory, another community was territories to the east of the Andes. As far as we know, in published, viz. ”Scirpo (cernui)-Nothofagetum antarcti- Argentina all the papers dealing syntaxonomically with cae” (SAN MARTÍN ET AL. 1988) (latitude 35° 50’ south, temperate forests have ascribed the different North Pata- see Transect 1/ Fig. 3). gonian Nothofagus forests (i.e., of the Valdivean Provin- + For a hilltop community in the Cordillera de la ce) to an order: ”Nothofagetalia pumilionis-dombeyi” Costa at latitude 40° south (Cordillera Pelada, above (CONTICELLO ET AL. 1996; ROIG 1998; ESKUCHE 1999). 1,000 m), dominated by a shrub-like morphotype in But the authors who have dealt with the South Patago- upper supratemperate, ultrahyperhumid environments, nian forests of N. pumilio or N. antarctica (Magellanian another association name, viz., ”Baccharido (magellani- Province) defend the existence of another order, viz., cae)-Nothofagetum antarcticae”, was also published Nothofagetalia pumilionis-antarcticae (ROIG 1998). In (RAMÍREZ ET AL. 1996). both cases, the two orders were ascribed to the same However, all these 3 community names were inva- class, the Nothofagetea pumilionis-antarcticae. lidly published, because they did not comply with Arti- There have not been many phytosociological surveys cles 5 and 7 of the ICPN. For this reason these 3 phyto- recently. However, some studies have occasionally re- sociological names appear in inverted commas and the corded the presence of ñirre forests and ascribed them to final syntaxonomical scheme does not include them (see a particular phytosociological association: in the Natio- Appendix II). nal Park of Copahue in Argentina at latitude 37° 50’ For the Argentinian territory of the Valdivean Provin- south (GANDULLO 2003), and in the National Park of ce ESKUCHE (1969) described communities of copses Tolhuaca, in Chile, at latitude 38° 10’ south (LUEBERT ET and scrublands which corresponded to serial stages of the AL. 2003). In these two sources the authors mention Argentinian temperate forests growing between latitudes supratemperate hyperhumid ñirre forests and accept the 38° and 43° south (North Patagonian for the author). existence of an association published by ESKUCHE Among these communities Eskuche proposed up to 13 (1969): Lomatio-Nothofagetum in the Chilean park and associations as varied as microforests with an absolute Ribesi-Nothofagetum in the Argentinian park. Only in dominance of ñirre in its tree-like variant, different com- the survey dealing with the park of Tolhuaca is the pres- binations of this taxon with other shrubs (Schinus pata- ence of an association, viz., Lomatio hirsutae-Nothofa- gonicus, Maytenus boaria, Ribes sp. pl., Berberis sp. pl., getum antarcticae, supported by relevés. In this case the Escallonia sp. pl. etc.), and even scrublands whe re N. particular lectotypus of the association is taken from the antarctica was completely absent. ESKUCHE (op. cit.) original contribution of ESKUCHE (1969).

Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America 17

On the other hand, a few years earlier a different cri- and support for many years; and the Xunta de Galicia terion had been applied in a nearby territory. In the Na- and University of Santiago de Compostela for partially tional Park of Villarrica (latitude 39° 20’, Chile), in financing some expeditions of the Spanish authors in similar thermo- and ombroclimatic belts along the 820- Chile. We thank as well the invaluable friendly contribu- 1,280 m altitudinal strip, in contact with the forests of tion of the documentary photographer Eduardo Castro. Nothofagus dombeyi, N. pumilio and Araucaria arauca- na, FINCKH (1996) described three associations domina- References ted by Nothofagus antarctica which he maintained Alberdi M. 1996. Ecofisiología de especies leñosas de los should be included in the “Nothofagetea antarcti- bosques higrófilos templados de Chile: resistencia a la sequía cae“class. y bajas temperaturas. In Armesto JJ, Villagrán C & Arroyo In short, as a result of its adaptability to habitats un- MTK, editors. Ecología de los bosques nativos de Chile. acceptable to other Nothofagus taxa, Nothofagus antarc- Editorial Universitaria, Santiago de Chile, pp. 279-300. tica has received very heterogeneous syntaxonomical Albrieu C & Ferrari S. 2000. Los bosques andino-patagónicos treatments in phytosociological literature. In our opinion, en Santa Cruz y su fauna. In García AN & Mazzoni E, edi- Nothofagus antarctica can be ascribed to either of the tors. El Gran Libro de la Provincia de Santa Cruz. ALFA two large classes used for the temperate and boreal fo- Centro Literario y Milenio Ediciones, pp. 259-273. rests of South America. The supratemperate micro-meso- Alberdi M, Romero M, Ríos D & Wenzel H. 1985. Altitudinal forests of the Valdivean Province and the scrublands gradient of seasonal frost resistance in Nothofagus communi- acting probably as substitution stages of larger forests or ties of Southern Chile. Acta Oecologica/Oecol. Plant 6: 21- which are capable of settlement as edaphohigrophilous or 30. edaphoxerophilous permanent communities can be Amigo J, Izco J & Rodríguez-Guitián MA. 2007. Rasgos bio- ascribed to Wintero-Nothofagetea. On the other hand, the climáticos del territorio templado de Chile. Phytocoenologia orotemperate scrublands capable of both intertwining 37 (3-4): 739-751. with orotemperate lengales in the altitudinally upper Amigo J & Ramírez C. 1998. A bioclimatic classification of limits of the temperate forest and establishing themselves Chile: woodland communities in the temperate zone. Plant as permasigmetum in the cold areas of the Magellanian Ecol. 136: 9-26. Province, either in edaphohigrophilous locations under Amigo J, Ramírez C & Quintanilla LG. 2004. The Nothofagus macroclimatically Boreal conditions or in other lower nitida (Phil.) Krasser woodlands of southern Chile in the subhumid Temperate conditions as far as the beginning northern half of their range; phytosociological position. Acta Bot. Gallica 151 (1): 3-31. of the xeric Magellanian steppes, can be ascribed to Nothofagetea pumilionis-antarcticae. The 3 morphotypes Amigo J, Rodríguez-Guitián MA & Ramírez C. 2010.The lleuque forests of South Central Chile: a phytosociological above mentioned when dealing with the ecological study and syntaxonomical classification within Southameri- adaptability of N. antarctica can be related to 3 phytoso- can temperate forests. Lazaroa 31: 85-98. ciological classes: firstly, a tree-like morphotype with Amigo J, San Martín J & Quintanilla. LG. 2000. Estudio fito- Wintero-Nothofagetea, but also with Nothofagetea pu- sociológico de los bosques de Nothofagus glauca (Phil.) milionis-antarcticae; secondly, a shrub-like morphotype, Krasser del Centro-Sur de Chile. Phytocoenologia 30(2): 193- which must correspond only with Nothofagetea pumilio- 221. nis-antarcticae; and thirdly, a chamaephytic morphotype, Armesto JJ, León-Lobos P & Arroyo MTK. 1996. Los bosques which must be related, on account of its peat-dwelling templados del sur de Chile y Argentina: una isla biogeográ- profile, with the Myrteolo-Sphagnetea class. Further stu- fica. In Armesto JJ, Villagrán C & Arroyo MTK, editors. dies on a larger scale will probably reveal that there is Ecología de los bosques nativos de Chile. Editorial Universi- more than one taxon under the current name of one taria, Santiago de Chile, pp. 23-28. single species. The phytocoenotical behaviour should be Avilez R. 2001. Estudio de la flora y vegetación de la Reserva correctly studied and clarified to solve this question. Nacional "Roblería del Cobre de Loncha". Tesis Facultad Ing. Forestal, Universidad de Talca, Talca. Conclusion Barkman J, Moravec J & Rauschert S. 1976. Code of Phytoso- ciological Nomenclature. Vegetatio 32(3): 131-185. The ten South American species of the Nothofagus genus are some of the best references for the study and Braun-Blanquet J. 1979. Fitosociología. Bases para el estudio de las comunidades vegetales. H. Blume Ediciones, Barcelo- understanding of the temperate, boreal and even medite- na. 820 pp. rranean forest ecosystems of South America. The phyto- Bustamante R & Castor C. 1998. The decline of an endangered sociological behaviour of the genus is already relatively temperate ecosystem: the ruil (Nothofagus alessandrii) forest well known, but further review is needed to avoid mis- in central Chile. Biodivers. & Conservation 7: 1607-1626. leading interpretations. An accurate study of the phyto- CONAF (Corporación Nacional Forestal).1998. Experiencia coenoses can certainly provide more detailed knowledge silvicultural del bosque nativo de Chile. Recopilación de an- of the thermoclimatic and ombroclimatic belts found in tecedentes para 57 especies arbóreas y evaluación de prácticas this large territory. silviculturales. Salesianos S.A., Santiago de Chile: 420 pp. Conticello L, Gandullo R, Bustamante A & Tartaglia C. 1996. Acknowledgements Fitosociología de los bosques caducifolios del norte del De- partamento Lácar y sur de Huilliches de la provincia de Neu- We thank the staff of the Instituto de Botánica of the quén (Argentina). Bosque 17(2): 27-43 Austral University of Valdivia as well as several Chilean Dollenz O. 1982a. Estudios fitosociológicos en las Reservas botanists from the University of Talca, University of Forestales Alacalufes e Isla Riesco. Anales Inst. Patagonia 13: Concepción and University of Chile for extensive help 161-170.

18 J. Amigo & M. A. Rodríguez-Guitián

Dollenz O. 1982b. Fitosociología de la Reserva Nacional Ma- García N & Ormazábal C. 2008. Árboles Nativos de Chile. gallanes. I. Estudio del área del Cerro Mirador-Río de las Mi- Enersis S.A. y Fundación Huinay, Santiago de Chile. 196 pp. nas. Anales Inst.Patagonia 13: 171-181. Géhu JM & Rivas-Martínez S. 1981. Notions fondamentaux de Donoso C. 1982. Reseña ecológica de los bosques mediterrá- phytosociologie. In Dierschke H, editor. Syntaxonomie. neos de Chile. Bosque 4 (2): 117-46. J.Cramer, Vaduz, pp. 5-53. Donoso C. 1996. Ecology of Nothofagus Forests in Central Grant ML & Clement EJ. 2004. Clarification of the name No- Chile. In Veblen TT, Hill RS & Read J, editors. The ecology thofagus alpina and a new epithet for a Nothofagus hybrid. and biogeography of Nothofagus forests. Yale University Bot. J. Linn. Soc. 146: 447-451. Press, New Haven & London, pp. 271-292. Hechenleitner P, Gardner MF, Thomas PI, Echeverría C, Donoso C. 1998. Bosques templados de Chile y Argentina. Escobar B, Brownless P & Martínez C. 2005. Plantas Variación, estructura y dinámica. Editorial Universitaria, Amenazadas del Centro-Sur de Chile. Distribución, Conser- Santiago de Chile: 484 pp. vación y Propagación. Primera Edición. Universidad Austral Donoso C, editor. 2006. Las especies arbóreas de los bosques de Chile y Jardín Botánico de Edimburgo. 188 pp. templados de Chile y Argentina. Autoecología. Marisa Cuneo Hildebrand-Vogel R, Godoy R & Vogel A. 1990. Subantarctic- Ediciones, Valdivia. 678 pp. Andean Nothofagus pumilio forest. Vegetatio 89: 55-68. Donoso C & Atienza J. 1984. Hibridación natural entre Notho- Hildebrand-Vogel R, Godoy R, Vogel A & Carillo R. 1995. fagus betuloides (Mirb.) Oerst. y Nothofagus nitida (Phil.) Fitzroya cupressoides (Mol.) Johnst. Primary forests of Krasser. Medio Ambiente 7(1): 9-16. southern Chile – Flora, vegetation and mycorrhiza. – In: Song Y, Dierschke H & Wang X, editors. Applied Vegetation Donoso C, Morales J & Romero M. 1990. Hibridación natural th entre Roble [Nothofagus obliqua (Mirb.) Oerst.] y Raulí Ecology. – Proc. 35 Symp. Intern. Ass. Veg. Sci. 1992, [Nothofagus alpina (Poepp. & Endl.) Oerst.] en bosques del Shanghai, pp. 108-121. sur de Chile. Revista Chilena Hist. Nat. 63: 44-60. Hill RS & Dettmann ME 1996. Origin and diversification of Donoso C, Premoli A, Gallo L & Ipinza R. 2004. Variación the Genus Nothofagus. In Veblen TT, Hill RS & Read J, edi- intraespecífica en las especies arbóreas de los bosques tem- tors. The ecology and biogeography of Nothofagus forests. plados de Chile y Argentina. Editorial Universitaria, Santiago Yale University Press, New Haven & London, pp.11-24. de Chile. 420 pp. Holdgate MW. 1961. Vegetation and soils in the South Chilean Donoso C, Steinke L & Premoli A. 2006. Nothofagus antarc- islands. J. Ecol. 49: 559-580. tica (G. Forster) Oerst. In Donoso C, editor. Las especies ar- Kalela EK. 1941. Über die Entwicklung der herrschenden bóreas de los bosques templados de Chile y Argentina. Baume in den Bestanden verschiedener Waldtypen Ostpata- Autoecología. Marisa Cuneo Ediciones, Valdivia, pp. 401-410. goniens. Ann. Acad. Scient. Fennicae, S.A. Helsinki 4: 1-71. Ellenberg H & Mueller-Dombois D. 1967. A key to Raunkiaer Luebert F, Gajardo R & Estay M. 2003. Nota fitosociológica plant life forms with revised subdivisions. Ber. Geobot. Inst. sobre las asociaciones forestales del Parque Nacional Tolhua- ETH. Stifgt.Rubel, Zurich 37: 56-73. ca (Chile). Bol. Mus. Nac. Hist. Nat. 52: 51-66. Eskuche U. 1968. Fisionomía y sociología de los bosques de Luebert F & Pliscoff P. 2006. Sinopsis bioclimática y vegeta- Nothofagus dombeyi en la región de Nahuel Huapi. Vegetatio cional de Chile. Editorial Universitaria, Santiago de Chile. 16: 192-204. 316 pp. Eskuche U. 1969. Berberitzengebüsche und Nothofagus an- Markgraf V, Romero E & Villagrán C. 1996. History and pa- tarctica-Wälder in NW-Patagonien. Vegetatio 19: 264-285. leoecology of South American Nothofagus Forests. In Veblen Eskuche U. 1973. Estudios fitosociológicos en el norte de TT, Hill RS & Read J, editors. The ecology and biogeography Patagonia. I. Investigación de algunos factores de ambiente en of Nothofagus forests. Yale University Press, New Haven & comunidades de bosque y de chaparral. Phytocoenologia 1(1): London pp. 354-386. 64-113. Marticorena C. 1991. Contribución a la estadística de la flora Eskuche U. 1999. Estudios fitosociológicos en el norte de la vascular de Chile. Gayana, Bot., 47 (3-4): 85-113. Patagonia. II. Los bosques de Nothofagion dombeyi. Phyto- McQueen DR. 1976. The ecology of Nothofagus and associated coenologia 29(2): 177-252. vegetation in South America. Tuatara 22(1): 38-68. Eskuche U. 2002. Pflanzensoziologische Untersuchungen in Ministerio de Obras Públicas (M.O.P.). 1987. Balance Hídrico Nordpatagonien. IV. Die Wälder des Nothofagion pumilionis. de Chile. Dirección General de Aguas, Santiago de Chile. 23 Folia Botanica et Geobotanica Correntesiana 16: 1-47. pp. + mapas. Finckh M. 1996. Die Wälder des Villarrica-Nationalparks Oberdorfer E. 1960. Pflanzensoziologische studien in Chile. (Südchile) – Lebengemeinschaften als Grundlage für ein Flora et Vegetatio Mundi, 2:1-208. Schutzkonzept. Diss. Bot. 259: 195 pp. Olivares P, San Martín J & Santelices R. 2005. Ruil (Nothofa- Flores L & Hildebrand-Vogel R. 2006. Estudio fitosociológico gus alessandrii). Estado del conocimiento y desafíos para su de los bosques de Nothofagus pumilio (P. et E.) Krasser del conservación. CONAMA, Región del Maule. Santiago de Centro-Sur de Chile. Anales Mus. Hist. Nat. Valparaíso 25: Chile. 56 pp. 20-33. Pisano E. 1970. Vegetación del área de los fiordos Toro y Freiberg HM. 1985. Vegetationskundliche Untersuchungen an Cóndor y Puerto Cutter Cove. Anales Inst. Patagonia 1: 27- südchilenischen Vulkanen. Bonner Geogr. Abh. 70: 1-170. 39. Gajardo R. 1994. La vegetación natural de Chile. Clasificación Pisano E. 1977. Fitogeografia de Fuego-Patagonia chilena I.- y distribución geográfica. Editorial Universitaria. Santiago de Comunidades vegetales entre las latitudes 52° y 56° S. Anales Chile. 165 pp. Inst. Patagonia 8: 121-245. Gandullo R. 2003. Fitosociología de los matorrales de "Ńire" Pollmann W. 2001. Caracterización florística y posición sinta- (Nothofagus antarctica), con bosque de "Pehuén" (Araucaria xonómica de los bosques caducifolios de Nothofagus alpina araucana), del Parque Provincial Copahue. I. Interpretación (Poepp. et Endl.) Oerst.en el centro-sur de Chile. Phytocoe- sintaxonómica. Candollea 58(1): 163-181. nologia 31(3): 353-400.

Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America 19

Quiroga P, Vidal-Russell R, Premoli AC. 2005. Evidencia San Martín C, Ramírez C, Figueroa H & Ojeda N. 1991b. morfológica e isoenzimática de hibridación natural entre No- Estudio sinecológico del bosque de Roble-Laurel-Lingue del thofagus antarctica y N. pumilio en el noroeste patagónico. Centro-Sur de Chile. Bosque 12(2): 11-27. Bosque 26(2): 25-32. San Martín J, Figueroa H & Ramírez C. 1984. Fitosociología Ramírez C. 1987. El género Nothofagus y su importancia en de los bosques de Ruil (Nothofagus alessandri Espinosa) en Chile. Bosque 8(2): 71-76. Chile Central. Revista Chilena Hist. Nat. 57: 171-200. Ramírez C, Correa M, Figueroa H & San Martín J. 1985. Var- San Martín J, Mourgues V, Villa A & Carreño C. 1991a. iación del hábito y hábitat de Nothofagus antarctica en el sur Catastro actualizado de la distribución y estado de conserva- de Chile. Bosque 6(2): 55-73. ción de los bosques de ruil en la VIIª Región. Informe Proyecto Investigación y Desarrollo Forestal CHI/89/003. Ramírez C, Ferriere F & Figueroa H. 1983. Estudio fitosociol- CONAF: 30 pp. + Anexos ógico de los bosques pantanosos templados del Sur de Chile. San Martín J & Ramírez C. 1987. Fitosociología de los Notho- Revista Chilena Hist. Nat. 56: 11-26. fagus de la zona mesomórfica chilena. Bosque 8(2): 121-125. Ramírez C & Figueroa H. 1987. Fitosociología de los Nothofa- San Martín J, Troncoso A, Mesa A, Bravo T & Ramírez C. gus de la zona higromórfica chilena. Bosque 8(2): 127-132. 1991c. Estudio fitosociológico del bosque caducifolio maga- Ramírez C & Riveros M. 1975. Los alerzales de Cordillera llánico en el límite norte de su área de distribución. Bosque Pelada: Flora y Fitosociología. Medio Ambiente 1 (1): 3-13. 12(2): 29-41. Ramírez C, San Martín C, Oyarzún A & Figueroa H. 1997. San Martín J, Troncoso A, Ramírez C & Guajardo J. 1988. Los Morpho-ecological study on the South American species of bosquetes de ñirre de la cordillera de la Costa de Cauquenes the genus Nothofagus. Plant Ecology 130: 101-109. (Chile). Medio Ambiente 9(1): 131-139. Ramírez C, San Martín C & Vásquez R. 1996. La vegetación Serra M, Gajardo R & Cabello A. 1986. Nothofagus alessandri potencial leñosa de la Cordillera Pelada (Valdivia, Chile). Espinosa “ruil”. Especie en Peligro. Ficha Técnica de espe- cies amenazadas. Programa de protección y recuperación de Revista Geogr. Valparaíso 26-27: 233-250. la flora nativa de Chile. CONAF. Santiago de Chile. 25 pp. Ramírez C, San Martín J, Hauenstein E & Contreras D. 1989. Skottsberg CJF. 1916. Vegetationsverhältnisse längs der Cor- Estudio fitosociológico de la vegetación de Rucamanque dillera de los Andes S. von 40º S.Br. K. Svensk. Vetensk (Cautín, Chile). Stud. Bot. Univ. Salamanca 8: 91-115. Akad. Handl. 56(5): 1-366. Reiche K. 1907. Grundzüge der Pflanzenverbreitung in Chile. Stoll A. 2008. Hemerobia, un ejemplo de cálculo: el estado de Vegetation der Erde 8. Engelmann, Leipzig. 374 pp. conservación del bosque de pitao y coigue (Pitavio-Nothofa- Rivas-Martínez S. 1993. Bases para una nueva clasificación getum) en Quebrada Honda, región del Maule (VII), Chile. bioclimática de la Tierra. Folia Bot. Matritensis 10: 1-23. Chloris Chilensis Año 11-N°1. URL:http://www.chlorischile.cl Rivas-Martínez S. 2005. Notions on dynamic-catenal phytoso- ciology as a basis of landscape science. Plant Biosystems Stoll A, Sepúlveda C & San Martín J. 2006. Patrón florístico- 139(2): 135-144. estructural de la vegetación nativa remanente en el límite norte del Bosque Templado Costero de Chile: el caso de la Rivas-Martínez S. (On-Line). Global Bioclimatics (Clasifica- quebrada Cayurranquil (VII región, Chile). Bosque 27 (1): ción Bioclimática de la Tierra). Available from 64-71. www.globalbioclimatics.org/book/publications.htm. Stuessy F & Taylor Ch. 1995. Evolución de la flora chilena. In [cited 2011 March 25]. Marticorena C & Rodríguez R, editors. Flora de Chile. Vol 1. Rivas-Martínez S & Navarro G. 1994. Mapa biogeográfico de Universidad de Concepción, Concepción, pp. 85-118. Suramérica. Folia Bot. Matritensis 12. Takhtajan A. 1986. Floristic Regions of the World. Transl. by Rivas-Martínez S, Navarro G, Penas A & Costa M. 2011. TJ Crovello an edited by A Cronquist. University of Califor- Biogeographic Maps of the World: South America. Interna- nia Press: 522 pp. tional Journal of Geobotanical Research 1: 21-42 + map. UICN. 2001. Categorías y Criterios de la Lista Roja de la DOI: 10.5616/ijgr110001 UICN: Versión 3.1. Comisión de Supervivencia de Especies Rodríguez R & Quezada M. 2003. Nothofagus Blume. In de la UICN. UICN, Gland. Suiza y Cambridge, Reino Unido. 33 pp. Marticorena C & Rodríguez R, editors. Flora de Chile. Vol 2(2). Berberidaceae-Betulaceae. Universidad de Concepción, Veblen TT, Donoso C, Kitzberger T & Rebertus AJ. 1996. Concepción, pp. 64-75. Ecology of Southern Chilean and Argentinian Nothofagus Forests. In Veblen TT, Hill RS & Read J, editors. The ecolo- Roig FA. 1998. La vegetación de la Patagonia. In Correa MN, gy and biogeography of Nothofagus forests. Yale University editor. Flora Patagónica. Parte I. Colección Científica del Press, New Haven & London, pp. 293-353. INTA, Buenos Aires, pp. 48-166. Villagrán C. 1980. Vegetationsgeschichtliche und pflanzen- Roig FA, Anchorena J, Dollenz O, Faggi AM & Méndez E. soziologische Untersuchungen im Vicente Pérez Rosales Na- 1985a. Las comunidades vegetales de la Transecta Botánica tionalpark (Chile). Diss. Bot. 54: 147 pp. de la Patagonia Austral. Primera parte. La vegetación del área Villaseñor R & Serey I. 1980. Estudio fitosociológico de la continental. In Boelcke O, Moore DM & Roig FA, editors. vegetación del Cerro La Campana. Istituto Botanico Labora- Transecta Botánica de la Patagonia Austral. CONICYT & tori Crittogamico di Pavia, serie 6: 69-91. INTA, Buenos Aires, pp. 350-456 Weber HE, Moravec J & Theurillat J-P. 2000. International Roig FA, Dollenz O & Méndez E. 1985b. La vegetación en los code of phytosociological nomenclature. 3rd edition. J. Veg. canales. In Boelcke O, Moore DM & Roig FA, editors. Tran- Sci. 11: 739-768. secta Botánica de la Patagonia Austral. CONICYT & INTA, Weinberger P. 1973. The regeneration of the Araucano-Patago- Buenos Aires, pp. 457-519. nic Nothofagus species in relation to microclimatic condi- tions. Flora 162: 157-179 (English translation edited by Roivainen H. 1954. Studien über die Mooren Feuerlands. Ann. McQueen 1974-1975: 245-265) Bot. Soc. Zoo. Bot. Fenn. Vanamo 28(2): 1-205.

20 J. Amigo & M. A. Rodríguez-Guitián

Taxonomic names cited along the text - Luzuriago polyphyllae-Nothofagetum nitidae Amigo, Ramírez & Quintanilla 2004 Aextoxicon punctatum Ruiz & Pavón - Fitzroyetum cupressoidis Oberd. 1960 Araucaria araucana (Molina) K.Koch - Pilgerodendronetum uviferi Oberd. 1960 Austrocedrus chilensis (D.Don) Pic.Serm. & Bizzarri Alliance Nothofagion betuloidis (Oberd. 1960) Roig, Do- Cryptocarya alba (Molina )Looser llenz & Méndez 1985 Dasyphyllum diacanthoides (Less.) Cabrera - Nothofagetum betuloidis Oberd. 1960 Donatia fascicularis J. R. & G. Foster Order Berberido trigonae-Nothofagetalia dombeyi Pollmann Drimys winteri J.R. Forst. & G. Forst. 2001 Eucryphia cordifolia Cav. Alliance Austrocedro-Nothofagion dombeyi Eskuche 1968 Fitzroya cupressoides (Molina) I.M. Johnst. - Gavileo-Austrocedretum chilensis Eskuche 1968 Gevuina avellana Molina - Austrocedro-Nothofagetum dombeyi Eskuche 1968 Gomortega keule (Molina) Baill. - Nothofago obliquae-Prumnopitydetum andinae Amigo, Laurelia sempervirens (Ruiz & Pavón) Tul. M.Rodríguez & Ramírez 2010 Laureliopsis philippiana (Looser) Schodde Alliance Elymo andini-Nothofagion macrocarpae Oberd. Maytenus boaria Molina 1960 prov. corr. INQUIRENDA Nothofagus alessandri Espinosa - Elymo andini-Nothofagetum macrocarpae Oberd. 1960 Nothofagus alpina (Poepp. & Endl.) Oerst. prov. corr. Nothofagus antarctica (G. Forst.) Oerst. Alliance Myrceugenio-Nothofagion dombeyi (Eskuche 1999) Nothofagus betuloides (Mirb.) Oerst. Pollmann 2001 Nothofagus dombeyi (Mirb.) Oerst. - Nothofagetum dombeyi-alpinae Eskuche 1999 Nothofagus glauca (Phil.) Krasser INQUIRENDA Nothofagus leonii Espinosa - Dioscoreo-Nothofagetum obliquae Eskuche (1973) Nothofagus macrocarpa (DC.) F.M.Vázquez & R.A. Rodr. 1999 Nothofagus nitida (Phil.) Krasser - Myrceugenio-Nothofagetum dombeyi Eskuche 1999 Nothofagus obliqua (Mirb.) Oerst. - Chrysosplenio valdivici-Nothofagetum dombeyi Oberd. Nothofagus pumilio (Poepp. & Endl.) Krasser 1960 prov. Persea lingue Nees Order Myrceugenietalia exsuccae Oberdorfer 1960 corr. Peumus boldus Molina - Pitavio punctatae-Nothofagetum dombeyi San Martín Pinus radiata D. Don & Ramírez ex Stoll 2008 n.n. INQUIRENDA Pitavia punctata (Ruiz & Pavón) Molina Subclass Aristotelienea chilensis Amigo, Ramírez & Quinta- Podocarpus nubigena Lindl. nilla 2007 Prumnopitys andina (Poepp. ex Endl.) De Laub. Order Berberido-Nothofagetalia antarcticae Eskuche 1969 Quillaja saponaria Molina [pro parte, excl. Bacchari-Discarion articulatae] Schinus patagonicus (Phil.)I.M.Johnst. ex Cabrera Alliance Ribesi-Nothofagion Eskuche 1969 INQUIRENDA Tepualia stipularis (Hook. & Arn.) Griseb. - Ribesi-Nothofagetum antarcticae Eskuche 1969 Weinmannia trichosperma Cav. - Lomatio-Nothofagetum antarcticae Eskuche 1969 in Luebert, Gajardo & Estay 2003 Appendix I: Class NOTHOFAGETEA PUMILIONIS-ANTARCTICAE Phytosociological typology: hierarchical relationships of the Oberd. 1960 syntaxa cited in the text. When a name is marked as INQUI- Order Adenocaulo-Nothofagetalia pumilionis RENDA means either was not correctly published by its original Oberd. 1960 em. Hildebrand-Vogel, Godoy & Vogel descriptor, or could be rejected as superfluous after peer synta- 1990 xonomical revision. Alliance Lagenophoro-Nothofagion pumilionis Oberd. 1960 em. Freiberg 1986 Class WINTERO-NOTHOFAGETEA Oberd. 1960 - Carici trichodes-Araucarietum araucanae Subclass Wintero-Nothofagenea Oberd. 1960 Order Laurelietalia philippianae Oberd. 1960 Order Nothofagetalia pumilionis-antarcticae Alliance Nothofago-Eucryphion Oberd. 1960 Roig, Anchorena, Dollenz, Faggi & Méndez 1985 Suballiance Nothofagenion glauco-alessandrii Amigo, San Alliance Violo magellanicae-Nothofagion pumilionis Roig, Martín & Quintanilla 2000 Anchorena, Dollenz, Faggi & Méndez 1985 - Nothofagetum alessandrii San Martín et al. 1984 Alliance Escallonio-Nothofagion antarcticae Roig, An- - Bomareo salsillae-Nothofagetum glaucae Amigo, San chorena, Dollenz, Faggi & Méndez 1985 Martín & Quintanilla 2000 Alliance Agropyro-Nothofagion antarcticae Roig, An- Suballiance Aextoxiconenion punctate Oberd. 1960 chorena, Dollenz, Faggi & Méndez 1985 - Lapagerio roseae-Aextoxiconetum punctati Oberd. 1960 Class LITHRAEO-CRYPTOCARYETEA Oberd. 1960 - Nothofago obliquae-Perseetum lingue Oberd. 1960 Order Cryptocaryetalia (Schmithüsen 1954)Oberd. 1960 - Dasyphyllo diacanthoidis-Nothofagetum alpinae (Frank Alliance Cryptocaryion (Schmithüsen 1954)Oberd. 1960 & Finckh) Pollmann 2001 - Boldo-Cryptocaryetum nothofagetosum obliquae Oberd. Suballiance Nothofago-Eucryphienion Oberd. 1960 1960 - Nothofago dombeyi-Eucryphietum cordifoliae Oberd. Class MYRTEOLO-SPHAGNETEA Oberd. 1960 1960 Class FESTUCETEA GRACILLIMAE Roig, Anchorena, Do- Suballiance Nothofagenion procerae Oberd. 1960 llenz, Faggi & Méndez 1985 INQUIRENDA - Nothofagetum procerae Oberd. 1960 ex Ramírez 1978 Order Wintero-Nothofagetalia betuloidis Roig, Dollenz & Méndez 1985 Alliance Nothofago-Winterion Oberd. 1960 - Laurelio philippianae-Weinmannietum trichospermae Oberd. 1960

International Journal of Geobotanical Research, Vol. nº 1, December 2011, pp. 21-40 + Map

Biogeographic Map of South America. A preliminary survey.

Salvador RIVAS-MARTÍNEZ a, Gonzalo NAVARRO b, Angel PENAS c and Manuel COSTAd a Phytosociological Research Center, Collado-Villalba, Madrid, Spain. E-mail: [email protected] b Catholic University "San Pablo". Cochabamba. Bolivia. E-mail: [email protected] c Department of. Biodiversity & Environmental Management ().Faculty of. Biology & Environmental Sciences. Mountain Livestock Institute (CSIC-University of Leon). University of Leon. Spain. E-mail: [email protected]. d Botanical Garden of Valencia. Spain. E-mail: [email protected]

With the collaboration of: Javier Amigo (Chile and Argentina), Alindo Butzke (Brazil), Sara del Río (Argentina, Brazil and Para- guay), Antonio Galán (Perú), José Guevara (Venezuela), Jesús Izco (Ecuador), Eduardo Martínez Carretero (Argentina), Orlando Rangel (Colombia), Salvador Rivas Sáenz (South America bioclimate expert), Fidel Roig (†) (Argentina), Daniel Sánchez-Mata (South Chile), Leopoldo G. Sancho (South Chile and Antarctica), Pilar Soriano (Venezuela) and Oscar Tovar (†) (Perú).

Abstract

The biogeographic map of South America showing the biogeographic units up to the provincial level is published in this paper as a preliminary survey. From Honduras (Central America) to the Antarctic Peninsula we recognize: 1 kingdom, 3 subkingdoms, 4 supe- regions, 13 regions and 53 biogeographic provinces. A brief description is given of each one of the 13 regions, indicatng its limits and main bioclimatic factors. The biogeographic map is accompanied on a smaller scale by a bioclimate map, and another subking- dom map and a physical geography map.

Keywords: Biogeography, Map, South Americ

Introduction one single type of potential vegetation (climax) and as a result, a single sequence of substitute communities. Biogeography is the science which studies the dis- The tesela and the permatesela (conceived within tribution of species and biocoenosis on earth, as well as the framework of dynamic-catenal phytosociology lo- the relationships between them and their causes. It ta- cated in exceptional sites: polar, fluvial, lake and mari- kes into account the areas of taxa and syntaxa (choro- ne lands-capes, deserts, high-mountain summits, dunes logy), in addition to information from other nature and rock formations, coastal cliffs, etc. in which the sciences (geography, soil science, bioclimatology, geo- permanent vegetation growing in these elementary spa- logy, etc.), and attempts to establish a hierarchical ty- ces lacks perennial substitution units) are the only bio- pology of the territories on the planet, whose main geographical units which can be repeated in a disjunc- units in decreasing rank are as follows: kingdom, re- tive manner. gion, province, sector, district, area, landscape cell and The landscape cells, such as peni-plains in horst, tesela (RIVAS-MARTÍNEZ & AL., 2007, 2011). Biogeo- graphy has been twinned with phytogeography due to river valleys, lake systems, marshes, mountain sum- the value of plant species and communities in its defi- mits, etc., are constituted in a broad geographic space nition and de-limittation. characterized by a series of teselas or permateselas and their corresponding complexes, assembled by networks of geosygmeta and geopermasygmeta based on the re- Concepts on biogeographical units lief or on the soils in the territory. The elementary biogeographic terrestrial unit or the The biogeographical country must be an extensive unit of the lowest rank is the tesela, which we define as and clearly delimited territory which possesses an a- a geographic space with a greater or lesser extension, bundant group of landscape cells, species, associations, ecologically homogeneous –that is to say, it has only and above all, peculiar topographical geosygmeta.

______Correspondence: Ängel Penas. Department of. Biodiversity & Environmental Management (Botany).Faculty of. Biology & Environmental Sciences. Mountain Livestock Institute (CSIC-University of Leon). University of Leon. Spain. E-mail: [email protected]. ISSN: 2253-6302 print/ISSN: 2253-6515 on line ©Editaefa DOI: 10.5616/ijgr110002 22 S. Rivas-Martínez, G. Navarro, A. Penas & M. Costa

The district is a series of biogeographical countries, entity is the distinguishing and mapping of taxa (fami- characterized by the existence of numerous differential lies, genera, species and subspecies) whose territorial species and even endemic taxa in the coastal, oreadic distribution is closely restricted to one particular area. and interior halophilous zones, which permit their se- These taxa are termed endemisms. Endemisms have paration from the adjacent taxa; it also comprises an in- been successfully used to define and delimit the choro- dependent unit through its associations, series, geose- logical or biogeographical units (provinces, sectors), as ries and geoclinoseries which are absent in nearby dis- they form part of the phytogeographical subelement tricts. which characterises them. Moreover, the endemisms The sector is a grouping of districts with a large- (taxa or syntaxa) which have a greater area or are re- scale geographic entity, which possesses its own ende- gional, and those which for migratory reasons are dis- mic taxa, associations and vegetation series, as well as persed across various biogeographical regions, cons- original topographical and geoclinosequential geoseries titute the phytogeographical element or geoelement. which are generally due to the existence of exclusive climatophilous, permanent and subserial communities, Concepts on vegetation series and lanscape phyto- as well as to paleoclimates or former migratory routes. sociology The province is a vast geographic territory which, Nowadays, the development of dynamic-catenal as well as possessing a large number of endemisms and phytosociology and the syntaxonomic knowledge of differential species (its own subelement) has particular broad territories on the Earth, as well as the cartogra- macroseries and geomacroseries; a particular altitudinal phic delimitation of vegetation series, geoseries and zonation in the vegetation is also characteristic of each geopermaseries, when available, have become the es- biogeographical province (exclusive geoclinoseries). sential criteria for defining biogeographical units, in The region is a very extensive territory, formed by a addition to suitably compiled and mapped bioclimatic group of biogeographical provinces which has a flora and soil factors. or regional floristic element with species, genera or The vegetation series, also termed sygmetum, ex- even endemic families; in addition it has its own parti- presses the whole set of plant communities or stages cular megaseries, geomegaseries and geomegapermase- which can be found within similar teselar spaces as a ries and in consequence, its own bioclimatic belts (RI- result of the succession process, and includes both the VAS-MARTÍNEZ, 2005). representative association of the mature stage or series Finally, the kingdom is the supreme unit of biogeo- head, which is used as a nomenclatural reference, and graphy, generally pluricontinental and multinsular, the initial or subserial associations that may replace it. which in addition to taxonomic and ecosystematic con- Based on this concept, the vegetation series or sygme- siderations, addresses the origins of the flora and fauna, tum represents the basic unit or essential model of dy- the formation of the great continents, orogenies and cli- namic phytosociology. Distinctions can also be made mate in the present and past. between climatophilic, edaphoxerophilic, temporihy- As is by now traditional in this science, the deno- grophilic and edaphohygrophilic series. Climatophilic minations of the biogeographic units –both the primary or zonal series are located on mature soils according to and the auxiliary units (from the subregion to the the mesoclimate, and only receive rainwater: mesophy- area)– are given as names and place names based on tic, submesophytic and subxerophytic; the temporihy- known geographical, orographic and historical designa- grophilic series, included among the climatophilic, are tions which are considered to conicide with, inform or those which have additional water contribution due to represent the area they are intended to represent. their topographical circumstances, and they thus deve- Orthographically, all the units are considered to be pro- lop on flooded or very wet soils throughout part of the per names identifying the place; the name is formed by year, and –at least during the summer or dry period– juxtaposing two geographical nouns, joined by means the soil horizons are well-drained and aerated. Finally of a hyphen, maintaining the initial capital in each due the edaphoxerophilic series are found in particularly to their condition of proper noun. dry or xerophytic soils or biotopes such as lithosols, It must be emphasized that the biogeographical arenosols, very windy sites, steep slopes, crests, ledges, units can only be accurately delimited through their etc.; and the edaphohygrophilic series grow on particu- diagnosis and through the corresponding maps. All the larly wet soils and biotopes such as fluvisols, halosols, territories –except for the tesela and permatesela– must histosols, etc., and are found on river beds, marsh are- be contiguous by land, lake or sea routes, and include as, salt flats, peat bogs, etc. all the orographic accidents and lithological diversity The vegetation geoseries or geosygmetum is the ba- which may exist in the area. Sometimes in the biogeo- sic unit of dynamic-catenal phytosociology. It corres- graphical territories as a whole there are introgressions ponds to a catena of vegetation series which is found by other adjacent territories, and these islands frequen- around a given bioclimatic belt and biogeographic te- tly occur in regions with a varied lithology or in areas rritory in the heart of the universal crest-slope-valley near regional or provincial boudaries. Their possible model. This topographic framework makes it possible typological independence, always of a lower rank than to distinguish the three geomorphological aspects of the area into which they introgress, depends on their any complete catena where the vegetation series consti- originality, floristic richness and phytocoenotics, as tuting the geosygmetum are located in zones; the eda- well as on their surface area. phoxerophilic series and geoseries (hyperxerophilic One of the criteria traditionally used for recognising and xerophilic) are located in the driest sites (crests, es- and delimiting biogeographic units with their own Biogeographic Map of South America. A preliminary survey 23 carpments, lithosols, etc.); the climatophilic and tempo- and particularly what was then the Institute of Hispanic rigrophilic series and geoseries are located on slopes Culture, sparingly but reliably financed the project in and foothills where greater humidity is contributed by the early years (1977-1982), thus providing a stimulus rainfall; and the edaphohygrophilic series and geoseries and a springboard for many. Rivas-Martínez has since are found in the valleys and watercourses (fluvial, lake worked to share what he colloquially termed the and watercourses), among which the river fractogeo- “American adventure” by promoting and organizing, sygmetum is of great important to plant landscape sci- together with his good friend Manuel Costa, countless ence due to its extrazonality, and also, in combination trips and studies in North America, Africa, China, Aus- with the edaphoxerophilic and climatophilous sygmeta tralia and Tasmania. Moreover Manuel Costa has tra- and geosygmeta, to the definition and structuring of re- veled independently and has an in-depth knowledge of gional and global biogeography. Central America, Mexico, the east of North America The vegetation geopermaseries, also known as geo- and Tibet. His last major project, still incomplete after permasygmeta, is the catenal expression of a set of ne- a dozen years, is currently the geobotanical study of ighboring permaseries or permasygmeta, delimited by Venezuela, where, with the help of a large group of changing topographic or soil situations. These are con- first-rate young professional Venezuelan botanists and ditioned by conditions of extreme climate (high moun- soil scientists, he is directing a series of doctoral theses tains and polar areas) and exceptional microtopogra- on the ground, covering large parts of the territory, four phic and soil conditions (walls, rock formations, mari- of which have already been judged “cum laude” at the ne cliffs, salt flats, etc.) which give rise to a large num- University of Valencia. On several occasions accompa- ber of neighboring ecological residences populated by nying Manuel Costa and his team, Rivas-Martínez has diverse permanent perennial plant communities (con- had the opportunity to increase his knowledge of the tinuous vegetation permaseries) with an absence of vegetation and the bioclimate of Venezuela and, above non-nitrophilous serial perennial communities which all, to study the regions of Alto Orinoco, La Guayana appear to have reached their equilibrium. The most fa- and the Gran Sabana. vorable sites for the existence of geopermaseries or Gonzalo Navarro, Ph.D., a native of Madrid, now geopermasygmeta, as well as sites corresponding to lives in Cochabamba, after completing his education permanent types of vegetation in extreme high-moun- and writing an extensive doctoral thesis entitled “Flora tain and polar region bioclimates, are ledges, rock cre- and vegetation of the Sistema Ibérico in Soria”, which vasses, cliffs and coastal rock formations bathed by sea was directed by Rivas-Martínez. Shortly after, as a re- waters, peat bogs, wind drifts, mobile sand dunes, lake sult of an exploratory trip through the Andes, Gonzalo shores, streams etc. Navarro took the irrevocable decision to live and re- search in Bolivia for most of the year. He thus applied Studies performed and geobotanical sources for a leave of absence from his position as permanent teacher in the institute of secondary education in Gua- Salvador Rivas-Martínez and Manuel Costa, Pro- dalajara (Spain), which he had won through public exa- fessor of Botany at the University of Valencia, worked mination. A little later he continued his connections as together at the Faculty of Biology at the Complutense a part-time associate professor in the Department of University and at the Royal Botanical Gardens in Ma- Botany at the Faculty of Pharmacy of the Complutense drid in the 1970s, where they designed a long-term glo- University, at that time headed by Rivas-Martínez, with bal geobotanical program to further the syntaxonomical the undertaking that during his winter stay in Madrid study of the Earth following the European phytosocio- he would teach the optional subject “Biogeography of logical methodology of BRAUN-BLANQUET (1964). To South America”, conduct research into Andean, Cha- this method they incorporated the new synphytosocio- coan and Amazonian ecosystems, and that at the Uni- logical analyses proposed by RIVAS-MARTÍNEZ (1976), versity of Cochabamba, with which there was an inter- and shortly afterwards by GEHÚ & RIVAS-MARTÍNEZ university agreement, he would train young students (1982), as well as recent bioclimatic and biogeographi- and graduates in geobotany so that under his direction cal approaches which were being successfully tested in they could begin studying their doctoral thesis on Boli- Europe and North Africa, and in whose scientific and vian subjects, and that thanks to the Mutis grant sys- methodological debates with Tüxen, Gehú, Bolós, Qué- tem, they could spend a long period of training in Ma- zel and Tahktajan, they played an active role. drid studying the subjects for their doctorate. Gonzalo Primo Yúfera, at that time general secretary of the Navarro amply and generously fulfilled this commit- Higher Council for Scientific Investigation (CSIC) in ment, which continued successfully maintained for al- the mid-1970s, convened various directors of the Insti- most a decade. Of the six Mutis grant-holders who we- tutes in the CSIC, including Salvador Rivas-Martínez, re in Madrid, two are already doctors. Unfortunately in to present research proposals which could be used in 2004, after the requisite yearly democratic and secret due course for the scientific commemoration of the departmental vote for the renewal of his post as asso- fifth centenary of the discovery of America in 1992. ciate professor, he found himself to be one vote short, They wasted no time in adapting part of their global and was rejected. Fortunately we his friends still enjoy geobotanical program to the wildest possible subject the privilege of continuing to work and collaborate they could imagine, in keeping with their dual facets of with him. botanists and climbers at that time: the “Phytosociolo- In the last 20 years, Gonzalo Navarro has conduc- gical and bioclimatological study of the Andes in the ted a continuous, profound and methodical investiga- Viceroyalties of Peru and Nueva Granada”. The CSIC, tion into the Bolivian Andes, and the areas of Beni, 24 S. Rivas-Martínez, G. Navarro, A. Penas & M. Costa

Chaco, Cerrado, Yungas and Amazonia, as well as in a expeditions and various botanical and professional ex- more general manner in the United States, Mexico and peditions. However, it was between 1977 and 1990, over almost all of South America from Patagonia to the owing to several well-organized projects financed by Venezuelan Caribbean. On many expeditions and jour- Spain, when he was able uninterruptedly to develop the neys he has used his own resources, and on others, re- “Phytosociological and bioclimatic study of the Andes sources obtained in projects and competitions proposed of the Viceroyalties of Perú and Nueva Granada”, by organizations such as TNC, WCS, WWF, etc. As a which from 1985 became known as “Bioclimatic and result of this research, as well as multiple reports and cultivation belts of Perú” thanks to another better fi- publications, we should also mention the unrivalled nanced project. During those 13 years he made more “Vegetation of Bolivia” published in 2002, in the book than 20 botanical expeditions around a large part of the “Ecological geography of Bolivia” [ISBN 99905-0- Andes, Amazonia, Chaco, the Pacific coasts and de- 225-0] and the astounding “Vegetation map of Bolivia serts, the Pampa, Patagonia and Valdivia, where he at a scale of 1:250.000” published by Nature Conser- took 3,000 phytosociological inventories, compiled cli- vancy [ISBN 978-99954-0-168-9]. For all these rea- mate data for more than 2,000 South American weather sons he has achieved the distinction on his own merits stations, and mapped the vegetation and bioclimate of of becoming the maximum geobotanical authority on most of the territories accessible by road. Manuel Cos- Bolivia and a key reference in the neotropics of South ta, as well as many of his disciples, colleagues from the America. Complutense University such as Carlos Arnaiz, Paloma Ángel Penas, professor at the University of León, Cantó, Ana Crespo, Antonio Galán, Javier Loidi, Gon- began his partnership with Rivas-Martínez 30 years zalo Navarro and Conchita Sáenz, also took part in so- ago in an unforgettable geobotanical research project in me of these journeys. From the outset he was lucky the Cordillera Cantábrica mountains, conducted with enough on almost all these campaigns to enlist the co- Tomás E. Díaz, José Antonio F. Prieto and Javier Loi- llaboration and valuable help of Oscar Tovar, the emi- di, and which culminated with the publication of a nent Peruvian agrostologist and botanist, Professor of book on the vegetation in the Picos de Europa moun- Botany at the University of San Marcos in Lima, as tains. Since then their professional relationship and fri- well as the support, teachings and opinions of Stephan endship has continued to grow, particularly through the Beck, Ángel Cabrera, José Cuatrecasas, Ramón Ferrei- publications in Itinera Geobotánica and the Habitats ra, Raúl Lara, Máximo Lieberman, Eduardo Martínez projects. However their main point in common is their Carretero, Eric Oberdorfer, Salvador Rivas Goday, Fi- mutual interest in the study of the vegetation of Ameri- del Roig and Paul Seibert. Unfortunately, two years ca and Africa. In January 1996 they successfully inves- before the official conclusion of this last project, high- tigated, in the company of Leonard Llorens, the south- level political differences between Spain and Peru, un- eastern tropical and oreadic temperate vegetation of related to any personal considerations, led to the abrupt South Africa; in America they undertook two major termination of the agreement and to the project’s finan- geobotanical expeditions, one in September 1994, with cing. As it was not possible to redirect the South Ame- Gonzalo Navarro and Francisco Amich, in which they rican research program to Spain, it had to be post- toured the Pampa, Monte Argentino and Patagonia ma- poned. In view of these difficulties he took the decision king inventories, concluding in the Mediterranean An- to spend two sabbatical years in the United States, in dean forests of Austrocedrus chilensis and in the Valdi- the Missouri Botanical Garden, in order to devote him- vian temperate forests of Nothofagus; the second was a self completely to the study of the vegetation of North fruitful and extensive geobotanical transect in April America and finally to formulate the bioclimatology at 1995, in the company of Gonzalo Navarro, Federico the global level. Luck would have it that Gonzalo Na- Fernández and Daniel Sánchez Mata, where they suc- varro, a young doctor with considerable training in ta- cessfully studied the tropical south of the United Sta- xonomy and geobotany, had moved to Bolivia and with tes: Texas, Tamaulipas, Chihuahua and Sonora, as well great enthusiasm and effort began to study in great as the continental Mediterranean territories of the Great detail and with marked success the oreadic and flatlan- Basin and the oceanic Mediterranean territories of Cali- dic vegetation of Bolivia. This circumstances led Rivas fornia. However Ángel Penas most important research Martínez in 1994 to return to South America to work activity in South America, apart from his geobotanical with Navarro, who had by now become a considerable excursions to Colombia, Venezuela, Peru, Chile and expert and specialist, and together they designed the Argentina, was in Brazil, where only between 1992 and biogeographical synthesis of South America (1994), 2006 he personally directed six doctoral theses on the which has today, after many years, been improved and region of Parana, judged cum laude in the University of updated with the help and mutual responsibility of Án- León, and still found time to travel extensively and stu- gel Penas and Manuel Costa, as well as with the colla- dy numerous aspects of Amazonia, La Catinga, Cerra- boration and advice of other botanists with extensive do Oriental, Mata Atlántica and the mesophytic Pampa. experience in the territory: J. Amigo, A. Butzke, S. del Salvador Rivas-Martínez began his study of tropical Río, A. Galán, J. Guevara, J. Izco, E. Martínez Carrete- and Andean flora and vegetation in 1961 on the occa- ro, O. Rangel, F. Roig (†), D. Sánchez-Mata, L.G. San- sion of a major mountaineering expedition to the An- cho, P. Soriano and O. Tovar (†); as well as with the des in Peru (Apolobamba massif and Cordillera Blan- experience of S. Rivas Sáenz, expert and co-author of ca). Between 1965 and 1976 he continued these studies the program of computerized bioclimatic cartography. intermittently in Colombia, Ecuador, Bolivia, Chile and At the same time a detailed review was made of the Argentina, taking advantage of other mountaineering bibliography which has enabled us to compare our ob- Biogeographic Map of South America. A preliminary survey 25 servations with those of other authors, of both general MERA, A. (2007), GALÁN DE MERA, A., GONZÁLEZ, A., and specific works, practically all of which are listed in MORALES, R., OLTRA, B. & VICENTE ORELLANA, J.A. the bibliographical references. (2006), GUEVARA, J. R., CARRERO, O., HERNÁNDEZ, C. Among the authors with a general character, there & COSTA, M. (2007), HUBER, O. & ALARCÓN, C. are some who must necessarily be mentioned due to (1988), HUECK, K. (1960), LOZADA, J, GUEVARA, J.R., their importance from both the methodological stand- SORIANO, P. & COSTA, M. (2006), MAGUIRE, B. (1970, point and for the proposals they formulate in relation to 1972, 1979), MINISTERIO DEL AMBIENTE Y DE LOS RE- the biogeography of South America: ALCARAZ, F. CURSOS NATURALES (1985), MONASTERIO, M. & RE- (1999), ÁLVAREZ, M., RAMÍREZ, C.& DEIL, U. (2008), YES, S. (1980), PITTIER, H. (1920, 1935), RÖHL, E. AUBRÉVILLE, A. (1970), BRAUN-BLANQUET, J. (1964), (1946), SARMIENTO, G. & MONASTERIO, M. (1969), CABRERA Á. L. & WILLINK A. (1973), CHEVALIER, A. STEYERMARK, J. A. (1974, 1979) and SUSACH CAM- & EMBERGER, L. (1937), DARLINGTON, P.J. (1957), PALANS, F. (1989). DIELS, L. & MATTICK, F. (1958), DRUDE, O. (1890), In Colombia those of CLEEF, A. M. (1979, 1981)), ENGLER, A. (1924), GENTRY, A. (1982), GOOD, R. CLEEF, A.M. & RANGEL, J.O. (1986), CLEEF, A.M., (1974), GRISEBACH, A. (1872), HAYEK, A. (1926), RANGEL, J.O. & ARELLANO, H. (2008), CLEEF, A.M.; HUBER, O. & RIINA, R. (1997, 2003), HUECK, K. & RANGEL, J.O. & SALAMANCA, S. (1983, 2003), CORTÉS SEIBERT, P. (1972, 1981), JOSSE, C., CUESTA, F., NAVA- B. R. & FRANCO R., P. (1997), CUATRECASAS, J. (1934, RRO, G., BARRENA, V., CABRERA, E., CHACÓN-MORE- 1958), DUGAND, A. (1970), HAMMEN, T. VAN DER, NO, E., FERREIRA, W., PERALVO, M., SAITO, J. & TO- RANGEL CH., J.O. & CLEEF, A. M. (EDS.). (2005), VAR, A. (2008), JOSSE, C., NAVARRO, G., COMER, P., KLOOSTERMAN, E.H.; CLEEF, A.M. & SALAMANCA, S. EVANS, R., FABER-LAGENDOEN, D., FELLOWS, M., KI- (2003), PINTO-ZÁRATE, J.H. & RANGEL-CH., J.O. (2010 TTEL, G., MENARD, S., PYNE, M., REID, M., SCHULZ, a, b), RANGEL-CH., J.O. (2004, 2008), RANGEL-CH., K., SNOW, K. & TEAGUE, J. (2003), JOSSE, C., NAVA- J.O. (ED.) (1995, 1997, 2000, 2007, 2008, 2009, 2010 a, RRO, G., ENCARNACIÓN, F., TOVAR, A., COMER, P., FE- b), RANGEL-CH., J.O. & AGUIRRE, J. (1983), RANGEL- RREIRA, W., RODRÍGUEZ, F., SAITO, J., SANJURJO, J., CH., J.O. & ARELLANO-P., H. (2009), RANGEL-CH., DYSON, J., RUBIN DE CELIS, E., ZÁRATE, R., CHANG, J., J.O. & ARIZA, N.C. (2000), RANGEL-CH., J.O., CLEEF, AHUITE, M., VARGAS, C., PAREDES, F., CASTRO, W., A.M. & ARELLANO, H. (2008), RANGEL-CH., J.O., MACO, J. & REÁTEGUI, F. (2007), LABUNTSOVA, M.A. CLEEF, A.M. & SALAMANCA, S. (2005), RANGEL-CH., (1969), LAVRENKO, E. M. (1964), LLORENTE BOUS- J.O., GARAY-P., H. & AVELLA, A. (2010), RANGEL- QUETS, J. & MORRONE, J. J. (EDS.) (2001), LUTEYN, J. CH., J.O., SÁNCHEZ, D. & ARIZA, N.C. (2005), RIVERA (1999), MORELLO, J. (1958), MORRONE, J. J. (2000, DÍAZ, O. & FERNÁNDEZ-ALONSO, J. L. (2003), SALA- 2001A, 2001B), OZENDA, P. (1964), POSADAS, P. E.; ES- MANCA S., CLEEF, A.M. & RANGEL, J.O. (2003), SÁN- TÉVEZ, J. M. & MORRONE, J. J. (1997), PRADO, D.E. &. CHEZ, R. & RANGEL, J.O. (1990) and WITTE, H.J.J. GIBBS, P. E. (1993), RAVEN, P.H. (1963), RAVEN, P.H. (1995). & AXELROD, D.J. (1974), RICARDI, M., GAVIRIA, J. & In Peru and Bolivia we should mention the works ESTRADA, J. (2001), RIKLI, M. (1913, 1934), RIVAS- of DE LA BARRA, N. (2003), GALÁN DE MERA, A. MARTÍNEZ, S. (1976, 1994, 1997, 2001, 2004, 2005), (1995, 1999), GALÁN DE MERA, A., BALDEÓN, S., BEL- RIVAS-MARTÍNEZ, S & RIVAS-SAÉNZ (2009), RIVAS- TRÁN, H., BENAVENTE, M. & GÓMEZ, J. (2004), GALÁN MARTÍNEZ, S. & COLS. (2007, 2011), RIVAS-MARTÍNEZ, DE MERA, A., CÁCERES, C. & GONZÁLEZ, A. (2003), S. & NAVARRO, G. (1998), RIVAS-MARTÍNEZ, S., RI- GALÁN DE MERA, A., ROSA, M.V. & CÁCERES, C. VAS-SÁENZ, S., PENAS, A., NAVARRO, G. & COSTA, M. (2002), GALÁN DE MERA, A. & VICENTE ORELLANA, & COLS. (2011), RIVAS-MARTÍNEZ, S., SÁNCHEZ-MA- J.A (1996, 2006), GUTTE, P. (1980, 1986, 1988), MO- TA, D. & COSTA, M. (1999), RIVAS-MARTÍNEZ, S. & LINA, J.A., NAVARRO, G., DE LA BARRA, N. & TOVAR O. (1983), SCHMITHÜSEN, J. (1961), SCHWABE, LUMBRERAS, A. (2007).NAVARRO, G. (1993, 1997, G. H. (1968), SMITH, A.C. & JOHNSTON, I.M. (1945), 2003), NAVARRO, G. & FERREIRA, W. (2007, 2009), TAKHTAJAN, A. (1988), THORNE, R.F. (1963), DEIL, U., NAVARRO, G. & MALDONADO, M. (2002), NAVARRO, ÁLVAREZ, M., BAUER, E.V. & RAMÍREZ, C. (2011), G., MOLINA, J. A. & DE LA BARRA, N. (2005), RA- UDVARDY, M.D.F. (1975), WALTER, H. (1898) and MÍREZ, C. & BECK, S. (1981), RIVAS-MARTÍNEZ, S. & WALTER, H. & STRAKA, H. (1970). TOVAR, O. (1982), SEIBERT, P. & MENHOFER, X. (1991, We have also based this work on the studies carried 1992, 1993), WEBERBAUER, A. (1945) and WILLIAMS, out in territories which –although extensive– are more L. (1945). specific than the previous ones, by different authors In Ecuador the works by ACOSTA-SOLIS, M. (1966, which we mention below, for their work done in vari- 1984), AGUIRRE, Z., COOMBES, L. & RAMSAY, P. M. ous South American countries. From Venezuela and (2001), MADSEN, J.E., COTTON, E. & BALSLEV, H. the Guayanas we should highlight the works of (EDS.) (2002), CAÑADAS, L. (1983), GREHAN, J. R. ATAROFF, M. & SARMIENTO, L. (2003), AYMARD, G. 2001, IZCO, J., PULGAR, I., AGUIRRE, Z. & SANTÍN, F. (2003), CASTROVIEJO, S. & LÓPEZ, G. (1985), COSTA, (2004), JOHNSTON, M.P. & P.H. RAVEN (1973), MOS- M.; CEGARRA, J.; LUGO, L.; GUEVARA J.R.; CARRERO, COL OLIVERA, MARCELA C. & CLEEF, A. M. (2009), O.; LOZADA, J. & SORIANO, P. (2008), COSTA, M.; CE- PÚLGAR, I., IZCO, J. & JADÁN, O. (2010), QUINTANILLA, GARRA, A.; LUGO, L.; LOZADA, J.; GUEVARA, J. & SO- V.G. (1983), SIERRA, R. (ED.) (1999), SIERRA, R., CICE- RIANO, P. (2007), CUELLO, N. & CLEEF. A.M. (2009 a, RÓN, C., PALACIOS, W. & VALENCIA, R. (1999), TERÁN, b), DUNO DE ESTEFANO, R., AYMARD, G. & HUBER, O. E. (1979), TERNEUS, E. (2002) and ULLOA, C. & JØR- (2007), ESTRADA SÁNCHEZ, J.C. (2003), GALÁN DE GENSEN, P.M. (1993). 26 S. Rivas-Martínez, G. Navarro, A. Penas & M. Costa

In Chile the works carried out by AMIGO J. (2009), Results AMIGO, J., IZCO, J. &.RODRÍGUEZ-GUITIÁN, M.A. (2007), AMIGO J. & RAMÍREZ, C. (1998), AMIGO, J., A. Biogeogeographical typology of South America RAMÍREZ, C. & GARCÍA QUINTANILLA, L. (2004, 2007), up to provincial level AMIGO, J., SAN MARTÍN, J. & GARCÍA QUINTANILLA, L. In South America and from Honduras to the Ant- (2000), ETAYO, J. & SANCHO, L.G. (2008), HILDE- arctic Peninsula we recognise: 1 kingdom, 3 subking- BRAND-VOGEL, R. (1984), HILDEBRAND-VOGEL, R., doms, 4 superegions, 13 regions and 53 biogeographic GODOY, R. & VOGEL, A. (1990), LUEBERT, F. & GA- provinces (see Anex Map). JARDO, R. (2005), LUEBERT, F. & P PLISCOFF. (2006), The biogeographical denominations, as is tradi- MÉNDEZ, E. (2007), MÉNDEZ, E. & AMBROSETTI, A.J. tional, are place names and adjectives which express (1985), NAVARRO, G. & RIVAS-MARTÍNEZ, S. (2005), territories, history or toponyms. Generally these deno- OBERDORFER, E. (1960), PINTO, R. & LUEBERT, F. minations are given in Spanish and translated into (2009), RAMÍREZ, C., SAN MARTÍN, C., CONTRERAS, D. English. & SAN MARTÍN, J. (1994) and RUTHSATZ, B. (1995). In Argentina, Paraguay, Uruguay and Brasil, the B. NEOTROPICAL-AUSTROAMERICAN Kingdom works published by BOLÓS, O., CERVI, A.C. & HAT- [Reino NEOTROPICAL-AUSTROAMERICANO] Ba. NEOTROPICAL Subkingdom SCHBACH, G. (1991), BUTZKE, A. (1997), CABIDO, M. [Subreino NEOTROPICAL] (1985), CABIDO, M. & ACOSTA, A. (1986), CABIDO, M., Bab. CARIBBEAN-NEOGRANADIAN Superegion ACOSTA, A. & DÍAZ, S. (1990), CABRERA, Á. L. (1971), [Superregión CARIBEÑA-NEOGRANADINA] CABRERA, Á. L. (1976), DIESEL, S. (2005), EITEN, G. 9. CARIBBEAN-MESOAMERICAN Region] (1972, 1983), ESKUCHE, U. (1984, 2005), FAGGI, A.M. [Región CARIBEÑA-MESOAMERICANA] (1985), FIASCHI, P & J.R. PIRANI. (2009), FONTANA, 9.3. Lesser Antillean Province S.L. (2005), GALÁN DE MERA, A. & NAVARRO G. [Provincia Antillana Menor] (1992), GANDULLO, R. & FAGGI, A. M. (2003, 2005), 9.5. Chiapan-Honduran Province] GANDULLO, R. & SCHMID, P. (2001), GIBBS, P. E., [Provincia Chiapaneca-Hondureña] LEITAO FILHO, H. & SHEPHERD, G. (1983), KEGLER, A. 9.6. Panamanian-Costa Rican Province (2005), KEGLER, A., DIESEL, S., WASUM, R.A., HERRE- [Provincia Panameña-Costarricense] RO, L., DEL RÍO, S. & PENAS, A. (2010), LEÓN, R.J.C. & 10. NEOGRANADIAN Region BURKART, S.E. (1988), LEWIS, J:P:, COLLANTES, M:B:, [Región NEOGRANADINA] PIRE, E.F., CARNEVALE, N.J., BOCCANELLI, S.I., STOFE- 10.1. Guajiran-Caribbean Province LLA, S.L. & PRADO, D.E. (1985), MARTÍNEZ CARRETE- [Provincia Guajireña-Caribeña] RO, E. (1993, 1995, 2000, 2001, 2006), MÉNDEZ, E., E. 10.2. Llaneran Province MARTÍNEZ CARRETERO & I. PERALTA, I. (2006), NAVA- [Provincia Llanera] RRO, G., MOLINA, J. A. & PÉREZ DE MOLAS, L. (2006), 10.3. Colombian Andean Province PRANCE, G. T. (1977, 1978, 1979), RATTER, J. A., LEI- [Provincia Andina Colombiana] TAO-FILHO, H. DE F., ARGENT, G., GIBBS, P. E., SEMIR, 10.4. Cordobesa-Lower Magdalena Province J., SHEPHERD, G. & TAMASHIRO, J. (1988), REITZ, P. R. [Provincia Cordobesa-Bajomagdalena] (1961), RIZZINI, C. T. (1979), ROIG, F.A. (1972, 1998), 10.5. Colombian Pacific Province ROIG, F.A., ANCHORENA, J., DOLLENZ, O., FAGGI, A.M. [Provincia Pacífico Colombiana] 10.6. Guayaquilian-Ecuadorean Province & MÉNDEZ, E. (1985), ROIG, F.A., DOLLENZ, O., & [Provincia Guayaquileña-Ecuatoriana] MÉNDEZ, E. (1985), ROIG, F.A.& FAGGI, A. (1985), 10.7. Insular Galapagos Province RUTHSATZ, B. (1977), SAMPAIO, A. J. DE (1934), SCUR [Provincia Islas Galápagos] L. (2005), STUTZ DE ORTEGA, L. C. (1983, 1984, 1986, Bac. AMAZONIAN-GUYANAN Superegion 1987, 1990), VELOSO H. P. (1946, 1948), VELOSO H. P. [Superregión AMAZÓNICA-GUAYANENSE] & KLEIN, R. M. (1957, 1959) and WASUM, R. A. 11. GUYANAN-ORINOQUIAN Region (2005). [Región GUAYANA-ORINOQUENSE] And finally we should indicate that we have ana- 11.1. Guyanan Province lysed proposals for territories other than South America [Provincia Guayanense] but which bear a relation with South America for flo- 11.2. Deltaic Orinoquian Province ristic or other reasons, among which we should men- [Provincia Orinoquense Deltaica] tion: CANO CARMONA , E., VELOZ, A. & CANO ORTÍZ, 11.3. Guaviarean-Orinoquian Province A. (2010), CONTRERAS MEDINA., R.; LUNA VEGA, I. & [Provincia Guaviareña-Orinoquense] MORRONE, J. J. (1999), EMMERICH, K. H. (1988), GA- 11.4. Tepuyan Province LÁN DE MERA, A. (2005), LAUER, W. (1968), LUNA VE- [Provincia Tepuyana] GA, I.; MORRONE, J. J.; ALCÁNTARA AYALA, O. & ESPI- 11.5. Guyanese Brazilian Province NOSA ORGANISTA, D. (2001), MATTICK, F. (1964), [Provincia Brasileña Guayanense] DEIL, U. (1994, 1999). We have also particularly taken 12. AMAZONIAN Region into account the bioclimatic typology of RIVAS-MAR- [Región AMAZÓNICA] TÍNEZ, S. (2004), RIVAS-MARTÍNEZ, S. & RIVAS SÁENZ, 12.1. West Amazonian Province S. (2009) and RIVAS-MARTÍNEZ, S., RIVAS SÁENZ, S. & [Provincia Amazónica Occidental] PENAS, A. (2011). 12.2. North Amazonian Province Biogeographic Map of South America. A preliminary survey 27

[Provincia Amazónica Septentrional] 18. MIDDLE CHILEAN-PATAGONIAN Region 12.3. Deltaic Amazonian Province [Región MESOCHILENA-PATAGÓNICA] [Provincia Amazónica Deltaica] 18.1. Desertic Mediterranean Chilean Province 12.4. Southwest Amazonian Province [Provincia Chilena Mediterránea Desértica] [Provincia Amazónica Suroccidental] 18.2. Central Chilean Province 12.5. Central Amazonian Province [Provincia Chilena Central] [Provincia Amazónica Central] 18.3. Mediterranean Andean Province Bad. CHACOAN-BRAZILIAN Superegion [Provincia Andina Mediterránea] [Superregión CHAQUEÑA-BRASILEÑA] 18.4. Argentine Monte Province 13. BRAZILIAN-PARANENSE Region [Provincia Monte Argentino] [Región BRASILEÑA-PARANAENSE] 18.5. North Patagonian Province 13.1. Brazilian Atlantic Province [Provincia Patagónica Septentrional] [Provincia Atlántica Brasileña] 18.6. South Patagonian Province 13.2. Paranense Province [Provincia Patagónica Meridional] [Provincia Paranaense] 19. VALDIVEAN-MAGELLANIAN Region 13.3. Catingan Province [Región VALDIVIANA-MAGALLÁNICA] [Provincia Catinguense] 19.1. Valdivean Province 13.4. Tocantins Province [Provincia Valdiviana] [Provincia Tocantinense] 19.2. Temperate Magellanian Province 13.5. East Cerrado Province [Provincia Magallánica Templada] [Provincia Cerradense Oriental] 19.3. Boreal Austromagellanian Province 13.6. West Cerrado Province [Provincia Austromagallánica Boreal] [Provincia Cerradense Occidental] 19.4. Insular Falkland Province 13.7. Pantanalian Province [Provincia Islas Malvinas] [Provincia Pantanalense] 19.5. Insular Juan Fernandez Province 13.8. Benian Province [Provincia Islas Juan Fernández] [Provincia Beniana] Bc. CIRCUMANTARCTIC Subkingdom 14. CHACOAN Region [Subreino CIRCUNANTÁRTICO] [Región CHAQUEÑA] 20. INSULAR ANTARCTIC Region 14.1. North Chacoan Province [Región ANTÁRTICA INSULAR] [Provincia Chaqueña Septentrional] 20.1. Insular Atlantical Antarctic Province 14.2. South Chacoan Province [Provincia Islas Antárticas Atlánticas] [Provincia Chaqueña Meridional] 21. CONTINENTAL ANTARCTIC Region Bae. TROPICAL SOUTH ANDEAN Superegion [Región ANTÁRTICA CONTINENTAL] 21.1. West Antarctic Province [Superregión SURANDINA TROPICAL] [Provincia Antártica Occidental] 15. TROPICAL SOUTH ANDEAN Region 21.2. East Antarctic Province [Región SURANDINA TROPICAL] [Provincia Antártica Oriental] 15.1. Desertic Peruvian-Ecuadorean Province [Provincia Peruana-Ecuatoriana Desértica] B. Descriptions of biogeographic units 15.2. Mesophytic Punenian Province [Provincia Puneña Mesofítica] Amazonian: South-American equatorial and Atlantic 15.3. Xerophytic Punenian Province southern eutropical biogeographic region (12), plu- [Provincia Puneña Xerofítica] vial and tropical mesophytic infra-lower thermotropi- 15.4. Bolivian-Tucumanan Province cal bioclimates and with few rare exceptions subme- [Provincia Boliviana-Tucumana] sophytic, with varzeal compensation, on soils and 15.5. Yungenian Province waters enriched with ions and nutrients. To the north [Provincia Yungueña] it borders on the hyperoligotrophic soils and waters 16. HYPERDESERTIC TROPICAL PACIFIC Region with Guyanan-Orinoquian Region; to the south on [Región PACÍFICA TROPICAL HIPERDESÉRTICA] the infra-thermotropical pluviseasonal lower meso- 16.1. Hyperdesertic North Peruvian Province phytic and submesophytic border with the Brazilian- [Provincia Norperuana Hiperdesértica] Paranense Region and, at the headwaters of the An- 16.2. Hyperdesertic Tropical Chilean-Arequipan dean mountains with the yungas of the Tropical Province South Andean Region which have a height of be- [Provincia Chilena-Arequipeña Tropical tween 500-1000 m. The Amazonian Region compri- Hiperdesértica] ses five biogeographic provinces: 12.1. West Amazo- nian, 12.2. North Amazonian, 12.3. Deltaic Amazo- Bb. AUSTROAMERICAN Subkingdom nian, 12.4. Southwest Amazonian, 12.5 and Central [Subreino AUSTROAMERICANO] Amazonian. [Región Amazónica] 17. PAMPEAN Region [Región PAMPEANA] Amazonian-Guyanan: South-American biogeogra- 17.1. Mesophytic Pampean Province phical superegion (Bac), with tropical macrobiocli- [Provincia Pampeana Mesofítica] mate formed by the Guyanan-Orinoquian and Ama- 17.2. Xerophytic Pampean Province zonian Regions (11+12). [Superregión Amazónica- [Provincia Pampeana Xerofítica] Guayanense]. 28 S. Rivas-Martínez, G. Navarro, A. Penas & M. Costa

Argentinian Montean: Biogeographic province of the pical coastal Braziliantropical. South America south Middle Chilean-Patagonian Region (18.4). Non-tro- of San Francisco river. [Provincia Atlántica Brasile- pical, desertic and xeric Mediterranean mostly sub- ña]. tropical South America. [Provincia Monte Argenti- no]. Brazilian-Paranense: Atlantic South-American bio- geographic region (13), located in amazonic and rio- Austroamerican: Non-tropical South-American sub- platensean basin. Meridional equatorial (Ceará, Ma- kingdom (Bb), covering a wide territory usually ranhao), meridional eutropical (Bahía, Planalto, Mato south of parallel 30ºS, both Mediterranean (Middle Grosso, Rondonia, Pantanal and Beni), and meridio- Chilean-Patagonian Region) and temperate or boreal nal subtropical to the east of the Paraguay-Paraná ri- macrobioclimates (Pampean and Valdivean-Magel- ver (parallel 30ºS), whose bioclimate is mostly tropi- lanian Region). To the north it borders on the tropical cal pluviseasonal submesophytic, as well as tropical macrobioclimate with Brazilian-Paranense, Chacoan, pluvial, at the south of the tropic of Capricorn, and Tropical South Andean and Hyperdesertic Tropical Pacific regions. It has gondwanic paleorelationships tropical xeric in the Catinga-Sertao (basin of the San and later ones with the Neozelandic-Australian King- Francisco river). The Brazilian-Paranense region in- dom and the Circumantarctic Subkingdom. Three re- cludes eight biogeographic provinces: 13.1. Brazilian gions are recognized: Pampean (17), Middle Chilean- Atlantic, 13.2. Paranense, 13.3. Catingan, 13.4. To- Patagonian (18) and Valdivean-Magellanian (19) cantins, 13.5. East Cerrado, 13.6. West Cerrado, [Subreino Austroamericano]. 13.7. Pantanalian and 13.8 Benian [Región Brasile- ña-Paranaense]. Austrocircummediterranean: Meridional pluriconti- nental geographic area with a gondwanic origin, and Caribbean-Mesoamerican:Mesoamerican biogeogra- Mediterranean macrobioclimate, potentially made up phic region (9), with tropical bioclimate, chiefly plu- of the Austro-American, South-African and Austra- viseasonal, to a lesser extent pluvial or xeric and ra- lian evergreen climatophilous forests, semideserts rely desertic in some islands or Antilleancoasts. It in- and deserts. Territories with Mediterranean macro- cludes all the Caribbean islands, the Florida and Yu- bioclimate of the southern hemisphere [Área Austro- catan peninsulas, the rainy territories of Veracruz and circunmediterránea] all over Central America to the north of Darien. The Caribbean-Mesoamerican Region comprises six bio- Austrocircumtemperate: Meridional pluricontinental geographic provinces: 9.1. Floridian, 9.2. Cuban, 9.3. geographic area with a gondwanic origin, with tem- Lesser Antillean, 9.4. Veracruzenian-Yucatecan, 9.5. perate bioclimate, potentially formed by the Austro- Chiapan-Honduran and 9.6. Panamanian-Costa Rican American, Australian-New-Zealander and South-Af- rican warm mostly evergreen and gymnospermic [Región Caribeña-Mesoamericana] climatophilous forests. Territories with temperate Caribbean-Neogranadian: Caribbean and North So- macrobioclimate of the southern hemisphere [Área uth-American biogeographic superegion (Bab), with Austrocircuntemplada]. tropical macrobioclimate formed by the Caribbean- Austrocoldtemperate: Meridional pluricontinental Mesoamerican and Neogranadian Regions (9+10). wide geographic area with a gondwanic origin, mos- Caribbean and New Granada. [Superregión Caribe- tly located south of parallel 35ºS, formed by cold and ña-Neogranadina]. temperate latitudinal and altitudinal zones, to the Catingan: Biogeographic province of the Brazilian- south of the subtropical boundary. Territories with Paranense Region (13.3) mostly tropical xeric. Tro- temperate macrobioclimate of the southern hemi- pical South America. Catinga. [Provincia Catinguen- sphere, often with deciduous forest, with a thermicity se]. index lower than It<200. [Área Austrocriotemplada]. Central Amazonian: Biogeographic province of the Benian: Biogeographic province of the Brazilian-Pa- Amazonian Region (12.5); it has been also called ranense Region (13.8). Tropical South America; low Madeira-Tapajoz. Tropical South America. Central and middle basin of Mamore and Beni rivers, mostly Amazon. [Provincia Amazónica Central]. infra-thermotropical humid. [Provincia Beniana]. Central Chilean: Biogeographic province of the Bolivian-Tucumanan: Biogeographic province of the Middle Chilean-Patagonian Region (18.2). Mediter- Tropical South Andean Region (15.4). Tropical So- ranean non-tropical South America. [Provincia Chi- uth America; eastern Andes of Bolivia and Argentina lena Central]. as far as Tucuman above the Chacoan Region. [Pro- vincia Boliviana-Tucumana]. Chacoan: Atlantic tropical South-American biogeo- graphic region (14), located to the northwest of Para- Boreal Austromagellanian: Austro-American biogeo- guay river (Paranense biogeographic province) with graphic province (19.3), with boreal hyperoceanic dry and semiarid tropical xeric bioclimate. Its central bioclimate, in the south of the Valdivean-Magella- axis is the Pilcomayo river when it reaches the plain nian Region [Provincia Austromagallánica Boreal]. after flowing across the tropical Andes in the Xero- phytic Punenian and Bolivian-Tucumanan Provinces. Brazilian Atlantic: Biogeographic province of the Towards the north it borders on Santa Cruz de la Sie- Brazilian-Paranense Region (13.1). Infra-thermotro- rra with Chiquitanía, West Cerrado Province, and Biogeographic Map of South America. A preliminary survey 29 towards the northeast with the Pantanal. Towards the Shelf (20ºW-160º E: West Antarctic or Lesser Ant- south, when the tropical macrobioclimate disappears arctic), which includes the Ellsworth Mountains with and evolves to temperate, it come into contact with the Vinson Peak (5140 m) culminating at the top of the Pampean Region (Xerophytic Pampean Province) Antarctica (West Antarctic Province). 21.2 East Ant- and when it becomes Mediterranean xeric or desertic arctic Province: this extends along the coast towards it is replaced by the subdesertic vegetation of the Ar- the east from the Usarp mountains on Oates Coast gentinean Montean, the start of the North Patagonian (160º E) to the Ekström ice field on Princess Martha Province of the Middle Chilean-Patagonian Region. Coast (20º W: East Antarctic or Greater Antarctic), The Chacoan Region comprises two biogeographic which includes as its culminating part the Dome Ar- provinces: 14.1. North Chacoan and 14.2 South Cha- gus (4030 m); to the west of the French station of coan. [Region Chaqueña]. Charcot (2435 m) an ice glacier thickness of 4776 has been measured; the record for the coldest tempe- Chacoan-Brazilian: South-American biogeographic rature on the surface of the Earth (-89.4º C) is held superegion (Bad) with tropical macrobioclimate ma- by the Russian station of Vostok (3488 m). The Ant- de up of Brazilian-Paranense and Chacoan Regions arctic Continent, with more than 13.5 million square (13 + 14). [Superregión Chaqueña-Brasileña]. kilometres, was the center of the Gondwana super- continent 180 million years ago, after which a set of Chiapan-Honduran : Biogeographic province of the subcontinents: South America, Africa, India, Austra- Caribbean-Mesoamerican Region (9.5). Central A- lia and New Zealand separat and slid toward the merica. [Provincia Chiapaneca-Hondureña]. north, leaving the Antarctica more or less fixed around the South Pole, isolated and perhaps partly or Circumantarctic: Biogeographic subkingdom (Bc), wholly under ice cover for 40 million years. Today, with polar macrobioclimate, exceptionally boreal hy- 98 percent of the surface of Antarctica is covered by peroceanic in some subtemperate isles, hypergelid to a thick ice cover of about 2.5 km of thickness on av- a large extent made up of the Antarctic Continent and erage. There are also wide flat glacial floating planes the islands and archipelagos peripheral to the Ant- (ice shelf), some of 1000 km in length in protected arctic Peninsula and the Antarctic Continent (Conti- coastal areas (Ross & Ronne Ice Shelves). The an- nental Antarctic Region), as well as the islands far nual precipitation exceeds 600 mm in some hypero- from the continent, immersed in the westerly winds ceanic windward coastal or insular adjacent locali- and the icy waters of the Antarctic Convergence (In- ties, while many extreme continental areas inside the sular Antarctic Region: South Orkney, South Geor- center-east have less than 30 mm. The dominant bio- gia, South Sandwich, Bouvet, Prince Edward, Crozet, climate is polar pergelid and only upper suprapolar Kerguélen, McDonald, Macquarie, Balleny, Scott, (Tp<20) in the marked hyperoceanic coasts and at- etc.). The Circumantarctic Subkingdom comprises tached islands (Graham Land at the end of the Ant- two biogeographic regions: 20. Insular Antarctic and arctic Peninsula and surrounding islands, especially 21. Continental Antarctic. [Subreino Circunantárti- in sunny places with environmental humidity). Only two vascular plants are known, with distribution co]. Austro-American linked to coastal habitats with Colombian Andean: Biogeographic province of the freshwater or very little brackish and seasonal hu- Neogranadian Region (10.3). Tropical South Ameri- midity available, nevertheless there are several hun- ca of the Andes from Cotopaxi volcano in Ecuador dred lichen species, bryophytes, fungi and proto- phytes, especially on well-exposed rock habitats next to Quito to the Andes of Mérida, Eastern and where melt water or cryptoprecipitations are avail- Central Range and Cauca Valley, extending from in- able at least some time during the summer. Among fratropical xeric in the inner Magdalena deep valleys birds and mammals that breed on the continent or to cryorotropical pluvial in the snowy high moun- adjacent islands, always in low continental sea-land tains. It has been also named Andina Paramuna due stations, it is worth mentioning five species of pen- to its cold and humid high plains enriched with espe- guins, more than a dozen bird and six seal species. letineans (frailejones). [Provincia Andina Colombia- Despite having been able to detect warmer and na]. colder periods in Antarctica over the past 150,000 years and correlate them with the concentrations of Colombian Pacific: Biogeographic province of the carbon dioxide –an increased greenhouse-gas effect Neogranadian Region (10.5). Tropical South Ameri- in the Earth– in the last 50 years the increase of CO2 ca. [Provincia Pacífico Colombiana]. from 280 ppm to 370 ppm (global warming) does not seem to have had a significant impact on the current Continental Antarctic: Biogeographic region belon- increase in temperature in East Antarctica. [Región ging to the Circumantarctic Subkingdom (21) with Antártica Continental]. pergelid polar bioclimate and scarce suprapolar bio- climate Tp<20. Because of its orography, bioclimate, Cordobesa-Lower Magdalena: Biogeographic prov- geography and biota, two great territories can be ince of the Neogranadian Region (10.4). Xeric to identified on the Antarctic Continent, to the west and pluvial infra-thermotropical Caribbean tropical South east of the Transantarctic Mountains, to which we America of the plains, hills and dams of the Sinu, confer the provincial biogeographic level. 21.1. West Magdalena and Cauca basins from Barrancabermeja Antarctic Province: this extends along the coast to- and Cáceres to the swamps close to Plato. [Provincia ward the west and south from the Filchner and Ronne Cordobesa-Bajomagdalena]. ice shelves to follow the coasts close to the Ross Ice 30 S. Rivas-Martínez, G. Navarro, A. Penas & M. Costa

Deltaic Amazonian: Biogeographic province of the Guajiran-Caribbean: Biogeographic province of the Amazonian Region (12.3), infratropical pluvial and Neogranadian Region (10.1). Tropical South Ameri- pluviseasonal mesophytic. Tropical South America. ca. Caribbean from Cartagena to the Paria Peninsula, Amazonian Delta. [Provincia Amazónica Deltaica]. with the Guajira, Maracaibo, Falcón, Barquisimeto, Valencia, Caracas and coastal Venezuelan moun- Deltaic Orinoquian: Biogeographic province of the tains. To the south it borders with the Llaneran Guyanan-Orinoquian Region (11.2), infratropical (10.2), Colombian Andean (10.3) and Cordobesa-Lo- pluvial. Tropical South America. Orinoquian Delta. wer Magdalena (10.4) biogeographical provinces. [Provincia Orinoquense Deltaica]. [Provincia Guajireña-Caribeña].

Desertic Mediterranean Chilean: Biogeographic Guaviarean-Orinoquian : Biogeographic province of province of the Middle Chilean-Patagonian Region the Guyanan-Orinoquian Region (11.3). Tropical (18.1). Nontropical South America. Toward the south South America. [Provincia Guaviareña-Orinoquen- of Antofagasta (24º C) the coastal and interior hyper- se]. deserts, deserts and semideserts are already Mediter- ranean (winter rainfall) until Region V (32ºS), and Guayaquilian-Ecuadorean: Biogeographic province belong to the Desertic Mediterranean Chilean Prov- belonging to the Neogranadian Region (10.6). Pacific ince which, from the extreme hyperdeserts (Io 0.0- equatorial tropical South America. It extends along 0.1) lacking in vascular climatophilous vegetal cover the coast from the Guayaquil Gulf (3ºS) up the An- to the III Region (26ºS), continues northwards with con Bay on the Colombian border (1º 30’N), ex- the acute and moderate deserts with arid cacti such as cluding a desertic narrow coastal territory with man- Eulychnia tenuis and Copiapoa marginata. North of groves going from the Puná Island to the Manta Bay. Vallenar in the IV Region (29ºS) the arid deserts (Io In contrast, the coast is always hyperarid and ultra- 0.4-0.9) with large cacti of Eulychnia breviflora ap- hyperarid with cold sea waters and without man- pear; and reaching up until north of Coquimbo (30º groves extending from latitude 4º 10’ S up to 24ºS to S), the semideserts (Io 1.0-1.9) with large Cactaceae, the Hyperdesertic Tropical Pacific Region (16)]. The rosulate puya and shrubs of Eulychnia acida, Echi- Andean ranges of the Colombian Andean Province nopsis skottsbergii, Echinopsis litoralis, Puya chilen- (10.3), with the typical frailejones, extend as far as sis and Lithraea caustica, preamble to the Mediterra- Ecuador up to the snow covered volcanoes of Coto- nean pluviseasonal sclerophylous forests and chapar- paxi (5897 m) and Iliniza (5383 m) (1ºS). South of rals of the class Lithraeo-Cryptocaryetea, typical of this latitude the mountain chain continues the the Central Chilean Province (18.2). [Provincia Chi- Guayaquilian-Ecuadorean Province, whose highest lena Mediterránea Desértica]. peak is the Chimborazo (6310 m). In the high humid or even hyperhumid supra-cryorotropical high Desertic Peruvian-Ecuadorean. Biogeographic prov- mountains there are short and tall pajonales and ince of the Tropical South Andean Region (15.1). scrubland climatophilous communities, as well as the Deserts and semideserts (Io 0.4-2.0) of the tropical perennifolius meso-micro-cloud-forests which be- mountains and coasts of the Andean western slopes, come serial shrubby pajonales when damaged. In the from the coast of Manta Bay in Ecuador (1º S), that upper semiarid-subhumid infra-mesotropical belts, together with the Tumbes Peruvian coast up to Ma- mostly on the pacific slope, the natural matured chala, with the short tree Loxopterigium huasango, vegetation, seriously damaged by agriculture, corre- constitute two biogeographic districts: Desertic Coas- sponds to deciduous and semideciduous micro-meso- tal Ecuadorean and Tumbesian, in Peru from El Alto forests that in the hottest areas can be thorny or doli- in Piura (4º 10’ S) towards the south leaves the lit- form. The xeric mesotropical deciduous forests with toral to cover the interior deserts and semideserts and small doliform trees and cacti are also visible at the the western Andean foothills up until Tarata in Tacna south of the province (6ºS) next to the Abra Porculla and the borders of Chile (18º S). In contrast, the ul- (2145 m) and Bagua low hot valley, in the Marañón trahyperarid and hyperarid hyperdeserts (Io 0.0-0.4) basin. Eastwards from the Napo to the Pastaza rivers belong to the Hyperdesertic Tropical Pacific Region it borders the humid lower thermotropical pluvial (16) extending along the coasts, ridges and moun- belt with the West Amazonian Province (12.1) and at tains ranges from Talara (4º 30’ S) in Peru to Antofa- the Condor Mountain Range and the Chinchipe ba- gasta (24º S) in Chile. Tropical South America. [Pro- sin, the humid-hyperhumid meso-lower supratropical vincia Peruana-Ecuatoriana Desértica]. pluvial belt with the lauroid and Podocarpus humid cloud forests of the Yungenian Province (15.5) East Antarctic: Biogeographic province of the Conti- coming from the Eastern Peruvian Andes. [Provincia nental Antarctic Region (21.2), polar pergelid and Guayaquileña-Ecuatoriana]. scarcely upper suprapolar (Tp<10) in sun exposed- coasts. East Antarctic. This could be also named Gre- Guyanan: Biogeographic province of the Guyanan- ater Antarctic. [Provincia Antártica Oriental]. Orinoquian Region (11.1). Tropical South America. [Provincia Guayanense]. East Cerrado: Biogeographic province of the Brazil- ian-Paranense Region (13.5). Tropical South Ameri- Guyanan-Orinoquian: Equatorial and Atlantic north- ca. Eastern Cerrado. [Provincia Cerradense Orien- ern eutropical south American biogeographic region tal]. (11), with pluvial and pluviseasonal bioclimate, ex- Biogeographic Map of South America. A preliminary survey 31 tending over the whole of the hard Guyanese Shield Insular Antarctic: Biogeographic region belonging to and the surrounding sandy fluvial and windy sand the Circumantarctic Subkingdom (20) with polar hy- deposits which give rise to soils and waters which are peroceanic, oceanic and pergelid bioclimate, and ex- extraordinarily poor in nutrients and bases such as ceptionally boreal hyperoceanic only formed by isles Old Guyana, Vichada, Guaviare, Vaupés and Ro- located in the austral glaciated sea around the Ant- raima territories. To the north and south it borders on arctic Continental (Continental Antarctic Region), the Neogranadian and Amazonian Regions respecti- linked by the permanent or temporary iced sea all the vely, both of which have rich soils and waters. The year (banquisa) and the meeting between the ice wa- Guyanan-Orinoquian Region comprises five biogeo- ters (-2ºC) and temperate ones (0º to 3ºC) of the Ant- graphic provinces: 11.1. Guyanan, 11.2. Deltaic Ori- arctic Convergence (about 1600 km of the coast), noquian, 11.3. Guaviarean-Orinoquian , 11.4. Tepu- adjacent to the circumpolar current, driven by the yan and 11.5. Guyanese Brazilian . [Región Guaya- west wind drift. Inside the region we accept three na-Orinoquense]. oceanic groups of islands or archipelagos at the bio- geographic province level: 20.1 Insular Atlantic Ant- Guyanese Brazilian : Biogeographic province of the arctic Province (20ºE-80ºW): Bouvet Island, South Guyanan-Orinoquian Region (11.5). Tropical South Georgia Islands, Diego Ramírez Islands, South America. [Provincia Brasileña Guayanense]. Sandwich Islands and South Shetland Islands; 20.2 Insular Indian Antarctic Province (20ºE-140ºE): Cro- Hyperdesertic North Peruvian : Biogeographic pro- zet Island, Prince Edward Island, Heard Island, Ker- vince of the Hyperdesertic Tropical Pacific Region guélen Islands and McDonald Islands and 20.3. In- (16.1). Tropical South America. Hyperdesertic north- sular Pacific Antarctic Province (140ºE-80ºW): ern Peru. [Provincia Norperuana Hiperdesértica]. Balleny Islands, Macquarie Islands, Peter Island and Hyperdesertic Tropical Chilean-Arequipan: Biogeo- Scott Islands. The terrestrial and oceanic-terrestrial graphic province of the Hyperdesertic Tropical Paci- biota is quite poor and with gondwanic lineage, but fic Region (16.2). Tropical South America. Hyperde- with influences of the nearby large continents and sertic Tropical Chile and Arequipa, ultrahyperarid islands: South America, Africa, Australia, New Zea- and hyperarid coasts, ridges and mountain ranges of land and Tasmania. [Región Antártica Insular]. Northern Arequipa, Moquegua and Tacna Peruvian Insular Atlantical Antarctic: Biogeographic insular departments. [Provincia Chilena-Arequipeña Tropi- province of the Insular Antarctic Region (20.1). At- cal Hiperdesértica]. lantic Antarctic archipelagos and islands: South Hyperdesertic Tropical Pacific: South American tro- Georgia, Diego Ramirez, Bouvet, South Sandwich pical biogeographic region (16), extending from 4º and South Shetland (20º E-80º W) with thermo-su- 10’ S in the hyperarid coastal of Talara (Peru) to the prapolar and pergelid bioclimates. [Provincia Islas extreme ultrahyperarid tropical deserts of Antofa- Antárticas Atlánticas]. gasta (24ºS). To this region belongs the extreme marked and moderate hyperdeserts, thermo-mesotro- Insular Falkland: Biogeographic insular province of pical hyperarid and ultrahyperarid (It > 320; Io < the Valdivean-Magellanian Region (19.4). Atlantic 0.4), which in the Hyperdesertic Tropical Chilean- boreal (antiboreal) South America. [Provincia Islas Arequipan Province can reach almost 3000 meters, Malvinas]. with the moderate hyperdeserts of columnar cactus of Browningia candelaris. The rocky or clayey hy- Insular Galapagos: Biogeographic insular province perdeserts, without occasional hydric contribution or of the Neogranadian Region (10.7). Xeric-desertic fog, lack vascular vegetation cover, but the misty de- pacific equatorial tropical South America. [Provincia serts with unmeasurable drizzled moisture during Islas Galápagos]. some weeks in year, have different types of vegeta- tion depending on the topography and substrate Insular Juan Fernandez: Biogeographic insular pro- (coastal ridges), such as the aerohygrophile commu- vince of the Valdivean-Magellanian Region (19.5). nities of Tillandsia sp. pl. which grow on several Mediterranean and temperate subtropical pacific non substrates and dune communities, or those than grow tropical South America. [Provincia Islas Juan on deep sandy soils formed by numerous radicant, Fernández]. geophytic or terophytic plants. In the hyperdeserts the natural matured vegetation corresponds to very Lesser Antillean: Biogeographic province of the Ca- open formations of different cactus, some of them ribbean-Mesoamerican Region (9.3). Antilles Is- crassiarborescents columnar microphanerophytics lands. [Provincia Antillana Menor]. with very low growth such as Neoraimondia arequ- ipensis. The Hyperdesertic Tropical Pacific Region Llaneran: Biogeographic province of the Neograna- comprises two biogeographic provinces: 16.1. Hy- dian Region (10.2). Xeric and pluviseasonal infratro- perdesertic North Peruvian and 16.2. Hyperdesertic pical Atlantic tropical South America of the plains, Tropical Chilean-Arequipan. However it has few flo- hills, rivers and dams of water in rich soils from the ristic and vegetational relationships with the deserts river Meta to Guajira river, with hydrophytic herba- and semideserts of the Desertic Peruvian-Ecuadorean ceous and humid wooded natural permanent savanna biogeographic province (15.1). [Región Pacífica Tro- to pluviseasonal evergreen or deciduous rich soil for- pical Hiperdesértica]. est vegetation climax. [Provincia Llanera]. 32 S. Rivas-Martínez, G. Navarro, A. Penas & M. Costa

Mediterranean Andean: Biogeographic province of Neotropical-Austroamerican: American and Antarc- the Middle Chilean-Patagonian Region (18.3). Non- tic Biogeographic Kingdom (B) established by three tropical South America. Mediterranean Andes. [Pro- broad subkingdoms having distinct bioclimates: Ba. vincia Andina Mediterránea]. Neotropical (tropical bioclimates: North, Central and South America); Bb. Austro-American (temperate, Mesophytic Pampean: Biogeographic province of the mediterranean and boreal bioclimates): Bc. Circum- Pampean Region (17.1). Subhumid and humid tem- antarctic (polar bioclimates: Antarctic and related ar- perate Atlantic (30º-40º S) South America. [Provin- cia Pampeana Mesofítica]. chipelagos). [Reino Neotropical-Austroamericano] Mesophytic Punenian: Biogeographic province of the North Amazonian: Biogeographic province of the Tropical South Andean Region (15.2). Tropical Amazonian Region (12.2); it has been also named mesophytic and hygrophytic subhumid to hyperhu- Roraima. Tropical South America. Western Amazon. mid puna of South America. [Provincia Puneña Me- [Provincia Amazónica Septentrional]. sofítica]. North Chacoan: Biogeographic province of the Cha- Middle Chilean-Patagonian: Pacific and Atlantic coan Region (14.1). Tropical South America. North- non-tropical South American biogeographic region ern Chaco. [Provincia Chaqueña Septentrional]. (18), all with Mediterranean macrobioclimate. The region obliquely crosses the subcontinent from one North Patagonian: Biogeographic province of the ocean to another (Pacific coast: 24º-38º S, Atlantic Middle Chilean-Patagonian Region (18.5). Non-tro- coast 40º-52º S); across a broad Mediterranean pical Mediterranean South America. [Provincia Pa- bridge in the high Andes (approx. 30º-35ºS). Its tagónica Septentrional]. northern Andean mountain zone corresponds to the puna floristic district Cuyano (MARTÍNEZ CARRE- Neogranadian: Neotropical biogeographic region TERO 1995). From the extreme ultrahyperarid ther- (10) cover a wide northern territory of South Ameri- mo-mesomediterranean hyperdeserts of Atacama ca from the inner Guayaquil Bay and the Andean Pe- (24ºS) and the central Chilean deciduous and scle- ruvian-Ecuadorean mountains south of Loja (6ºS) to rophyllous dry to subhumid thermo-mesomedite- the Gulf of Panama in the Pacific and the Gulf of Da- rranean micro-mesoforests (38ºS), it reaches the oro- rien, the Guajira (12º 30’ N) and Paria (11ºN) penin- mediterranean belt of the cordillera with the clima- sulas in Caribbean Sea (10ºN). To the east and south tophilous scrubland and “pajonales” of the Medite- it borders on the Guyanan-Orinoquian (11), Amazo- rranean Andean Province and, in the high Andes, the nian (14) and Tropical South Andean (15) regions. climatophilous cryoromediterranean dry-humid pul- The Neogranadian Region (see provinces text) com- vinate vegetation. Beyond the cordillera appears the prises seven biogeographic provinces: 10.1. Guaji meso-megascrubland, more or less thermic semiarid- ran-Caribbean, 10.2. Llaneran, 10.3. Colombian An- arid of the Argentine Monte biogeographic Province, dean, 10.4. Cordobesa-Lower Magdalena, 10.5. and continues towards the south, on the eastern side Colombian Pacific, 10.6. Guayaquilian-Ecuadorean of the cordillera, with northern or southern Pata- and 10.7. Insular Galapagos. [Región Neogranadina] gonian supra-oromediterranean semiarid-dry dwarf shrubby vegetation. As far as the coast in Rio Galle- Pampean: Non-tropical Atlantic Temperate South- gos (51º 50’ S), appears the temperate xeric macro- American biogeographic region (17) belonging to the bioclimate with the productive grasslands in summer Austro-American Subkingdom. All the region has a and, more toward the southwest the remains of the temperate macrobioclimate (temperate oceanic and old micro-mesoforests of Nothofagus, particularly xeric), located between 30ºS and 40ºS parallels and when the ombrotype is subhumid or humid with the chiefly in the low basins of the Paraná and Uruguay Valdivean-Magellanian mesoforest of Wintero-No- rivers which come from the tropical Brazilian-Para- thofagetea class. The Middle Chilean-Patagonian Re- nense Region (approx. 30ºS). A considerable part of gion comprises six biogeographic provinces: 18.1. Desertic Mediterranean Chilean, 18.2. Central Chi- the Pampean Region territory, except for its internal lean, 18.3. Mediterranean Andean, 18.4. Argentine and surrounding mountains ranges: Ventana, Carape, Monte, 18.5. North Patagonian and 18.6. South Pata- San Luis and Córdoba (2884 m), has a very recent gonian. [Región Mesochilena-Patagónica]. origin (Holocene). For this reason the native flora and particularly the arborescent one is very poor. Neotropical: Biogeographic subkingdom of America Towards the south and west of the rioplatensean te- (Ba), with tropical macrobioclimate; that is to say, all rritorial region the bioclimate changes to Mediterra- territories of the equatorial and eutropical latitudinal nean xeric or desertic and consequently to the wide belts (0º-23º N & S), as well as the subtropical belts Middle Chilean-Patagonian Region, always across (23º a 35º N & S) having tropical macrobioclimate. the Argentine Monte Province. The Pampean Region Five biogeographic superegions are recognized in comprises two biogeographic provinces: 17.1. Meso- this subkingdom: Baa. Mexican (Mexican Xerophy- phytic Pampean and 17.2. Xerophytic Pampean. [Re- tic and Madrean (regions: 7+8), Bab. Caribbean- gión Pampeana] Neogranadian (regions: 9+10), Bac. Amazonian-Gu- yanan: (regions: 11+12), Bad. Chacoan-Brazilian (re- Panamanian-Costa Rican: Biogeographic province gions: 13+14) and Bae. Tropical South Andean (re- of the Caribbean-Mesoamerican Region (9.6). Cen- gions: 15+16). [Subreino Neotropical]. tral America. [Provincia Panameña-Costarricense]. Biogeographic Map of South America. A preliminary survey 33

Pantanalian: Biogeographic province of the Brazil- and connect with the Tropical South Andean along a ian-Paranense Region (13.7). Tropical South Ameri- narrow band coming from the Chiquitanía. The con- ca. The Pantanal of South America, mostly covered tact with the tropical xeric Chacoan Region is esta- with hydrophytic herbaceous and permanent or tem- blished slightly towards the south, to finish at the porary flooded wooded natural permanent savanna. south of the 30ºS parallel in the Mediterranean [Provincia Pantanalense]. mountains and plains of the Middle Chilean-Patago- nian Region of the provinces: Mediterranean An- Paranense: Biogeographic province of the Brazilian- dean, Argentine Monte and Central Chilean. The Paranense Region (13.2). Tropical South America. Tropical South Andean Region comprises five bio- [Provincia Paranaense]. geographic provinces: 15.1. Desertic Peruvian-Ecua- dorean, 15.5. Yungenian, 15.2. Mesophytic Pune- South Chacoan: Biogeographic province of the Cha- nian, 15.3. Xerophytic Punenian and 15.4. Bolivian- coan Region (14.2). Tropical South America. South- Tucumanan. [Región Surandina Tropical]. ern Chaco. [Provincia Chaqueña Meridional]. Valdivean: Biogeographic province of the Valdivean- South Patagonian: Biogeographic province of the Magellanian Region (19.1), from mesotemperate to Middle Chilean-Patagonian Region (18.6). Non.tro- cryorotemperate subhumid to ultrahyperhumid. Non- pical Mediterranean South America. [Provincia Pa- tropical temperate and boreal South America. [Pro- tagónica Meridional]. vincia Valdiviana].

Southwest Amazonian: Biogeographic province of Valdivean-Magellanian: Pacific and Austro-Atlantic the Amazonian Region (12.4); it has been also named South-American biogeographic region (19), extend- Acre and Madre de Dios. Tropical South America. ing southwards from the Araucanía Region IX in South-western Amazon. [Provincia Amazónica Sur- Chile (38ºS) and Rio Gallegos (51º50’S) in Argenti- occidental]. na, with woodland and forest of Wintero-Nothofage- tea vegetation class. Its macrobioclimate is temperate Temperate Magellanian: Biogeographic province of and boreal. The boundary between the temperate and the Valdivean-Magellanian Region (19.2). Humid-ul- boreal macrobioclimates is located in the middle of trahyperhumid temperate non-tropical Pacific South Isla Grande in Tierra de Fuego and the adjacent con- America.[Provincia Magallánica Templada]. tinental territory of the Strait of Magellan at parallel 53º30’, as well as in Queen Adelaide Archipelago in Tepuyan: Biogeographic province of the Guyanan- the Pacific (52ºS). The Falkland (Malvinas) islands Orinoquian Region (11.4), mostly meso-supratropi- with boreal hyperoceanic bioclimate constitute a bio- cal pluvial. Tropical South America. Tepuys. [Pro- geographic province of this region. The extreme hy- vincia Tepuyana]. peroceanic, temperate and Mediterranean subhumid- humid Juan Fernandez Islands with a high number of Tocantins: Biogeographic province of the Brazilian- endemisms with gondwanic and magellanic origin Paranense Region (13.4), mostly infratropical pluvi- are also included in this region. The Valdivean-Ma- seasonal. Tropical South America. Tocantins River. gellanian Region comprises five biogeographic pro- [Provincia Tocantinense]. vinces: 19.1. Valdivean, 19.2. Temperate Magella- Tropical South Andean: South American biogeogra- nian, 19.3. Antiboreal Magellanian, 19.4. Insular Fal- phical superegion (Bae), with tropical macrobiocli- kland and 19.5. Insular Juan Fernandez. [Región Val- mate formed by the Tropical South Andean and Hy- diviana-Magallánica]. perdesertic Tropical Pacific Regions (15+16). Tropi- West Amazonian: Biogeographic province of the cal western coast and Andes. [Superregión Surandi- Amazonian Region (12.1); also named Loreto Pro- na Tropical] vince. Tropical South America. Western Amazon. Tropical South Andean: South American biogeogra- [Provincia Amazónica Occidental]. phic region (15) belonging to the tropical Andes of the southern hemisphere, extending from the yungas West Antarctic: Biogeographic province of the Con- and humid punas of the Amazon and Cajamarca de- tinental Antarctic Region (21.1), polar pergelid and partments and South Piura semideserts, as well as the scarcely upper suprapolar (Tp <20) in the coast and arid Ecuadorean coasts at the south of parallel (1ºS), adjacent islands to Palmer Land in the Antarctic to the cardonales and Chilean-Argentinian tropical Peninsula. West Antarctic. It is also known as Lesser desertic and semidesertic punas of the Cerro las Antarctic. [Provincia Antártica Occidental]. Tórtolas (6120 m) near the Agua Negra Pass (4735 m) (30ºS). To the north and west it borders on the West Cerrado: Biogeographic province of the Brazi Neogranadian Region, inside Guayaquil Bay. To the lian-Paranense Region (13.6). Tropical South Ame- east, between the 4ºS and 17ºS parallels, below the rica. Western Cerrado. [Provincia Cerradense Occi- Andean yungas (600-900 m) the pluvial and meso- dental]. phytic pluviseasonal humid-hyperhumid warm infra- thermotropical (It>640) rainforests belong to the Xerophytic Pampean: Biogeographic province of the Amazonian Region. In Santa Cruz de la Sierra (Boli- Pampean Region (17.2). Non-tropical temperate At- via) the subhumid pluviseasonal forests correspond lantic South America. Xerophytic Pampa [Provincia to the West Cerrado (Brazilian-Paranense Region) Pampeana Xerofítica]. 34 S. Rivas-Martínez, G. Navarro, A. Penas & M. Costa

Xerophytic Punenian: Biogeographic province of the Bolós, O., Cervi, AC. & Hatschbach, G. 1991. Estudios Tropical South Andean Region (15.3). Tropical sobre la vegetación del Estado de Paraná (Brasil Meri- South America. Xerophytic Puna. Semiarid, dry and dional). Collect. Bot. 20: 79-182. subhumid ombrotypes, supra-, oro-, cryorotropical Braun-Blanquet, J. 1964.. Pflanzensoziologie. Grundzüge thermotypes. [Provincia Puneña Xerofítica]. der Vegetationskunde. 3 Aufl. Vienna and New York. Butzke, A. 1997. Estudo fitossociológico da vegetação do Yungenian: Biogeographic province of the Tropical Alto Uruguai: Seleção das espécies arbóreas para o re- South Andean Region (15.5). Tropical South Ameri- florestamento dos municipios da região. Tesis Doctoral. ca. Eastern tropical Andean territories, where it is Universidad de León. España. 404 pp. frequent to find humid, cloudy and evergreen shiny Cabido, M. 1985. Las comunidades vegetales de la Pampa leaved meso-macroforest as matured vegetation, de Achala, Sierras de Córdoba, Argentina. Doc. Phyto- mainly in the humid-hyperhumid thermo-supratropi- soc. N.S. 9: 431-456 cal belt. Yunga. [Provincia Yungueña]. Cabido, M. & Acosta, A. 1986. Contribución al conocimiento fitosociológico del subpiso superior de pastizales y bosque- References cillos de altura de las Sierras de Córdoba. In Escuche, UG. & The most significant and understandable vegetatio- Landolt, E. (eds.). Contributions to the knowledge of flora nal publications that we know and used for Biogeogra- and vegetation of northern Argentina, Stiftung Rübel, Zü- phic of South America initial advance are disted in the rich, Vëroff. Geobot. Inst. ETH 91:267-281 references. Cabido, M., Acosta, A. & Díaz S. 1990. The vascular flora Acosta-Solis, M. 1966. Las divisiones fitogeográficas y las and vegetation granitic outcrops in the upper Córdoba formaciones geobotánicas del Ecuador. Rev. Acad. Co- Mountains, Argentina. Phytocoenologia 19: 267-281 lomb. Cienc. Exac. Físicas y Natur. 12, 48: 401-447. Cabrera, ÁL. 1971. Fitogeografía de la República Argentina. Acosta-Solis, M. 1984. Los páramos andinos del Ecuador. Boletín de la Soc. Argentina de Botánica 14: 1–42. Editora Nacional. Quito. 220 pp. Cabrera, ÁL. 1976. Regiones fitogeográficas . En- Aguirre, Z., Madsen, JE., Cotton, E. & Balslev, H. (eds.) ciclopedia de Agricultura y Jardinería. Tomo II. Ed. ACME. 2002. Botánica austroecuatoriana. Estudios sobre los recur- Fascículo 1. 85 pp. sos vegetales en las provincias de Oro, Loja y Zamora- Cabrera ÁL. & Willink A. 1973. Biogeografía de América La- Chinchipe. Abya-Yala (edit.), Quito.484 pp. tina. Monografía 13. Serie de Biología. Secretaría General de Alcaraz, F. 1999. Manual de teoría y práctica de Geobotáni- la Organizaciónde los Estados Americanos. Washington DC. ca.Universidad de Murcia. 401 pp. EEUU. 120 pp. Alvarez, M., Ramírez, C. & Deil U. 2008. Ecología y dis- Cano Carmona , E., Veloz, A. & Cano Ortíz, A. 2010.. Contri- tribución de Hydrocotyle cryptocarpa Speg. en Sudamé- bution to the biogeography of the Hispaniola (Dominican rica. Gayana Bot. 65: 138-143 Republic, Haiti). Acta Bot. Gallica 157 (4): 581-598. Amigo, J. 2009. La flora y la vegetación de Chile: un territorio Cañadas, L. 1983. El mapa bioclimático y ecológico del Ecua- homólogo al de España.-Discurso de ingreso en la Real Aca- dor. MAG-PRONAREG. Quito. 210 pp. demia de Farmacia de Galicia. TAKTIKA Comunicación. Castroviejo, S. & López, G. 1985. Estudio y descripción de las 38 pp. comunidades vegetales del “Hato del Frío” en los Llanos de Amigo, J., Izco, J. &.Rodríguez-Guitián, MA. 2007. Rasgos Venezuela. Mem. Soc. Ci. Nat. La Salle 45(124): 79-151. bioclimáticos del territorio templado de Chile. Phytocoeno- Caracas logia 37(3-4): 739-751. Chevalier, A. & Emberger, L. 1937.. Les régions botaniques Amigo J. & Ramírez, C. 1998. A bioclimatic classification of terrestres. Encyclopédie française 5:5.64-1 to 5.66-7. Paris. Chile: woodland communities in the temperate zone. Plant Cleef, AM. 1979. The phytogeographical position of the Ecology 136: 9-26. neotropical vascular Páramo flora with special reference to Amigo, J., Ramírez, C. & García Quintanilla, L. 2004. The the Cordillera Oriental. In Tropical Botany, eds. K. Larsen & Nothofagus nitida (Phil.) Krasser woodlands of southern L. B. Holm-Nielsen, 175-184. London. Chile in the northern half of their range; phytosociological position. Acta Botanica Gallica 151(1): 3-31. Cleef, AM. 1981. The vegetation of the páramos of the Colombian Cordillera Oriental. Diss. Bot. 61. 320 pp. J. Amigo, J., Ramírez, C. & García Quintanilla, L. 2007. Mantle Cramer.Vaduz. communities of the temperate woodlands of South Central Chile: a phytosociological study of the order Aristotelietalia Cleef, AM. & Rangel, JO. 1986. La vegetación del páramo del chilensis. Phytocoenologia 37(2): 269-319. noroeste de la Sierra Nevada de Santa Marta. In Van der Amigo, J., San Martín, J. & García Quintanilla, L. 2000. Estu- Hammen, T. & Ruiz, P.M. (eds.). La Sierra Nevada de Santa dio fitosociológico de los bosques de Nothofagus glauca Marta (Colombia). Ecoandes = Estudios de Ecosistemas (Phil.) Krasser del Centro-Sur de Chile. Phytocoenologia 30 Tropandinos 2, Borntraeger, Berlin/Stuttgart, pp. 203-266. (2): 193-221. Cleef, AM.,Rangel, JO. & Arellan, H. 2008. The páramo Ataroff, M. & Sarmiento, L. 2003. Diversidad en Los An- vegetation of the Sumapaz (Eastern Cordillera, Colombia). des de Venezuela. I Mapa de Unidades Ecológicas del In Van der Hammen (Ed.) Cordillera Oriental Colombiana. Estado de Mérida. CD-ROM, Ediciones Instituto de Transecto Sumapaz. = Studies on Tropical Andean Ecosys- Ciencias Ambientales y Ecológicas (ICAE), Universidad tems 7, Borntraeger, Berlin/Suttgart, pp. 799-913. de Los Andes, Mérida, Venezuela. Cleef, AM.; Rangel, JO. & Salamanca, S. 1983. Reconoci- Aubréville, A. 1970.. Vocabulaire de biogéographic appliquée miento de la vegetación de la parte alta del transecto Parque aux regions tropicales. Adansonia, sér. 2, 10: 439-497. de los Nevados. In Van de Hammen, T., Pérez-P., A. & Aymard, G. 2003. Bosques de los Llanos de Venezuela: Pinto, P. (Eds.). La cordillera central colombiana. Transecto Consideraciones generales sobre su estructura y composi- Parque de los Nevados. = Estudios de Ecosistemas Tropan- ción florística. En Tierras Llaneras, J.M. Hétier & R. Ló- dinos 1, Borntraeger, Berlin/Stuttgart, pp. 150-173. pez, Eds. SC-77: 19-48. IRD-CIDIAT. Mérida, Vene- Cleef, AM.; Rangel, JO. & Salamanca, S. 2003. The Andean zuela. rain forests of the Parque Nacional Los Nevados, Cordillera, Biogeographic Map of South America. A preliminary survey 35

Central, Colombia. In Hammen, T. van der & Dos Santos, Drude, O. 1890. Handbuch der Pflanzengeopraphie. Biblio- A.G. (eds.) Studies on Tropical Andean Ecosystems, 5. La thek Geographischer Handbücher (ed. by F. Ratzel). Verla Cordillera Central Colombiana. Transecto Parque Los Ne- J. Engelhorn. Stuttgart. vados: 79-143. J. Cramer. Berlin-Stuttgart Eiten, G. 1972. The Cerrado vegetation of Brasil. Bot. Rev. Contreras Medina., R.; Luna Vega, I. & Morrone, JJ. 1999. (Lancaster) 38: 201-341. Biogeographic analysis of the genera of Cycadales and Co- Eiten, G. 1983. Classificação de vegetação do Brasil. CNPq niferales (Gymnospermae): A panbiogeographic approach. /Coordenação Editorial. Brasilia. Biogeographica 75: 163-176 Emmerich, KH. 1988. Relief, Boeden und Vegetation in Zen- Coombes, L. & Ramsay, PM. 2001. Vegetation of the tral und Nordwest-Brasilien unter besonderer Beruecksich- cushion mire at 3600m on Volcán Chiles, Ecuador. In tigung der kaenozoischen Lanschaftsentwicklung. Physische Ramsay, P.M. (ed.). The ecology of Volcán Chiles: high- Geographie Band 8. 218 pp. altitude ecosystems on the Ecuador-Colombia border: 47- 54, Plymouth. Engler, A. 1924. Übersicht über die Florenreiche und Flo- rengebiete der Erde. In Syllabus der Pflanzenfamilien, A. Cortés BR. & Franco RP. 1997. Análisis panbiogeográfico de Engler & E. Gilg, 9-10 Aufl. Berlin. la flora de Chiribiquete, Colombia. Caldasia 19: 465-478. Eskuche, UG. 1984. Vegetationsgebiete von Nord und Mit- Costa, M.; Cegarra, J.; Lugo, L.; Guevara J.R.; Carrero, O.; telargentinien. Phytocoenologia 12 (2-3): 185-199. Lozada, J. & Soriano, P. 2008. Vegetación, bioclima y suelos del Bolsón Xerofítico de Lagunillas, Mérida (Ve- Eskuche, UG. 2005. Las comunidades vegetales litorales de nezuela). Libro de Resúmenes del III Congreso Interna- los lagos patagónicos y de los canales magallánicos. Folia cional de Ecosistemas Secos. Santa Marta (Colombia). Bot. et Geob. Correntesiana 18: 1-31. Costa, M.; Cegarra, A.; Lugo, L.; Lozada, J.; Guevara, J. & Estrada Sánchez, JC. 2003. Análisis multivariante de la varia- Soriano, P. 2007. The bioclimatic belts of the Venezuelan ción altitudinal de la composición florística en la Cordillera Andes in the State of Mérida. Phytocoenologia, 37 (3-4): de Mérida, Venezuela. Trabajo presentado para ascender a 711-738. Berlin-Stuttgart la categoría de profesor Asociado. Universidad de Los Andes, Mérida Venezuela. Cuatrecasas, J. 1934. Observaciones geobotánicas en Co- lombia. Trab. Mus. Cienc. Nat.Ser. Bot. 27: 1-144. Etayo, J. & Sancho, LG. 2008. Hongos y líquenes lique- nícolas del Sur de Sudamérica, especialmente de la Isla Cuatrecasas, J. 1958. Aspectos de la vegetación natural de Navarino (Chile). Bibliotheca Lichenologica 98: 1-302. Colombia. Rev. Acad. Col. Cs. Ex. Fis. Nat. 10 (40): 221- 268. Faggi, AM. 1985. Las comunidades vegetales de Río Galle- gos, Santa Cruz. In Boelcke, O., Moore, D.M. & Roig, F.A. Cuello, N. & Cleef. AM. 2009. The forest vegetation of (eds.). Transecta botánica de la Patagonia Austral, Consejo Ramal de Guaramacal in the Venezuelan Andes. Phyto- Nacional de Investigaciones Científicas y Técnicas (Argenti- coenologia 39(1): 109-156. na), Instituto de la Patagonia (Chile), Royal Society (Gran Cuello, N. & Cleef, A.M. 2009. The páramo vegetation of Bretaña), Buenos Aires, pp.592-633. Ramal de Guaracamal, Trujilo, Venezuela. 1. Zonal com- Fiaschi, P & Pirani, JR. 2009. Review of plant biogeographic munities. Phytocoenologia 39(3): 295-329 studies in Brazil. Journal of Systematic and Evolution 47: Darlington, P.J. 1957. Zoogeography: The Geographical 477-496 Distribution of Animals. John Wiley and Sons. 675 pp. Galán de Mera, A. 1995. Ensayo sintaxonómico sobre las co- New York munidades vegetales acuáticas del Perú. Arnaldoa 3(1): 51- Deil, U. 1994. Klassifizierung mit supraspezifischen Taxa 58. und symphylogenetische Ansätze in der Vegetation- Galán de Mera, A. 1999. Las clases fitosociológicas de la ve- skunde. Phytocoenologia 24: 677-694. getación del Perú. Boletín de Lima 117: 84-98. Deil, U. 1999. Synvikarianz und Symphylogenie-Zur Evo- Galán de Mera, A. 2005. Clasificación fitosociológica de la ve- lution von Pflanzengesellschaften. Ber. d. Reinh.-Tüxen- getación de la región del Caribe y América del Sur. Arnaldoa Ges. 11: 223-244. 12: 86-111. Deil, U., Alvarez, M., Bauer, RM. & Ramírez, C. 2011. The ve- Galán de Mera, A. 2007. Flora y Vegetación de la Estación getation of seasonal wetlands in extratropical and orotropical Biológica El Frío (Llanos Occidentales del Orinoco, Apure, South America. Phytocoenologia 41(1): 1-34. Venezuela). Pub. Amigos de Doñana, 289 pp. Sevilla Diels, L. & Mattick, F. 1958. Pflanzengeopraphic. Walter De Galán de Mera, A., Baldeón, S., Beltrán, H., Benavente, M. & Gruiter & Co. 194 pp. Berlin Gómez, J. 2004. Datos sobre la vegetación del centro del Perú. Acta Botanica Malacitana 29: 89-115. De la Barra, N. 2003. Clasificación de la vegetación acuáti- ca en ambientes lacustres de Bolivia. Rev. Bol. Ecol. 13: Galán de Mera, A., Cáceres, C. & González, A. 2003. La ve- 65-93. getación de la alta montaña andina del sur del Perú. Acta Botanica Malacitana 28: 121-147. Diesel, S. 2005. Estudio fitosociológico de la vegetación de Galán de Mera, A., González, A., Morales, R., Oltra, B. & Vi- la cuenca hidrográfica del río Caí. RS. (Brasil). Tesis cente Orellana, JA. 2006. Datos sobre la vegetación de los Doctoral. Universidad de León. España. 503 pp. Llanos Occidentales del Orinoco (Venezuela). Acta Botanica Dugand, A. 1970. Observaciones botánicas y geobotánicas Malacitana 31: 97-129. en la costa colombiana del Caribe. Rev. Acad. Col. C. Galán de Mera, A. & Navarro G. 1992. Comunidades vege- Ex., Fí. Nat. 13(52): 415-466. tales acuáticas de Paraguay occidental. Caldasia 17 (1): 35- Duno de Estefano, R., Aymard, G. & Huber, O. 2007. Flora 46. Vascular de los Llanos de Venezuela. Fundación para la Galán de Mera, A., Rosa, MV. & Cáceres, C. 2002. Una apro- Defensa de la Naturaleza (FUNDENA), Fundación ximación sintaxonómica sobre la vegetación del Perú. Cla- Empresa Polar y Fundación Instituto Botánico de ses, órdenes y alianzas. Acta Botanica Malacitana 27: 75- Venezuela (FIBV). 738 pp. 103. 36 S. Rivas-Martínez, G. Navarro, A. Penas & M. Costa

Galán de Mera, A. & Vicente Orellana, JA 1996. Las comuni- Huber, O. & Alarcón, C. 1988. Mapa de vegetación de Ve- dades con Corrycactus brevistylus del sur del Perú. Phyto- nezuela. 1:2.000.000. Ministerio del Ambiente y de los logia 80(1): 40-47. Recursos Nat. Renovables. Caracas. Galán de Mera, A. & Vicente Orellana, JA. 2006.. Apro- Huber, O. & Riina, R. 1997. Glosario fitoecológico de las ximación al esquema sintaxonómico de la vegetación de la Américas Voluman I América del Sur: Paises hispano- región del Caribe y de América del Sur. Anales de Biología parlantes. Ed UNESCO. ISBN: 980-6401-15-8. 28: 3-27. Huber, O. & Riina, R. 2003. Glosario fitoecológico de las Gandullo, R. & Faggi, AM. 2003. Análisis fitosociológico de Américas Voluman II México, América Central e Islas los mallines del piso andino del Parque Provincial Copahue, del Caribe: Paises hispanoparlantes. Ed UNESCO. ISBN: Neuquén, Argentina. Kurtziana 30: 45-55. 92-3-303922-6. Gandullo, R. & Faggi, AM. 2005. Interpretación sintaxonómi- Hueck, K. 1960. Mapa de Vegetación de la República de ca de los humedales del noroeste de la Provincia de Neu- Venezuela. Instituto Forestal Latinoamericano de Investi- quén, Argentina. Darwiniana 43: 10-29 gación y Capacitación. Mérida. Venezuela. Gandullo, R. & Smitd, P. 2001. Análisis ecológico de mallines Hueck, K. & Seibert, P. 1972. Vegetationskarte von Süda- del Parque Provincial Copahue, Neuquén, Argentina. Agro merika. 1:8.000.000.Vegetationsmonographien der einzel- Sur 29: 83-99. nen Groβräume Bd. IIa. Ed. H. Walter. Stuttgart. 90 pp. Gehú, JM. & Rivas-Martínez, S. 1982. Notions fondamentales Hueck, K. & Seibert, P. 1981. Vegetationskarte von Südame- de phytosociologie. Syntaxomie: 5-33. J. Cramer Vaduz rika. Vegetationsmonogra der einzelnen Groβräume Bd. IIa. Gentry, A. 1982. Neotropical floristic diversity. Ann. Missouri Ed. H. Walter. Stuttgart. 90 pp. Bot. Gard. 69:557-593. Izco, J., Pulgar, I., Aguirre, Z. & Santín, F. 2004. Estudio flo- Gibbs, PE., Leitao Filho, H. & Shepherd, G. 1983. Floristic rístico de los pajonales meridionales de Ecuador. Rev. Pe- composition and community structure in area of Cerrado in ruana Biología, 14 (2): 237-246. SE Brazil. Flora 173: 433-449. Johnston, MP. & Raven, PH. 1973. Species number and ende- Good, R. 1974. The geography of the flowering plants. 4th mism: The Galápagos Archipielago revisited. Science 179: edn. Longman, London (1st. edition 1947). 893-895. Green, TGA., Schroeter, B. & Sancho, LG. 2007. Plant life in Josse, C., Cuesta, F., Navarro, G., Barrena, V., Cabrera, E., Antarctica. In Handbook of Functional Plant Ecology (F.I. Chacón-Moreno, E., Ferreira, W., Peralvo, M., Saito, J. & Pugnaire ed.). Marcel Dekker Inc, New York: 389-434. Tovar, A. 2008. Mapa de Ecosistemas de los Andes del Nor- te y Centrales. Bolivia, Colombia, Ecuador, Perú y Venezue- Grehan, JR. 2001. Islas Galápagos: Biogeografía, tectónica y la. Secretaría General Comunidad Andina de Naciones evolución en un archipiélago oceánico: 153-160. In: Llo- (CAN), Programa Regional ECO-BONA-Intercooperation, rente Bousquets, J. & Morrone, J. J. (eds.). Introducción a CONDESAN-Proyecto Páramo Andino, Programa BioAn- la biogeografía en Latinoamérica: Teorías, conceptos, mé- des, EcoCiencia, Nature-Serve, LTA-UNALM, IAVH, todos y aplicaciones. México, Las Prensas de Ciencias, Fa- ICAE–ULA, CDC-UNALM, RUMBOL SRL. Lima. http:// cultad de Ciencias, UNAM www.infoandina.org/ecosistemas andinos. Grisebach, A. 1872. Die Vegetation der Erdenach ihrer kli- Josse, C., Navarro, G., Comer, P., Evans, R., Faber-Lagendo- matischen. Anordnung Bd. I und II. Leipzig. en, D., Fellows, M., Kittel, G., Menard, S., Pyne, M., Reid, Guevara, JR., Carrero, O., Hernández, C. & Costa, M. 2007. M., Schulz, K., Snow, K. & Teague, J. 2003. Ecological Sys- Relaciones florísticas entre la flórula arbórea de 7 regiones tems of Latin America and the Caribbean: A Working. Clas- de tierras bajas de Venezuela. Actas del XVII Congreso sification of Terrestrial Systems. Nature Serve. Arlington, Venezolano de Botánica: 795-798. Maracaibo (Venezuela). VA. Gutte, P. 1986. Beitrag zur Kenntnis zentralperuanischer Josse, C., Navarro, G., Encarnación, F., Tovar, A., Comer, P., Pflanzengesellschaften.II.Die hochandinen Moore und ihre Ferreira, W., Rodríguez, F., Saito, J., Sanjurjo, J., Dyson, J., Kontaktgesesellschaften. Feddes Repertorium 91: 327-336. Rubin de Celis, E., Zárate, R., Chang, J., Ahuite, M., Vargas, Gutte, P. 1986. Beitrag zur Kenntnis zentralperuanischer C., Paredes, F., Castro, W., Maco, J. & Reátegui, F. 2007. Pflanzengesellschaften.III. Pflanzengesellschaften der sub- Sistemas Ecológicos de la Cuenca Amazónica de Perú y alpinen Stufe. Feddes Repertorium 97: 319-371. Bolivia. Clasificación y Mapeo. NatureServe. Arlington, Virginia. 94 pp. Gutte, P. 1988. Zu einigen Wasserpflanzen-und Röhrichtge- sellschaften in den Hochanden Zentralperus. In Müller, Kegler, A. 2005. Diversidad florística y caracterización fito- G.K., Gutte, P., Müller, C. & Schulz, D:L. (eds.) Catalo- sociológica de comunidades forestales, Caxias do Sul, RS. gous Herbarii Lipsiensis, Karl-Marx-Universität, Leizig, (Brasil). Tesis Doctoral. Universidad de León. España. 600 Plantae Neotropicae 1: 45-48. pp. Hammen, T. van der, Rangel Ch., JO. & Cleef, AM. (eds.). Kegler, A., Diesel, S., Wasum, RA., Herrero, L., del Río, S. & 2005. La Cordillera Occidental Colombiana. Transecto Tata- Penas, A. 2010. Contribution to the phytosociological survey má. Studies on Tropical Andean Ecosystems 6: 956 pp. J. of the primary forest in the NE of Rio Grande do Sul Cramer. Berlin-Stuttgart. (Brazil). Plant Biosystems 144 (1): 53-84. Hayek, A. 1926. Allgemeine Pflanzengeographie. Borntrae Kloosterman, EH.; Cleef, AM. & Salamanca, S. 2003. Vege- ger. 409 pp. Berlin. tation map of the Parque Nacional Natural Los Nevados Hildebrand-Vogel, R. 1984. Acerca de la vegetación de los (Central Cordillera, Colombia). En Hammen, T. van der & matorrales de tierras bajas en la región del bosque lau- Dos Santos, A.G. (eds.) Studies on Tropical Andean Ecosys- rifolio valdibiano en el Sur de Chile. Phytocoenologia 12 tems, 5. La Cordillera Central Colombiana. Transecto Par- (2/3): 251-259. que Los Nevados: 311-346. J. Cramer. Berlin-Stuttgart Hildebrand-Vogel, R., Godoy, R. & Vogel, A. 1990. Sub- Labuntsova, MA. 1969. On the botanico-geographic sub- antarctic-Andean Nothofagus pumilio forest. Vegetatio division of South America (in Russian). Bulletin of the 89(1): 55-68. Main Botanical Garden 72: 28-33. Moscow. Biogeographic Map of South America. A preliminary survey 37

Lauer, W. 1968. Problemas de la división fitogeográfica en Méndez, E. & Ambrosetti, AJ. 1985. La comunidades vegeta- América Central. Proc. UNESCO. Mexico Symp. 9: 139- les del Río Turbio, Santa Cruz. In Boelcke, O., Moore, DM. 155 & Roig, FA. (eds.). Transecta botánica de la Patagonia Aus- Lavrenko, EM. 1964. Geography of Plants (in Russian). tral, Consejo Nacional de Investigaciones Científicas y Téc- Great Soviet Cyclopedia 2d ed. 10: 475-478. Moscow. nicas (Argentina), Instituto de la Patagonia (Chile), Royal Society (Gran Bretaña), Buenos Aires, pp. 634-694. León, RJC. & Burkart, SE 1998. El pastozal de la pampa deprimida: estados alternativos. Ecotropicos 11: 121-130. Méndez, E., Martínez Carretero, E. & Peralta, I. 2006. La vegetación del Parque Provincial Aconcagua (Altos An- Lewis, JP:, Collantes, MB:, Pire, EF., Carnevale, NJ., Bocca- des centrales de Mendoza, Argentina). Boletín Soc. Ar- nelli, SI., Stofella, SL. & Prado, DE. 1985.. Floristic groups gentina de Botánica 41(1-2): 41-69. and plant communities of southeastern Santa Fe, Argentina. Vegetatio 60: 67-90. Ministerio del Ambiente y de los Recursos Naturales 1985. Atlas de La Vegetación de Venezuela. Dirección General Llorente Bousquets, J. & Morrone, JJ. (eds.) 2001. Intro- de Información e Investigación del Ambiente. Dirección ducción a la biogeografía en Latinoamérica: Teorías, de Suelos Vegetación y Fauna. División de vegetación. conceptos, métodos y aplicaciones. México, Las Prensas Caracas. de Ciencias, Facultad de Ciencias, UNAM Molina, JA., Navarro, G., De la Barra, N. & Lumbreras, A. Lozada, J, Guevara, JR., Soriano, P. & Costa, M. 2006. 2007. Andean aquatic vegetation in central Bolivia. Phyto- Estructura y composición florística de comunidades se- coenologia 37: 753-768. cundarias en patios de rolas abandonados, Estación Expe- rimental Caparo, Barinas, Venezuela. Interciencia 31(11): Monasterio, M. & Reyes, S. 1980. Diversidad ambiental y variación de la vegetación en los páramos de los Andes 828-835. Venezolanos. In M. Monasterio (Ed.): Estudios Ecológi- Luebert, F. & Gajardo, R. 2005. Vegetación alto andina de cos en los Páramos Andinos: 47-91. Editorial de la Uni- Parinacota, norte de Chile y una sinopsis de la vegetación versidad de Los Andes, Mérida. de la Puna meridional. Phytocoenologia 35: 79-128. Morello, J. 1958. La provincia fitogeográfica del Monte. Luebert, F. & Pliscoff, P. 2006. Sinopsis bioclimática y Opera. Lilloana 2: 1-155. vegetacional de Chile. Editorial Universitaria. Santiago Morrone, JJ. 2000. What is the Chacoan subregion? Neotro- de Chile. 316 pp pica 46: 51-68 Luna Vega, I.; Morrone, JJ.; Alcántara Ayala, O. & Espinosa Morrone, JJ. 2001. A proposal concerning formal defini- Organista, D. 2001. Biogeographical affinities among Neo- tions of the Neotropical and Andean regions. Biogeogra- tropical cloud forests. Plant Systematics and Evolution 228: phica 77: 65-82 229-239 Morrone, JJ. 2001. Biogeografía de América Latina y el Luteyn, J. 1999. Páramos, a check list of plant diversity Caribe. M & T-Manuales & Tesis SEA, Vol., 3. 148 pp. geographycal distribution and botanical literature. New Zaragoza. York Botanical Garden Press. New York. 278 pp. Moscol Olivera, Marcela C. & Cleef, AM. 2009. A phyto- Maguire, B. 1970. On the flora of the Guayana Highland. sociological studyof the paramo along two altitudinal Biotropica 2, 2: 85-100. transects in El Carchi province, northern Ecuador. Phyto- Maguire, B. 1972. Guayana as floristic province: Its rela- coenologia 39(1): 79-107. tionship within the Neotropics and to the Paleotropics. In Navarro, G. 1993. Vegetación de Bolivia: El Altiplano me- Resúmenes de los Trabajos I Congreso Latino America- ridional. Rivasgodaya 7: 69-98. no, Bot. Mex., 55-56. Navarro, G. 1997. Contribución a la clasificación ecológica y Maguire, B. 1979. Guayana region of the Rotaima sand- florística de los bosques de Bolivia. Rev. Bol. Ecol. 2:3-37. stone formation. In Tropical Botany, eds. K.Larsen and Navarro, G. 2003. Tipología fluvial y vegetación riparia ama- L.B. Holm-Nielsen, 223-238. London. zónica en el Departamento de Pando (Bolivia). Rev. Bol. Ecol. 13: 3-29. Martínez Carretero, E. 1993. Carta de vegetación del sector Cerro de Piedra-San Isidro. Multequina 2: 1-140. Navarro, G. & Ferreira, W. 2007. Mapa de Vegetación de Bolivia, escala 1:250 000. Edición CD-ROM. The Nature Martínez Carretero, E. 1995. La Puna Argentina: delimita- Conservancy (TNC). ISBN 978-99954-0-168-9. ción general y división en distritos florísticos. Boletín Navarro, G. & Ferreira, W. 2009. Biogeografía y Mapa Bio- Soc. Argentina de Botánica 31: 27-40. geográfico de Bolivia. In: Vmabcc-Bioversity Interna- Martínez Carretero, E. 2000. Vegetación de los Andes Cen- tional, Libro Rojo de Parientes Silvestres de Cultivos de trales de Argentina. El Valle de Uspallata, Mendoza. Bo- Bolivia: 23–39. Plural editores. La Paz. 344 pp. letín de la Soc. Argentina de Botánica 34(3-4): 127-148. Navarro, G. & Maldonado, M. 2002. Geografía Ecológica Martínez Carretero, E. 2001. Esquema sintaxonómico de la de Bolivia. Vegetación y Ambientes Acuáticos. Editorial vegetación de regiones salinas de Argentina. Multequina Centro de Ecología Simón I. Patiño. Cochabamba. 719 pp. 10: 67-74. Navarro, G., Molina, JA. & de la Barra, N. 2005. Classifica- Martínez Carretero, E. 2006. Sintaxones arvenses, rudera- tion of the high-Andean Polylepis forests in Bolivia. Plant les, adventicios, presentes en la vegetación argentina. Ecology 176: 113-130. Multequina 2:195-200. Navarro, G., Molina, JA. & Pérez de Molas, L. 2006. Cla- Mattick, F. 1964. Übersicht über die Florenreiche und Flo- ssification of the forests of the Northern Paraguayan Cha- rengebiete der Erde. In Syllabus der Pflanzenfamilien, A. co. Phytocoenologia 36(4): 473-508. Engler, 626-630. Bd. 2:12 Aufl. Berlin. Navarro, G. & Rivas-Martínez, S. 2005. Datos sobre la fi- Méndez, E. 2007. La vegetación de los altos Andes II. Las tosociología del Norte de Chile: la vegetación en un tran- vegas del flanco oriental del Cordón del Plata (Mendoza, secto desde San Pedro de Atacama al Volcán Licancabur Argentina). Boletín de la Sociedad Argentina de Botánica (Antofagasta, II Región). Chloris Chilensis. Año 8, Nº 2. URL: http://www.chlorischile.cl. 42: 273-294. 38 S. Rivas-Martínez, G. Navarro, A. Penas & M. Costa

Oberdorfer, E. 1960. Planzensoziologische studien in Chile. Rangel-Ch., JO. (ed.) 1995. Colombia Diversidad Biótica I. Flora et Vegetatio Mundi II. Weinheim. Clima, Centros de concentración de especies, fauna. Ozenda, P. 1964. Biogéographie végétale. Doin. 374 pp. Paris Instituto de Ciencias Naturales - Universidad Nacional de Colombia. 442 pp. Santafé de Bogotá. Pinto, R. & Luebert, F. 2009. Datos sobre la flora vascular del desierto costero de Arica y Tarapaca, Chile, y sus re- Rangel-Ch., JO. (ed.) 1997. Colombia Diversidad Biótica laciones fitogeográficas con el sur de Perú. Gayana Bot., II. Tipos de vegetación en Colombia. Instituto de Cien- 66 (1): 28-49. cias Naturales - Universidad Nacional de Colombia. 436 Pinto-Zárate, JH. & Rangel-Ch., JO. 2010. La vegetación pp. Santafé de Bogotá. paramuna de la cordillera Occidental colombiana I: las Rangel-Ch., JO. (ed.) 2000. Colombia Diversidad Biótica formaciones zonales. In: JO. Rangel-Ch., (ed.). Colombia III. La región de vida paramuna. Instituto de Ciencias Diversidad Biótica X: Cambios global (natural) y climá- Naturales. Instituto Alexander von Humboldt. 902 pp. tico (antrópico) en el páramo colombiano: 181-287. Uni- Bogotá. versidad Nacional de Colombia-Instituto de Ciencias Rangel-Ch., JO. (ed.) 2007. Colombia Diversidad Biótica Naturales. Bogotá. IV. La alta montaña de la serranía de Perijá. Instituto de Pinto-Zárate, JH. & Rangel-Ch., JO. 2010. Serranía de Perijá. Ciencias Naturales. 472 pp. Bogotá. In: JO. Rangel-Ch., (ed.). Colombia Diversidad Biótica X: Rangel-Ch., JO. (ed.) 2008. Colombia Diversidad Biótica Cambios global (natural) y climático (antrópico) en el pára- mo colombiano: 289-410. Universidad Nacional de Colom- VII. Vegetación, Palinología y Paleoecoilogía de la bia-Instituto de Ciencias Naturales. Bogotá. Amazonía Colombiana. Instituto de Ciencias Naturales. 438 pp. Bogotá. Pittier, H. 1920. Mapa Ecológico de Venezuela. Litografía Comercio. Caracas. Rangel-Ch., JO. (ed.) 2009. Colombia Diversidad Biótica VIII. Media y baja montaña de la serranía de Perijá. Ins- Pittier, H. 1935. Apuntaciones sobre la geobotánica de Ve- tituto de Ciencias Naturales. 728 pp. Bogotá. nezuela. Boletín de la Sociedad Venezolana de Ciencias Naturales 23(3): 93-114. Rangel-Ch., JO. (ed.) 2010. Colombia Diversidad Biótica IX. Ciénagas de Córdoba: Biodiversidad, ecología y manejo am- Posadas, PE.; Estévez, JM. & Morrone, JJ. 1997. Distribu- tional patterns and endemism areas of vascular plants in biental. Instituto de Ciencias Naturales. 818 pp. Bogotá. the Andean subregion. Fontqueria 48: 1-10 Rangel-Ch., JO. (ed.) 2010. Colombia Diversidad Biótica X. Prado, DE. &. Gibbs, PE. 1993. Patterns of species distri- Cambio global (natural) y climático (antrópico) en el páramo butions in the dry seasonal forest of South America. Ann. colombiano. Instituto de Ciencias Naturales. 556 pp. Bogotá. Missouri Bot. Gard. 80: 902-927. Rangel-Ch., JO. & Aguirre, J. 1983. Comunidades acuáticas Prance, GT. 1977. The phytogeographic subdivision of Ama- altoandinas I. Vegetación sumergida y de ribera en el lago de zonia and their influence on the selection of Biological Tota, Boyaca, Colombia. Caldasia 13: 719-742. reserves. In Extinction is Forever, eds. G. T. Prance & T. E. Rangel-Ch., JO. & Ariza, NC. 2000. La vegetación del parque Elías, 195-213, N.Y. Botanical Garden, New York. nacional Chingaza. In Rangel, JO. (ed. La región de vida pá- Prance, GT. 1978. The origin and evolution of the Amazon ramuna de Colombia. Colombia. Diversidad Biótica 3: 720- flora. Iterciencia 3 (4): 207-222. 753. Prance, GT. 1979. Distribution patterns of Lowland neotro- Rangel-Ch., JO., Sánchez, D. & Ariza, NC. 2005. La vegeta- pical species with relation to history, dispersal and ecology ción del páramo de Frontino. In Van der Hammen, T. Ran- with special reference to Chrysobalanaceae, Caryocaraceae gel, JO. & Cleef, AM. (eds.) La Cordillera Occidental Co- and Lacythidaceae. of Amazonia and their influence on the lombiana. Transecto Tatama = Ecoandes, Studies on Tro- selection of Biological reserves. In Tropical Botany, eds. K. pical Andean Ecosystems 6: 813-832. Stuttgart. Larsen and LB. Holm-Nielsen, 59-86. London Rangel-Ch., JO. & Arellano-PH. 2009. La vegetación de las Púlgar, I., Izco, J. & Jadán, O. 2010. Flora selecta de los selvas y los bosques de la serranía de Perijá. In: JO. Rangel- pajonales de Loja, Ecuador. Ed. Abya-Yala, Univerisdad Ch., (ed.). Colombia Diversidad Biótica VIII. Media y baja de Santiago de Compostela y Universidad Nacional de montaña de la serranía de Perijá: 245-298. Universidad Na- Loja. 147 pp. ISBN: 978-9978-22-908-8. cional de Colombia-Instituto de Ciencias Naturales-COR- Quintanilla, VG. 1983. Observaciones fitogeográficas de la POCESAR. Bogotá. Cordillera Oriental del Ecuador. Bull. Inst. Fr. Et. And. Rangel-Ch., JO., Cleef, AM. & Arellano, H. 2008. La vegeta- 12 (1-2): 55-74. ción de los bosques y selvas del transecto del Sumapaz. In: Ramírez, C. & Beck, S. 1981.. Makrophytische Vegetation T. Van der Hammen, JO. Rangel-Ch., & AM. Cleef (eds). und Flora in Gewässen der Umbebung von La Paz, Estudios de Ecosistemas Tropandinos-Ecoandes 7. La cordi- Bolivien. Arch. Hydrobiol. 91: 82-100. llera Oriental, transecto de Sumapaz: 695-798. J. Cramer, Ramírez, C., San Martín, C., Contreras, D. & San Martín, (BORNTRAEGER) Berlín-Stuttgart. J. 1994. Estudio fitosociológico de la vegetación pratense Rangel-Ch., JO., Cleef, AM. & Salamanca, S. 2005. La vege- del valle del río Chol-Chol (Cautín, Chile). Agro Sur 22: tación de los bosques y selvas de Tatamá. In: T. Van der 41-56. Hammen, JO. Rangel-Ch., & AM. Cleef (eds). Estudios de Rangel-Ch., JO. 2004. La vegetación del Chocó biogeo- Ecosistemas Tropandinos-Ecoandes 6. La cordillera Occi- gráfico de Colombia y zonas cordilleranas aledañas – dental Colombiana. Transecto Tatamá: 459-644. J. Cramer, síntesis-. In: Rangel-Ch., J.O. (ed.). Colombia Diversidad Berlín-Stuttgart. Biótica IV. El Chocó biogeográfico/Costa Pacífica: 769- 815. Instituto de Ciencias Naturales. Bogotá. Rangel-Ch., JO., Garay-PH. & Avella, A. 2010. Bosques hú- Rangel-Ch., JO. 2008. La vegetación de la región ama- medos y secos circundantes a los complejos de humedales zónica de Colombia -Aproximación inicial-. In: J.O. Ran- (ciénagas), en el departamento de Córboba. In: JO. Rangel- gel-Ch. (ed.). Colombia Diversidad Biótica VII. Vegeta- Ch., (ed.). Colombia Diversidad Biótica IX. Ciénagas de ción, Palinología y Paleoecología de la Amazonia colom- Córdoba: Biodiversidad-ecología y manejo ambiental: 207- biana: 1-53. Universidad Nacional de Colombia-Instituto 323. Universidad Nacional de Colombia-Instituto de Cien- de Ciencias Naturales. Bogotá. cias Naturales-CVS. Bogotá. Biogeographic Map of South America. A preliminary survey 39

Ratter, JA., Leitao-Filho, H. de F., Argent, G., Gibbs, PE., Se- Rivas-Martínez, S., Sánchez-Mata, D. & Costa, M. 1999. mir, J., Shepherd, G. & Tamashiro, J. 1988. Floristic compo- North American boreal and western temperate forest vege- sition and community structure of a southern Cerrado area in tation. (Syntaxonomical synopsis of the potential natural Brazil. Notes RBG Edinb. 45(1): 137-151. plant communities of North America, II). Itinera Geobot. 12: 5-316. Raven, PH. 1963. Amphitropical relations in the flora of North and South America. Quart. Rev. Biol. 29: 151-171. Rivas-Martínez, S. & Tovar, O. 1982. Vegetatio Andinae I. Datos sobre las comunidades vegetales altoandinas de los Raven, PH. & Axelrod, D.J. 1974. Angiosperm biogeography Andes Centrales del Perú. Lazaroa 4: 167-187. and past continental movements. Ann Missouri Bot. Gard. 61, 3: 539-673. Rivas-Martínez, S. & Tovar O. 1983. Síntesis biogeográ- fica de los Andes. Collect. Bot. 14: 515-521. Reitz, P.R. 1961. Vegetação da zona maritima de Santa Catari- na. Selowia 13: 17-115. Rivera Díaz, O. & Fernández-Alonso, J. L. 2003.. Análisis corológico de la Flora endémica de la Serranía de Perijá, Ricardi, M., Gaviria, J. & Estrada, J. 2001. Los Andes de Mé- Colombia. Anales Jard. Bot. Madrid 60(2): 347-369. rida, una nueva subprovincia fitogeográfica de la Provincia Rizzini, CT. 1979. Tratado de Fitogeografia do Brasil, vol. 2. de Los Andes del Norte. Plantula 3(1): 41-46. Aspectos sociológicos y florísticos. Editora Universidade de Rikli, M. 1913. Die Florenreiche. In Handwörterbuch der Na- São Paulo. turwissenschaften 4: 776-857. Jena. Roig, FA. 1972. Bosquejo fisionómico de la vegetación de Rikli, M. 1934. Geographie der Pflanzen. In Handwörterbuch la provincia de Mendoza. Boletín de la Soc. Argentina de der Naturwissenschaften 4: 907-1002. Jena. Botánica 13 (Supl.): 49-80. Rivas-Martínez, S. 1976. Sinfitosociología una nueva metodo- Roig, FA. 1998. La veegtación de la Patagonia. In Corea, logía para el estudio del paisaje vegetal. Anales Inst. Bot. M. (ed.) Flora Patagonia, Colecc. Cient. I.N.T.A. 8(1): Cavanilles 33: 179-188 46-166.Mendoza. Rivas-Martínez, S. 1994. Dinamic-zonal phytosociology as Roig, FA., Anchorena, J., Dollenz, O., Faggi, A.M. & Mén- landscape science. Phytocoenologia 24: 23-25. dez, E. 1985. Las comunidades vegetales de la Transecta Rivas-Martínez, S. 1997. Syntaxonomical synopsis of the Botánica de la Patagonia Austral, Primera parte: la vegeta- ción de área continental. In Boelcke, O., Moore, DM. & potential natural plant communities of North America, I. Roig, FA. (eds.). Transecta botánica de la Patagonia Austral, Itinera Geobot. 10: 5-148. Consejo Nacional de Investigaciones Científicas y Técnicas Rivas-Martínez, S. 2001. Synoptical Worldwide Bioclimatic (Argentina), Instituto de la Patagonia (Chile), Royal Society Classification System. http://www. globalbioclimatics.org. (Gran Bretaña), Buenos Aires, pp.350-456. Rivas-Martínez, S. 2004. Sinopsis biogeográfica, bioclimática Roig, FA., Dollenz, O. & Méndez, E. 1985. Las comunidades y vegetacional de América del Norte. Fitosociologia 41 (1) vegetales de la Transecta Botánica de la Patagonia Austral, suppl. 2, 19-52. Segunda parte: La vegetación de los canales. In Boelcke, O., Rivas-Martínez, S. 2005. Notions on dynamic-catenal phyto- Moore, DM. & Roig, FA. (eds.). Transecta botánica de la sociology as a basis of landscape science. Plant Biosystems Patagonia Austral, Consejo Nacional de Investigaciones 139: 135-144. Científicas y Técnicas (Argentina), Instituto de la Patagonia (Chile), Royal Society (Gran Bretaña), Buenos Aires, pp. Rivas-Martínez, S. 2005. Avances en Geobotánica. Discurso 457-518. de Apertura de Curso Académico de la Real Academia Na- Roig, FA. & Faggi, A. 1985. Transecta botánica de la Pata- cional de Farmacia del año 2005. Instituto de España. Real gonia Austral. Análisis geobotánico de la vegetación. CO- Academia Nacional de Farmacia. Madrid.142 pp. NICET. Instituto de la Patagonia y Royal Society. Buenos Rivas-Martínez, S. & cols. 2007. Mapa de series, geoseries y Aires. geopermaseries de vegetación de España: Memoria del mapa Röhl, E. 1946. Climatología de Venezuela. Bol. Acad. Ci. de vegetación potencial de España. Parte I. Itinera Geobot. Fís. Mat. Nat. 27: 169-243. Caracas. Venezuela. 17: 1-435. Ruthsatz, B. 1977. Pflanzengesellschaften und ihre Le- Rivas-Martínez, S. & cols. 2011. Mapa de series, geoseries y bensbedingungen in den Andinen Halbwüsten Nordwest- geopermaseries de vegetación de España: Memoria del mapa Argentiniens. J. Cramer, Vaduz, Dissertationes Botanicae de vegetación potencial de España. Parte II. Itinera Geobot. 39, 168 pp. 18 (1-2): 1-800. Salamanca S., Cleef, AM. & Rangel, JO. 2003. The Páramo Rivas-Martínez, S. & Navarro, G. 1998. Mapa biogeográfico vegetation of the volcanic Ruiz-Tolima massif. In van der de América del Sur. Servicio de Cartografía. Universidad de Hammen, T. & dos Santos, AG. (eds.) La Cordillera Central León. España. Colombiana, transecto Parque de los Nevados, J. Cramer, Rivas-Martínez, S. & Rivas Sáenz, S. 2009. Synoptical Word- Berlin. = Studies on Tropical Andean Ecosystems 5: 1-77. wide Bioclimatic Clasification System (summarized table). Sampaio, AJ. de 1934. Phytogeographia do Brasil. Editora Phytosociological Research Center. Website http://www. Nacional. 284 pp. São Paulo. globalbioclimatic.org Sánchez, R. & Rangel, JO. 1990. Estudios ecológicos en la Rivas-Martínez, S, Rivas-Sáenz, S.& Penas, A. with the colla- cordillera oriental colombiana V: Análisis fitosociológico boration of: F. Alcaraz, J. Amigo, A. Asensi, M. Barbour, E. de la vegetación de los depósitos turbosos paramunos en Biondi, C. Blasi, P. Cantó, J. Capelo, JC. Costa, M. Costa, los alrededores de Bogotá. Caldasia 16: 155-192. M. del Arco, S. del Río, TE. Díaz, B. Díez Garretas, F. Fer- Sancho, LG., Green, A. & Pintado, A. 2007. Lichen growth. nández-González, R. Gavilán, J.M. Gehú, J. Giménez de Az- Slowest to fastest: extreme range in lichen growth rates cárate, L. Herrero, J. Izco, P. Krestov, M. Ladero, J. Loidi, supports their use as an indicator of climate change in M. Lousa, VE. Martín Osorio, S. Mesquita, J. Molero, J. Antartica. Flora 202: 667-673. Nakamura, G. Navarro, PL. Pérez de Paz, JAF. Prieto, P. Sancho, LG., Schulz, F. & Schroeter, B. & Kappen, L. 1999. Quézel, D. Sánchez-Mata, LG. Sancho, P. Soriano, F. Valle, Bryophyte and lichen flora of South Bay (Livingston Island, W. Wildpret 2011. Worldwide bioclimatic classification sys- South Shetland Islands, Antarctica). Nova Hedwigia. 68: tem. Global Geobotany 1: DOI: 10.5616/gg 110001 301-337. 40 S. Rivas-Martínez, G. Navarro, A. Penas & M. Costa

Sarmiento, G. & Monasterio, M. 1969. The distribution and Stutz de Ortega, L.C. 1990. Études floristiques de divers sta- ecological significance of the main savanna types in the des secondaires des formations forestières du Haut Parana Venezuelan Llanos. En: XI international Botanical Congress. (Paraguay oriental). Structure, composition floristique et re- Abstracts, p.189. Seattle, Washington. USA crû forestier: analyse de cinq stades de succesion secondaire Schmithüsen, J. 1961. Allgemeine Vegetationsgeographie. Candollea 45(1): 81-123. Walter De Gruiter & Co. 463 pp. Berlin. Susach Campalans, F. 1989. Caracterización y clasificación Schwabe, G.H. 1968. Toward an Ecological Characterization fitosociológica de la vegetación de los Llanos centrales bajos of South American Continent. In E. Fittkau, J. & al. (Ed.) venezolanos. Acta Biol. Venez. 12 (3-6): 1-54. Biogeography and Ecology in South America. Junk Publ. Takhtajan, A. 1988. Floristic regions of the world. University Amsterdam of California Press. 522 pp Scur L. 2005. Flora y vegetación de los pastizales del Muni- Terán, E. 1979. Geografía del Ecuador. 10ª edición. Librería cipio de Caxias do Sul, RS (Brasil). Tesis Doctoral. Uni- Cima. Quito. versidad de León. España. 576 pp. Terneus, E. 2002. Comunidades de plantas acuáticas en las la- Seibert, P. & Menhofer, X. 1991. Die Vegetation des Wohn- gunas de los páramos del norte y sur del Ecuador. Caldesia gebietes der Kallawaya und des Hochlandes von Ull-Ulla in 24:379-391. den boliviannischen Anden, Teil I. Phytocoenologia 20(2): 145-276. Thorne, RF. 1963. Floristic relationships between tropical Africa and tropical America. In Tropical Forest Ecosystems Seibert, P. & Menhofer, X. 1992. Die Vegetation des Wohn- in Africa and Soht America: A Comparative Review, eds. gebietes der Kallawaya und des Hochlandes von Ull-Ulla in DJ. Meggers, ES. Ayensu & WD. Dickworth, 27-47. den boliviannischen Anden, Teil II. Phytocoenologia 20(3): Washington. 289-438. Ulloa, C. & Jørgensen, P.M. 1993. Árboles y arbustos de los Seibert, P. & Menhofer, X. 1993. Die Vegetation des Wohn- Andes del Ecuador. AAU Reports 30: 1-264. gebietes der Kallawaya und des Hochlandes von Ull-Ulla in den boliviannischen Anden. Phytocoenologia 22: 275-278. Udvardy, MDF. 1975. A classification of the biogeographical provinces of the world. JUGN Occasional papaer 18. Morges Sierra, R. (ed.) 1999. Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador Continental. Pro- Veloso HP. 1946. Consideraçôes gerais sôbre a vegetação do yecto INEFAN/GEF-BIRG & EcoCiencia. Quito. 194 pp. Estado de Mato Grosso I. Notas preliminares sôbre o Cerrado. Mem. Inst. Oswaldo Cruz 44: 579-603. Sierra, R., Cicerón, C., Palacios, W. & Valencia, R. 1999. Ma- pa de vegetación del Ecuador Continental. 1:1.000.000. Pro- Veloso HP. 1948. Consideraçôes gerais sôbre a vegetação do yecto INEFAN/GEF & Wildlife Conservation Society. Quito. Estado de Goiâs. Notas preliminares sôbre a fitossociologia do Planalto Central Brasileiro. Mem. Inst. Oswaldo Cruz 46: Smith, AC. & Johnston, IM. 1945. A phytogeographic sketch 89-124. of Latin America. In Plants and Plant Science in Latin Ame- rican, ed. F. Verdoon, 11-18. Waltham, Mass. Veloso HP. & Klein, RM. 1957. As comunidades e associa- çôes vegetais da mata pluvial do Sul do Brasil. Selowia 9: Soechting, U., Oevstedal, DG. & Sancho, LG. 2004. The li- 81-235. chens of Hurd Peninsula, Livingston Island, South Shetlands, Veloso HP. & Klein, RM. 1959. As comunidades e associa- Antarctica. Bibliotheca Lichenologica 88: 607-658. çôes vegetais da mata pluvial do Sul do Brasil. Selowia 10: Steyermark, JA. 1974. The summit vegetation of Cerro Auta- 9-124. na. Biotropica 6, 1: 7-13. Walter, H. 1898-. Walter’s Vegetation of the earth: the ecolo- Steyermark, JA. 1979. Plant refuge and dispersal centres in gical systems of the geo-biosphere/ Siegmar-Walter Breckle; Venezuela: their relict and endemic element. In Tropical translated from 7th, completely revised and enlarged German Botany, eds. K. Larsen and LB. Holm-Nielsen, 185-221. edition by Gudrun & D. Lawlor.-4th, completely rev. and enl. London. ed. p. cm. Stutz de Ortega, LC. 1983. Études floristiques de divers stades Walter, H. & Straka, H. 1970. Arealkunde. Floristisch-histo- secondaires des formations forestières du Haut Parana (Pa- rische Geobotanik. Eugen Ulmer Verlag. 2 Aufl. Stuttgart. raguay oriental). Inventaire floristique d’une reserve fores- Wasum, R. A. 2005. Estudio fitosociológico de la vegetación tiére. Candollea 38: 543-573. de los municipios de São Francisco de Paula, Bom Jesus y Stutz de Ortega, LC. 1984. Études floristiques de divers stades Jaquirana, RS. (Brasil). Tesis Doctoral. Universidad de secondaires des formations forestières du Haut Parana (Pa- León. España. 680 pp. raguay oriental). dynamisme et reconstitution d’une forêt se- Weberbauer, A. 1945. El mundo vegetal de los Andes Perua- condaire peu degradée. Candollea 39(2): 385-394. nos. Estación Experimental Agrícola de la Molina.Ministerio Stutz de Ortega, LC. 1986. Études floristiques de divers stades de Agricultura. 776 pp. Lima. secondaires des formations ferestières du Haut Parana (Pa- Williams, L. 1945. The phytogeography of Peru. In Plants and raguay oriental). Floraison, fructification et dispersion des Plant Science in Latin America, ed. F. Verdoorn, 308-312. espèces forestiès. Candollea 41: 121- 144. Waltham, Mass. Stutz de Ortega, LC. 1987. Études floristiques de divers stades Witte, H.J.J. 1995. Seasonal and altitudinal distribution of secondaires des formations forestières du Haut Parana (Pa- precipitation, temperature and humidity in the Parque Los raguay oriental). Structure, composition floristique et régé- Nevados transect (Central Cordillera, Colombia). In Ham- nération naturelle: comparaison entre la fôret primaire et la men, T. van der & Dos Santos A. (eds.) Estudies on Tropical fôret sélectivement esploitée. Candollea 42: 205-262. Andean Ecosystems, 4: 279- 327.

International Journal of Geobotanical Research, 1 B I O G E O G R A P H I C M A P S O F BIOGEOGRAPHICAL UNITS -90° -80° -70° -60° -50° -40° T H E W O R L D : S O U T H A M E R I C A 9.3

B. NEOTROPICAL-AUSTROAMERICAN Kingdom [NEOTROPICAL-AUSTROAMERI- onduras Guadeloupe SALVADOR RIVAS-MARTÍNEZ, GONZALO NAVARRO, ÁNGEL . de H Basse-Terre !P CANO] G Dominica Ba. NEOTROPICAL Subkingdom [NEOTROPICAL] PENAS & MANUEL COSTA C. Gracias a Dios Bab. CARIBBEAN-NEOGRANADIAN Superegion [CARIBEÑA-NEOGRANADINA] Fort-de-France !P Martinique o !P Guatemala 9.5 c !P with collaboration of: 9. CARIBBEAN-MESOAMERICAN Region [CARIBEÑA-MESOAMERICANA] o Castries St. Lucía 9.3. Lesser Antillean Province [Antillana Menor] San Salvador !P C C a r i b b e a n S e a !P Kingstown !P 9.3 Barbados Javier Amigo (Chile and Argentina), Alindo Butzke (Brazil), Sara del Río (Argentina, 9.5. Chiapan-Honduran Province [Chiapaneca-Hondureña] Tegucigalpa !P 10.1 St. Vincent Bridgetown Brazil and Paraguay), Antonio Galán (Peru), José Guevara (Venezuela), Jesús 9.6. Panamanian-Costa Rican Province [Panameña-Costarricense] Gu ate Managua !P St George's Izco (Ecuador), Eduardo Martínez Carretero (Argentina), Orlando Rangel 10. NEOGRANADIAN Region [NEOGRANADINA] m ala !P L. Nicaragua guja Grenada (Colombia), Salvador Rivas Sáenz (South America bioclimate expert), Fidel 10.1. Guajiran-Caribbean Province [Guajireña-Caribeña] T C. de la A I. Margarita Tobago N O R r Barranquilla T H en !( # Roig (†) (Argentina), Daniel Sánchez-Mata (South Chile), Leopoldo G. Sancho 10.2. Llaneran Province [Llanera] 5800 !(Maracaibo 10.1 Caracas !P Port of Spain ch !P Cartagena !( Sierra Nevada !( (South Chile and Antarctica), Pilar Soriano (Venezuela) and Oscar Tovar (†) (Peru) 10.3. Colombian Andean Province [Andina Colombiana] L. Maracaib!(o Valencia Trinidad San José Panamá de Sta. Marta Barquisimeto 10.4. Cordobesa-Lower Magdalena Province [Cordobesa-Bajomagdalena] !P G. of Darién 10° 10° Canal 10.1 10.5. Colombian Pacific Province [Pacífico Colombiana] 9.6 10.1 11.2 0 250 500 1.000 1.500 km !P Ciudad oco !(Guayana 10.6. Guayaquilean-Ecuadorean Province [Guayaquileña-Ecuatoriana] Panamá 10.4 a Orin n Cúcuta Lambert Equal-Area Azimuthal Projection e !( 10.7. Insular Galapagos Province [Islas Galápagos] l !( San Cristóbal A T L a A N T I C Bac. AMAZONIAN-GUYANAN Superegion [AMAZÓNICA-GUAYANENSE] d Bucaramanga 11.3 g !( 10.2 Georgetown 11. GUYANAN-ORINOQUIAN Region [GUAYANA-ORINOQUENSE] á a !P m 10.5 M BIOCLIMATES a Meta 11.1. Guyanan Province [Guayanense] !( Paramaribo n Medellín !P 11.2. Deltaic Orinoquian Province [Orinoquense-Deltaica] a # P 2810 Authors: S. Rivas Sáenz; Rivas-Martínez, S.; Penas, Á; Navarro, G.; Costa, M. 11.3. Guaviarean-Orinoquian Province [Guaviareña-Orinoquense] Cayenne O C E A !P N e Bogotá 11.4 Mt. Roraima 11.4. Tepuyan Province [Tepuyana] d !P C. Orange -90° -80° -70° -60° -50° -40° fo 11.3

11.5. Guyanese Brazilian Province [Brasileña Guayanense] l 10.3 C 11.1 o o o

u G b

12. AMAZONIAN Region [AMAZÓNICA] i r 13 a 15 u n 12.1. West Amazonian Province [Amazónica Occidental] q ty e n uaviare s e 12.2. North Amazonian Province [Amazónica Septentrional] G s 13 E 10° 12.3. Deltaic Amazonian Province [Amazónica Deltaica] o 10° c n 12.4. Southwest Amazonian Province [Amazónica Suroccidental] a ncisco r 12.5. Central Amazonian Province [Amazónica Central] C. de San Fra B 11.5 Marajó I. 14 C N Bad. CHACOAN-BRAZILIAN Superegion [CHAQUEÑA-BRASILEÑA] aq egro uetá Equator 13. BRAZILIAN-PARANENSE Region [BRASILEÑA-PARANAENSE] Galápagos Is. Quito!P # Cotopaxi 0° 14 13.1. Brazilian Atlantic Province [Atlántica Brasileña] 0° 5897 12.2 urá n !( 13.2. Paranense Province [Paranaense] 10.7 # Jap azo Belém 15.1 10.6 Chimborazo Am 0° 0° utumayo 15 13.3. Catingan Province [Catinguense] Guayaquil P !( São Luis !( 6267 N 13 10.7 ap Manaus Santarém !( 13.4. Tocantins Province [Tocantinense] o !( T A o 12.1 m c 13.5. East Cerrado Province [Cerradense Oriental] azon a 12.3 l n 12 uayaqui !( t 13.6. West Cerrado Province [Cerradense Occidental] G. of G i Fortaleza Iquitos n !( s a

13.7. Pantanalian Province [Pantanalense] X b 13 i

M i a a n 13.8. Benian Province [Beniana] as rañón s n Pariñ r

Pta. ó g C. São R j a oque 14 a u Teresina!( -10°

14. CHACOAN Region [CHAQUEÑA] p P -10° a a ir 12.5 T 14.1. North Chacoan Province [Chaqueña Septentrional] á e Natal Juru d !( Pta. Negra 16.1 a 14.2. South Chacoan Province [Chaqueña Meridional] U s M !( c r u Bae. TROPICAL SOUTH ANDEAN Superegion [SURANDINA TROPICAL] a u y P A Chiclayo a r ip T l 15. TROPICAL SOUTH ANDEAN Region [SURANDINA TROPICAL] u e 15 i a l R n e 15.1. Desertic Peruvian-Ecuadorean Province [Peruana-Ecuatoriana Desértica] !( o á s !( o P Trujillo Pôrto Velho s i !( 15.2. Mesophytic Punenian Province [Puneña Mesofítica] Huascarán e re -20° v s 13.4 o Recife -20° 13 e c 11 !( # ia cis 13 [Puneña Xerofítica] l n 15.3. Xerophytic Punenian Province 6768 t a ra u F 12 Chimbote 12.4 g o 15.4. Bolivian-Tucumanan Province [Boliviana-Tucumana] a Sã 13.3 r !( 15.5. Yungenian Province [Yungueña] A Maceió s 22 15 io A -10° 16. HYPERDESERTIC TROPICAL PACIFIC Region [PACÍFICA TROPICAL HIPERDE- 15.5 D r de i -10° e n !( SÉRTICA] r o 24 ad s Aracaju M 16.1. Hyperdesertic North Peruvian Province [Norperuana Hiperdesértica] Callao !(!P 33 Gu -30° 16.2. Hyperdesertic Tropical Chilean-Arequipan Province [Chilena-Arequipeña Tropical ap 34 Lima oré -30° 33 Hiperdesértica] !( !( M Salvador Bb. AUSTROAMERICAN Subkingdom [AUSTROAMERICANO] Cusco 13.8 31 a 28 15.2 m 17. PAMPEAN Region [PAMPEANA] o r é 17.1. Mesophytic Pampean Province [Pampeana Mesofítica] L. Titicaca Cuiabá !( 34 17.2. Xerophytic Pampean Province [Pampeana Xerofítica] Brasìlia 26 # Nevado de Ancohuma 13.6 !P 18. MIDDLE CHILEAN-PATAGONIAN Region [MESOCHILENA-PATAGÓNICA] 15.1 Arequipa -40° !( !P 6550 Goiânia 33 18.1. Desertic Mediterranean Chilean Province [Chilena Mediterránea Desértica] !( -40° La Paz Cochabamba 18.2. Central Chilean Province [Chilena Central] !( !( 13.5 18.3. Mediterranean Andean Province [Andina Mediterránea] Santa Cruz 13.1 18.4. Argentine Monte Province [Monte Argentino] L. Poopó 13.7 18.5. North Patagonian Province [Patagónica Septentrional] !( Sucre A 31 18.6. South Patagonian Province [Patagónica Meridional] brolhos Bank -50° 19. VALDIVEAN-MAGELLANIAN Region [VALDIVIANA-MAGALLÁNICA] !( 46 Iquique!( Belo Horizonte -50°

19.1. Valdivean Province [Valdiviana] !( P

19.2. Temperate Magellanian Province [Magallánica Templada] a Vitória

15.4 r -20°

a 55

g á 19.3. Boreal Austromagellanian Province [Austromagallánica Boreal] -20° n Juiz de Fora u a Campos 14.1 r !( !( 19.4. Insular Falkland Province [Islas Malvinas] I C a a C I F 16.2 y P P A Campinas 19.5. Insular Juan Fernandez Province [Islas Juan Fernández] !( 55 Bc. CIRCUMANTARCTIC Subkingdom [CIRCUNANTÁRTICO] !( !( P ilc Sao Paulo!( Rio de Janeiro C. -110° -100° -90° -80° -70° -60° -50° -40° -30° -20° -10° 20. INSULAR ANTARCTIC Region [ANTÁRTICA INSULAR] Antofagasta om Frío ay 13.2 Tropic Salta o of Capric 20.1. Insular Atlantical Antarctic Province [Islas Antárticas Atlánticas] !( orn Asunción 21. CONTINENTAL ANTARCTIC Region [ANTÁRTICA CONTINENTAL] 15.3 !P Cat. Iguazú Curitiba!( Tropical [Tropical] Temperate [Templado] 21.1. West Antarctic Province [Antártica Occidental] Cerro Ojos San Miguel 11. Hyperdesertic [Hiperdesértico] 31. Xeric [Xérico] 21.2. East Antarctic Province [Antártica Oriental] de Tucumán del Salado !( 12. Desertic [Desértico] 33. Oceanic [Oceánico] # Resistencia Corrientes Urug 6863 !(!( ua 13. Xeric [Xérico] 34. Hyperoceanic [Hiperoceánico] y 13.1 S a 14. Pluviseasonal [Pluviestacional] [Boreal] la Boreal d 14.2 o 15. Pluvial [Pluvial] region (region) province (provincia) á 46. Hyperoceanic [Hiperoceánico] n

a 18.1 r Mediterranean [Mediterráneo] a Polar [Polar] N P Pôrto Alegre 22. Hyperdesertic-Oceanic [Hiperdesértico-Oceánico] E A !( 55. Hyperoceanic [Hiperoceánico] O C 24. Desertic-Oceanic [Desértico-Oceánico] L. Mar Chiquita Santa Fé Paraná Pelotas 26. Xeric-Oceanic [Xérico-Oceánico] 18.3 !(!( !( L. de los Patos -30° 28. Pluviseasonal-Oceanic [Pluviestacional-Oceánico] Mt. Aconcagua -30° # Valparaíso 6960 17.1 Fernández !( de Juan !P Arch. Santiago Buenos Aires !P Montevideo 19.5 !( !P La PlataR 17.2 ío Guatemala -90° -80° -70° -60° -50° -40° 18.2 de -90° -80° -70° -60° -50° -40° r Guadeloupe l Hondu as a G. de Plata Honduras Dominica Concepción C. Gracias a Dios Martinique !( St. Lucía C a r i b b e a n S e a Barbados Gu St. Vincent ate ma Nicaragua !( la Grenada Mar del Plata Tr C. de la Aguja I. Margarita en Tobago N O R T H Bahía Blanca ch TENSEAN Superegion !( Panamá Trinidad EAN-NOVOGRANA Co Canal G. of Darién a CARIBB 10° lora id 10° 10° 18.4 do 10° ér s M Costa Rica e A T L A N T I C . d o Venezuela Guyana á rd B m o n a a C n a Valdivia Panama n a H i g Suriname !( h a l i P a u h S a l O C E A N í t N e a O e l G a U d n C. Orange g a ro T o t l n f e B H l l o n a d d S m l G i a ie . ai a c r r L P ar s French Guyana t a c n c 19.1 n O c . O e a Colombia . c Puerto Montt C Serra d . r !( C u ancisco o muc maq 18.5 C. de San Fr Tu ue G. San Matías C Marajó I. Equator AMAZONIAN-GUYANAN Superegio C Galápagos Is. 0° n 0° C h -40° 0° 0° h ub Valdés Peninsula Ecuador i é I. ut l Chilo uil -40° e G. of Guayaq R ariñas Pta. P i C. São Roq s e ue Pta. Negra s T S e v a Plat. of R A T L l Brazil Borborema O Chonos A N ipiélago Comodoro T I Perú P NEOTROPICAL Sub Arch !( Rivadavia C kingdom San Valentín s IC -10° d -10° -10° Gulf of San Jorge -10° n A #4058 a ula l S enins h L aitao P A r g e n t i Plateau of T n e g u i S Mato Grosso p 18.6 B H O o e li B a s i n v n r Penas ia Bolivia U n a e lf of Gu P i g T l l a i t e i H CHA z Abrolhos Bank o COAN-BRAZ a ILIAN a a Sup u ir n eregi r e A on u n I. B gto O o iq N -20° ellin t -20° W C E I F I C c n -20° A -20° A C a a N P M D h Paraguay a West Falkland C . d C. F Falkland Is. S río E . n ios I a de D r A adre M G N Chile 19.2 s East Falkland s o 19.4 í N R E A Str. O C e ´s e n r ella -50° t g n L. de los Pa a s tos -30° M Argentina E Uruguay -30° -30° -30° Fernández a I. 19.3 h. de Juan d Santa Inés Arc Staten I. p -50° Río n m de r la Plata bu 20.1 n TROAM k a AUS ERICAN Subk Coc le in P gdom anal ag Sou C C. Horn th Ba e G A h eor ía S O B gia B U T H l lan a ca n a Ca G. San Matías C i Valdés Peninsula h i

-40° l e Chiloé I. -40° . R n

i s e -40° s -40°

I os o A T L A go Chon N T Archipiéla I C g

h Gulf of San Jorge ninsula Taitao Pe A r g e n t i n e c a i f of Penas B a s i n Gul t S w

o a uth gton I. O Orkne d Wellin C E A N y Is. 20.1 West Falkland Falkland Is.

s I. p n dre de Dio a Ma Shetland Is. East Falkland S n´s Str. gella Ma 20.1 20.1 és I. -50° Santa In Tierra del SFtauteen gI. o -50° n ur ckb -50° -50° l Co le ana ag South C Be C. Horn Georgi al a

Can

.

s I

AN TARCTICA h c i S w CTIC outh Orkn ANTAR Sub ey Is. d UM kin 21.1 n C g Shetland Is. a CIR dom S

-60° ANTARCTICA -110° -100° -90° -80° -70° -60° -50° -40° -30° -20° -10° -110° -100° -90° -80° -70° 19.6 -60° -50° -40° -30° -20° -10° -110° -100° -90° -80° -70° -60° -50° -40° -30° -20° -10° Technical cartography: Miguel Álvarez, Ignacio Prieto © EditAEFA International Journal of Geobotanical Research, Vol. nº 1, December 2011, pp 41-56

Historical evidences on flora composition changes in a high vegetation belt, Sierra Nevada, Spain (1837-2009)

Rosa María FERNÁNDEZ CALZADO (1) and Joaquín MOLERO MESA (1)

(1) Department of Botany, Faculty of Pharmacy, University of Granada (Spain)

Abstract

The main goal of this paper is to analyse the historical bibliographic resources about the flora catalogue in the Sierra Nevada upper zone and the current estimations. Are there any differences between the historical records and the current ones?. We have selected the main historical documents identifying the relevant ones and all the information has been analysed to maximum detail. A comparison of the taxonomical spectrum of our catalogue with the one don e on the same terr itory by Boissier (172 years ago) reveals that the number has increased by 65 taxa. Also, diverse taxa mentioned even at lower altitudes as rare or scanty, nowadays are frequent in the highest part of Sierra Nevada: Dryopteris filix-mas, Sempervivum minutum, Dianthus subacaulis, Asperula arista- ta subsp. scabra, Festuca iberica, Pimpinella procumbens, Senecio nevadensis. As conclusion we believe that the environmental conditions on the upper v egetation belt of Sierra Nevada have changed since the description done in the 19th century by Boissier. It has possibly provoked an intrusion of scanty, very rare or previously non-existent taxa from lower altitudes which are adapting to the new, more favourable conditions on the summits.

Keywords: Biodiversity; Boissier; climatic change; conservation; high mountain.

Introduction GRABHERR ET AL . (2010); ERSCHBAMER ET AL. (2009), HOLZINGER ET AL. (2008) and VITTOZ ET AL. (2008) have The current opinion about the global warming is une- also detected increase in species richness from other sites quivocal and points to the human action, with a high cer- in the Alps or Klanderud and BIRKS (2003) from Scandes. tainty, as one of its main causes of it (INTERGOVERNMEN- The existence of these and other reports shows us the TAL PANEL ON CLIMATE CHANGE (IPCC) 2007). The pro- necessity to improve our studies about the responses of duced changes in relation to this global warming, i.e. al- terations in the precipitation regime or snow cover, will mountain flora and vegetation to climatic change, speci- influence the plants and animals (GUISAN ET AL . 1995, fically in Sierra Nevada (Spain) where the climatic pro- Skov and Svenning 2004) which may provoke, in the jections show that during the 21st cent ury a relatively case of vegetation, disruptions in the balance of the com- uniform increase of temperature will be produced. The munities due to new migrations from the lowest altitude, average trend o n the Iberian Peninsula will be the extinctions, and modifications in the competitive rela- increase of 0.4 ºC/decade in winter and of 0.7 ºC/decade tions (KÖRNER 2002). in summer, for the least fa vourable scenario (A2 of the In the last ye ars, many researchers have suggested IPCC), and of 0.4ºC and 0.6 ºC/decade, respectively, for that these kinds of alterations on plants will affect dange- the most favourable scenario (B2 of the IPCC) (FERNÁN- rously the high elevation environments, emphasizing DEZ GONZALEZ ET AL. 2005). them as o ne of th e most sensitive zones (DIAZ ET A L., This is an attractive massif which has exerted the 2003). These mountain areas are affected by the macro- attention on many national and international researchers climate of their life zones and other factors (competition, who have wanted to learn more about different characte- topography, dispersal, soil properties, etc) which extend ristic of this range, especially of its peaks. In sp ite of the rank of answers that the plants could give (SKOV & this, the historical information and records on the eighte- SVENNING 2004). The observations about upward shifts enth and early nineteenth centuries were less scien tific or increase in plant species richness on high alpine areas than in the Alps with observations mainly orientated to are already numerous . For e xample GRABHERR ET AL. the benefit of society (GÓMEZ-ORTIZ ET AL . 2009). Du- (1994) showed botanical records, upward movement of ring the rest of the nineteenth century, the progress of vascular plants in the Swiss, Austrian and Italian Alps science favoured explorations by other kinds of scientists ______Correspondence: Rosa Maía Fernández Calzado. Department of Botany, Faculty of Pharmacy, University of Granada (Spain).E- mail: [email protected] ISSN: 2253-6302 Print/ISSN: 2253-6515 on line. ©Editaefa DOI: 10.5616/ijgr110003 44 R. M. Fernández Calzado & J. Molero Mesa

Figure 1. Location of the study area (i.e. botanist, geologist, etc) more interested on the natu- vely recent work and it does not contribute innovations ral richness of this range. Currently, the intellectual and with regard to Boissier’s work, we have decided to con- technology progress have enabled more scientific rigo- sider Boissier’s work as our point of reference for our rous investigations, but it d oes not mean that all th ese comparative study. historical documents are i rrelevant. In fact, they have To make possible these com parisons, between the contributed to science with important information, in Boissier’s records and ours, we have to observe that the most of the cases detailed descriptions, which have been current concept of u pper zone or upper vegetation belt invaluable resources for a better understanding of the (cryoromediterranean belt, RIVAS-MARTÍNEZ ET AL. past environmental conditions in Sierra Nevada. 1982, 2007) comes to coincide approximately with the Focusing on the historical investigations which have observations exposed by Boissier, although the altitudi- to establish a flora catalogue of the Sierra Nevada upper nal limits and t he permanency of sno w have changed zone, we observe as that these records are scanty and re- (GÓMEZ ORTIZ ET AL. 2004, 2009; FERNÁNDEZ CALZADO duced to the nineteenth century period only. A lthough 2007). Boissier defines the "region nival" as t hat zone we could speak of several authors in that period, only above 8000 feet (approximately 2600 m), characterized two of them made a major contribution to the deve- by snow cover that remains for eight months of the year, lopment of a flora catalogue: BOISSIER (1839-1845) and from October to May, and still stays d uring the summer PRIETO’s works (1971). in the shape of big spots (BOISSIER 1845, Vol I: 223- The first one, who based his work on observations 224). He established an approximation of the altitudinal and information gathered 172 years ago, offers the possi- limits, being much more explicit in his consideration of bility of comparing what happened on that territory in the species that are include d in the nival region and that slip of time. In addition he offers a complete catalo- which will be analysed at a later stage. gue of taxa, accompanied on many occasions with inte- Nowadays, the lo wer boundaries of this vegetation resting taxonomic and geobotanic observations. On the belt range from 2750 to 3290 m a.s.l. and the set of taxa other hand, PRIETO (1971) only gathered the total num- that, in ou r opinion, compose the cryoromediterranean ber of taxa on the highest territory of Sierra Nevada and flora currently does not represent a fixed number, but a showed photos of them. Due to the fact that it is a relati- changing one. Our catalogue tries to reflect, through the

Historical evidences on flora composition changes in a high vegetation belt, Sierra Nevada, Spain (1837-2009) 45 use of plants, the state of the environmental conditions in The current catalogue of cryoromediterranean taxa is the summits of Si erra Nevada at the beginning of the shown in the Table 1 including additional information on 21st century. We want to attract attention to this vulnera- each taxa: thermotype (RIVAS-MARTÍNEZ ET AL. 2007), li- ble area, as it was desc ribed as one of the most threa- fe form (RAUNKIAER 1934), threat category (BAÑARES ET tened areas in th e last rep ort on t he effects of clim ate AL. 2003, BLANCA ET AL. 1999, 2000, 2002) and distribu- change in Spain (FERNÁNDEZ GONZÁLEZ ET AL. 2005). tion. Therefore, we consider it very interesting to compare our The floristic nomenclature is in accordance with Flo- current catalogue with Boissier’s one because it shows ra Iberica for the pu blished families (CASTROVIEJO ET the changes which have happened in this short period. At AL. 1986) and Flora Europaea (TUTIN ET AL. 1964-1980), the same time, it could serve as point of reference to stu- although in some cases ot her authors have been c onsi- dies that will be carried out by posterity and in relation to dered (RIVAS-MARTÍNEZ ET AL. 2002) the climatic trends that could happen in the future. Results and discussion Material and methods As we have already mentioned, at present the number Study area of vascular plants in the catalogue of the upper vegetat- tion belt of Sierra Nevada has increased up to at least 185 The Sierra Nevada massif is situated inside the Baetic taxa. It is necessary to comment on two very restricted range, in the southern part of Spain (Figure 1). It is alig- hybrids not included in the list: Artemisia x fragosoana ned along a west-east ridge with an area which exceeds Font Quer (A. granatensis x A. umbelliformis) (FONT 2200 km ² and has got the highest altitude on the Iberian QUER 1924: 243) and Leontodon x nivatensis (Merino) Peninsule (Mulhacen, 3481m a.s.l). Pau (L. boryi x L. microcephalus) (PAU 1909: 123). In The principal part of th e massif, where the highest addition, because of their rarity, there are other taxa as peaks are located, is mainly composed of highly weathe- Triglochin palustre L., Thalictrum alpinum L., Sparganium red feldspar and graphitic micaschists (GÓMEZ ORTIZ ET angustifolium Michx. or Alchemilla fontqueri Rothm., that AL. 2009) and sh elters an abrupt landscape with steep have been located on the boundary of the oromediterra- slopes, scree, rocky areas, and even remains of ancient nean belt. There are seven more taxa which are mentio- phenomena glaciers. ned very rarely and we think that they could have disap- Specifically, our territory of study is the upper part of peared in the course of time or have probably been con- Sierra Nevada. This area has an extension of 3875.7 hec- fused with others taxa: Arenaria purpurascens Ramond tares and its low boundaries oscillate between 2750 m, in ex-DC, Viola biflora L. (Webb 1838), Ranunculus par- northern and western zones, and 3290 m in southern and nassifolius L., Doronicum pyrenaicum Br. Bl., Sedum al- eastern zones (FERNÁNDEZ CALZADO 2007). pestre Vill (QUÉZEL 1953), Empetrum nigrum L. (RIVAS The whole study area is incl uded in the units of the GODAY & MAJOR 1966) or Poa alpina L. (BOISSIER 1839- Holarctic kingdom, the Mediterranean region, the Baetic 1845). province and the Nevadense sector (Rivas-Martínez et al. Moving onto the analysis that Boissier did for the 2007). “region nival” (loc. cit.:223-229), he indicates the pre- The macroclimate in the z one is Mediterranean, spe- sence of 117 taxa (in fact 118, since he included both of cifically in the pluviseas onal oceanic variant of the bio- the varieties of Cerastium alpinum, which we consider to climate (RIVAS-MARTÍNEZ ET AL. 2007). There is a pro- be subspecies). Nevertheless, in the development of the nounced summer drought at all a ltitudes during at least flora catalogue for the Kingdom of Granada, mentions 12 two months per year and the precipitation falls almost other taxa that reach 8500 fe et or higher which raise the exclusively as snow at altitudes above 2500 m. In rela- total number to 130 taxa. tion to the climatic records, we want to comment the ab- Out of the total number, 120 taxa form a part of the sences of meteorological stations at these altitudes, there- catalogue elaborated by us (Table 1). On this table we fore the values of temperatures, precipitation, cover snow, have also added the name that Boissier gave to these taxa etc, are in the majority of cases es timations from lower in his work. stations. The comparison of Boissier’s obse rvations and the current ones about the occupation of cryoromediterra- Information sources nean belt by the taxa is heterogeneous and sometimes, Our floristic data is b ased on the bibliography (BOI- with contradictory results. The differences between both SSIER 1839-1845, MOLERO MESA & PÉREZ RAYA 1987, catalogues are not very well marked, although the current MOLERO MESA ET AL. 1996, PRIETO 1971, WILLKOMM & number has been increased by 65 taxa (Table 2), this is LANGE 1861-1880) and field work carried out over a pe- because many of the species that toda y reach the riod of four years (FERNÁNDEZ CALZADO 2007). cryoromediterranean belt had already been mentioned by The catalogue that we present uses as a starting point Boissier in lower altitud es. Only six taxa h ave been the catalogue elaborated by MOLERO MESA ET AL. (1996), described as new since then, corresponding to restricted with 178 t axa in the cryoromediterranean zone. The l ist ones: Agrostis canina subsp nevadensis, Arenaria neva- was revised and complemented by new data and resulted densis, Armeria filicaulis subsp. nevadensis, Iberis car- in the number of taxa increasing up t o 185. We want to nosa subsp. embergeri, Poa minor subsp. nevadensis, and emphasize that our work, unlike the cited catalogue (1996) Trisetum antonii-josephii. Other taxa, in general sparsely and other works, is based on a previous delimitation of the populated these days, were not detected by Boissier: cryoromediterranean belt (FERNÁNDEZ CALZADO 2007). Artemisia umbelliformis, Eleocharis quinqueflora, Phy-

46 R. M. Fernández Calzado & J. Molero Mesa teuma charmelii, Ribes alpinum, Valeriana apula, Botry- vertheless, in our consideration these localities are of the chium lunaria or Carex nigra subsp. intrincata, with the low level and it does not correspond to the cryoromedite- last two taxa being more abundant. rranean belt. Both opinions can be correct, since the spe- A group of boreal-alpine taxa (Sibbaldia procum- cie in question lives in very humid environment, in a mi- bens, Ranunculus glacialis, Veronica alpina, Draba du- croclimate that allows it to survive although the co ndi- bia, Cerastium alpinum, Antennaria dioica and Saxifra- tions around change. ga oppositifolia), which we, in general, do not suspect to Concluding, the environmental characteristics of the be suffering a speciation process and that colonized the upper vegetation belt of Sierra Nevada have changed sin- high summits after the last glaciation, were rare alread y ce the description done in the 19th century by Boissier. in 1837. They were lo cated on habitat with ecological Although the delimiting of the h ighest vegetation belt in characteristics similar to today (snow cover, low tempe- the Baetic system is comparable to the one indicated by rature, etc) which may provoke their extinction if the cli- Boissier as "region ni val”, there a re some differences. matic trends continue. These differences indicate a change in the environmental Other species, frequent in the oromediterranean belt conditions, possibly being warmer and drier now, th at (“alpine” by Boissier), are to presume that have enlarged provoke an intrusion of taxa from lower altitudes which their areas of distribution in the upper belt where before adapt to the new more favourable circumstances. they had been rare or very rare. Among the most notable Nevertheless, it is also stated that the endemic taxa species are Hormatophylla spinosa, which was ‘infini- adapted to the conditions of Sierra Nevada, are t hose ment rare’ (BOISSIER loc. cit.: 225) and today occupy a which have bet ter adapted to the produced changes, for wide range up to the highest summits; Sempervivum what it is possible to deduce t hat, throughout the time, minutum, commonly distributed in the cryoromediterra- they have managed to overcome the climatic fluctuations, nean rock fissures, and Senecio nevadensis, increasingly probably migrating in altitude or support ing the changes common, ligature to stony and ruderal environments. on limited stations and coul d possibly endure even more Also Polystichum lonchitis, Cryptogramma crispa and, drastic changes of those today have been happened. specially, Dryopteris filix-mas which occupied the cavi- Finally we want to comment that the possibilities of ties and fissures among the large blocks in the cryorome- sampling errors are particularly relevant when a compa- diterranean belt. rative study is performed between two time periods and The strict endemic species that characterize the Sie- by different observers. To add, Boissier’s study does not rra Nevada summits, such as Trisetum velutinum, Neva- counted with very detail records, i.e. site descriptions or densia purpurea, Saxifraga nevadensis, Festuca clemen- coordinates, as the studies on Piz Linard in eastern Swit- tei, Viola crassiuscula, Holcus caespitosus, etc., ha ve zerland (GRABHERR ET AL . 2001), Jotunheimen in the currently a si milar distribution to the one in the XIX central Norway (KLANDERUD & BIRKS 2003) or other century, except for Artemisia granatensis, very abundant about similar topic in the Alps (PAULI ET AL. 1996, 2003, according to Boissier. Today it is almost in extinction etc). However, our opinion is that our com parison study danger, although the situation seems to be provoked by is useful and it will be able to use as reference to studies the intense recollection, as it is an aromatic and medici- that will be carried out by posterity and in relation to the nal plant. climatic trends that could happen in the future. In general, the plants that Boissier indicated that they live up to the top limit of the alpine zone together with Acknowledgements those which scarcely enter the nival belt, today are a part of the cryoromediterranean flora; it is to say, the approxi- This research has been spons ored by National Park Net - mate limit of 2600 m of al titude, today has been exce- work, Environment Ministry (Ministerio de M edio Am- eded even more than 2800 m, as minimum. This is the biente), Project 2/2003. case of Anthericum baeticum, Asperula aristata scabra, Saxifraga granulata, Nepeta nepetella laciniata, Pedicu- References laris verticilata caespitosa, Pimpinella procumbens, Plantago holosteum, Poa ligulata, Euphorbia nevaden- Bañares A., Blanca G., Güemes J., Moreno JC., Ortiz, S. 2003. sis, Festuca iberica, Gentiana pneumonanthe de- Atlas y libro rojo de la flora amenazada de España. Dirección subsp. General de Conservación de la Naturaleza. Madrid, Spain, pp. pressa, Jasione crispa subsp. tristis, Campanula rotun- 1067. difolia, Cystopteris fragilis, Dianthus pungens subsp. brachyanthus, among others. We could not have checked Blanca G., Cabezudo B., Hernández-Bermejo E., Herrera CM., Molero Mesa J., Muñoz J., Vald és B. 1999. Libro Rojo de la the current existence of other ten taxa in the cryoromedi- Flora Silvestre Amenazada de Andalucía, Tomo I: Es pecies terranean belt, because in general, they are oromediterra- en Peligro de Extinción. Consejería de Medio Ambiente, nean taxa. Junta de Andalucía. Sevilla, Spain, pp. 302. The fact of the disappearance of a set of species in Blanca G., Cabezudo B., Hernández-Bermejo E., Herrera CM., the past is difficult to explain, and possibly has t o do Molero Mesa J., Muñoz J., Vald és B. 2000. Libro Rojo de la with the material of work that we have used, since Bois- Flora Silvestre Amenazada de Andalucía. Tomo II: Especies sier's aim of having delimited the location of t he taxa en Peligro de Extinción. Consejería de Medio Ambiente, was only as a support to their description, although pro- Junta de Andalucía. Sevilla, Spain, pp. 375. bably also it might guard relation with a relocation of the Blanca G., López Onieva MR., Lorite J., Martínez Lirola MJ., species in processes of colonisation, decolonisation and Molero Mesa J., Quintas S., Ruiz Girela M., de los Angeles Varo re-colonisation (KAMMER ET AL. 2007). In the case of M., Vidal S. 2002. Flora amenazada y endémica de Sierra Neva- Salix hastata, present in two localities that Boissier alrea- da. Consejería de Medio Ambiente. Junta de Andalucía. Sevilla, dy indicated, the author includes it in the nival belt. Ne- Spain, pp. 401.

Historical evidences on flora composition changes in a high vegetation belt, Sierra Nevada, Spain (1837-2009) 47

Boissier E. 1839-1845. Voyage Botanique dans le midi de l`Espag- Klanderud K., Birks HJB. 2003. Recent increases in species rich- ne pndant l´année 1837. Vol I and II. Paris, pp. 183-241. ness and shifts in altitudinal distributions of Norwegian mountain Castroviejo S., Laínz M., López González G., Montserrat T., plants. The Holocene 13 (1):1-6. Muñoz Garmendia F., Paiva J., Villar L ., Aedo C., Cirujano Körner C. 2002. Mountain biodiversity, its causes and function: an S., Morales R., Navarro J., Soriano C., Gómez Campo C., overview. In: Körner C., Spehn E. (eds.) Mountain Biodiversity. Nieto Feliner G., Rico E., Talavera S. 198 6-2002. Flora A Global Assessment, Parthenon, London, New York, pp. 3-20. Iberica. Plantas vasculares de la Península Ibérica e Islas Ba- Molero Mesa J., Pérez Raya F. 1987. La Flora de Sierra Nevada. leares. Vols. I-VIII & XIV. Real Jardín Botánico de Madrid, Avance sobre el catálogo florístico nevadense. Universidad de Consejo Superior de Investigaciones Científicas, Madrid. Granada (ed.), Spain, pp. 395. Diaz HF., Martin G., Graumlich L. 2003. Climate variability and Molero Mesa J., Pérez Raya F., González- Tejero MR. 1996. Catá- change in high elevation. Regions: past, present and future. Cli- logo y análisis florístico de la flora orófila de Sierra Nevada. In: matic change 59: 1–4. Chacón Montero J., Rosúa Campos JL. (eds.) Sierra Nevada. Erschbamer B., Kiebacher T., Mallaun M., Unterluggauer P. 2009. Conservación y Desarrollo Sostenible, Vol. 2, Madrid, pp. 271- Short-term signals of climate change along an altitudinal gradient 276. in the South Alps. Plant Ecology 202(1): 79–89. Pau C. 1909. Mi segunda visita a Sierra Nevada. Bol. Soc. Arag. Fernández Calzado MR. 2007. Delimitación del piso crioromedite- Ci. Nat. 8: 104-124, 130-135. rráneo de Sierra Nevada. Ph. D., pp. 284. Pauli H., Gottfried M., Grabherr G. 1996. Effects of climate chan- Fernández-González F., Loidi J., Moreno Sainz JC. 2005. Impactos ge on mountain ecosystems upward shifting of alpine plants. sobre la biodiversidad vegetal, 5. Evaluación preliminar de los World Resource Review 8: 382-390. impactos en España por efecto del cambio climático. MMA, Se- Pauli H., Gottfried M., Grabh err G. 2003. The Piz Linard (3411 m), cretaría General Técnica, Centro de Publicaciones, pp. 821. the Grisons, Switzerland – Europe ’s oldest mountain vegetatio n Font Quer P. 1924. Datos acerca de la flora orófila de Sierra Neva- study site. In: Nagy L., Grabherr G., Körner C., Thompson DBA. da. Bol. Soc. Esp. Hist. Nat. 24: 238-244. (eds.) Alpine biodiversity in Europe. Ecological Studies 167. Gómez Ortiz A., Sc hulte L., Salvador F., Palacios D., Sanjosé- Springer, Berlin, Heidelberg, DE, pp. 443-448. Blasco JJ. 2004. Deglaciación reciente de Sierra Nevada. Reper- Prieto P. 1971. Vegetación de Sierra Nevada. La cuenca de Mona- cusiones morfogénicas, nuevos datos y perspectivas de estudio chil. Colec. Monogr. Univ. Granada, pp. 218. futuro. Cuadernos de investigación Geográfica 30: 147-168. Quézel P. 1953. Contribution à l´ètude phytosociologique et gèo- Gómez Ortiz A., Palacios D., Schulte L., Salvador F., Plana J. botanique de la Sierra Nevada. Mem. Soc. Brot. 9: 5-77. 2009. Evidences from historical documents of landscap e evo- Raunkiaer C. 1934. The Life Forms of Plants and Statistical Plant lution alter little ice age of a mediterranean high mountain area, Geography.Clarendon Press. Oxford, UK. Sierra Nevada, Spain (eighteenth to twentieth centuries). Geogra- fiska Annaler 91 (4): 279-289. Rivas Goday S., Mayor M. 1966. Aspectos de vegetación y flora orófilas del Reino de Granada. Anales Real Acad. Farmacia 31: Grabherr G., Gottfried M., Pauli H. 1994. Climate effects on moun- 345-400. tain plants. Nature (369): 448. Rivas-Martínez S. 1982. Etages bioclimatiques, secteurs chorologi- Grabherr G., Gottfried M., Pauli H. 2001. Long-term monitoring of ques et séries de vegetation de I´Espagne méditerraneenne. Eco- mountain peaks in the Alps. In : Burga CA., Kratochwil A. (eds.) logia Mediterránea 8: 278-288. Biomonitoring: General and applied aspects on regional and glo- bal scales. Tasks for Vegetation Science 35. Kluwer, Dordrecht, Rivas-Martínez S., Díaz TE., Fernández-González F., Izco J., Loidi NL, pp. 153-177. J., Lousä M., Penas A. 2002. communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Grabherr G., Michael Gottfried M., Harald P. 2010. Climate Chan- Itinera Geobotanica 15 (2): 434-696. ge Impacts in Alpine Environments. Geography Compass 4 (8): 1133-1153. Rivas-Martínez S. et al. 2007. Mapa de series, geoseries y geoper- maseries de vegetación de España (Memoria del mapa de vegeta- Guisan A., Tessier L., Holten JI., Haeverli W., Baumgartner M. ción potencial de España). Parte I. Itinera Geobotánica 17: 5-436. 1995. Understanding the impact of climate changing on mountain ecosystems: an overview. In: Guisan A. et al. (eds.) Potential eco- Skov F., Svenning JC. 2004. Potential impact of climatic change logical impacts of climate change in the Alps and Fennoscandian on the distribution of forest herbs in Europe. Ecography 27 (3): mountains. Conserv. Jard. Bot. Genéve, pp. 15-37. 366–380. Holzinger B., Hülber K., Camenisch M., Grabherr G. 2008. Chan- Tutin TG., Heywood VH., Burges NA., Moore DM., Valentine DH., ges in plant species richness over the last century in the eastern Walters SM., Webb DA. (eds.) 1964-1980. Flora europaea, Vols. Swiss Alps: elevational gradient, bedrock effects and migration 1-5. Cambridge Univ. Press., Cambridge, UK. rates. Plant Ecology 195 (2): 179–196. Vittoz P., Bodin J., Ungricht S., Burga CA., Walther GR. 2008. One Intergovernmental panel on climate change 2007. Fourth Asses- century of vegetation change on Isla Persa, a nunatak in the Ber- sment Report: Climate change 2007. nina massif in the Swiss Alps. Journal of Vegetation Science 19: 671–689. Kammer PM., Schöb C., Choler P. 2007. Increasing species rich- ness on mountain summits: Upward migration due to anthropo- Webb PB. 1838. Iter Hispaniense. Paris-Londres, pp. 80. genic climate change or re-colonisation?. Journal of Vegetation Willkomm HM., Lange JM. 1861-1880. Prodromus Florae Hispa- Science 18: 301-306. nicae. Volume I-III. Sttutgart, Germany.

48 R. M. Fernández Calzado & J. Molero Mesa

Table 1. List of coincidence taxa on both catalogues (Boissier and our study) (Thermotypes: M = mesoditerranean, S = supramediterranean, O = oromediterranean, C = cryoromediterranean; Nt: number of thermotypes where the taxa is present; Life forms key (Lf): Fa = phanerophytes, Ch = chamaephytes, He = hemicryptophytes, Ge = geophytes, Te = therophytes; Threat categories (Th): CR = critically endangered, EN = endangered, VU = vulnerable, NL = not list; Distribution: Ne = nevadense, Be = betican, Ib = iberian, Ib-N = iberian-northern Africa, Eu = european, Eu-N = european-northern Africa, Others = widely distributed)

Taxon M S O C Nt Lf ThDi Aconitum vulparia Reichenb. Ex Spreng. subsp. neapolitanum (Ten.) Muñoz Garmendia 0 1 1 1 3 He NL Eu-N (Aconitum lycoctonum L.)

Agrostis nevadensis Boiss. 0 0 1 1 2 He NL Ne (Agrostis nevadensis Boiss. var. minor Boiss.)

Alchemilla glabra Neygenf. 0 1 1 1 3 Ch NL Eu (Alchemilla vulgaris L.)

Alchemilla saxatilis Buser 0 0 1 1 2 He NL Eu (Alchemilla alpina L.)

Alyssum nevadense Willmmott ex P.W.Ball & R. Dudley 0 0 1 1 2 He VU Ne (Alyssum diffussum Boiss.)

Androsace vandelli (Turra) Chiov. 0 0 1 1 2 Ch NL Eu (Androsace imbricata Lam.)

Androsace vitaliana (L.) Lapeyr. subsp. nevadensis (Chiarugi) Luceño 0 0 1 1 2 Ch VU Ne (Aretia vitaliana L.)

Antennaria dioica (L.) Gaertner 0 0 0 1 1 Ch VU Others var. congesta DC.

Anthyllis vulneraria L. subsp. pseudoarundana H.Lindb 0 0 1 1 2 He NL Ne (Anthyllis webbiana Hook.)

Arabis alpina L. 0 1 1 1 3 Ch NL Others

Arenaria tetraquetra L. subsp. amabilis (Bory) H. Lindb. fil. 0 0 1 1 2 Ch NL Ne (Arenaria tetraquetra L. var. granatensis Boiss.)

Arenaria armerina Bory 0 1 1 1 3 Ch NL Ib-N (Arenaria armeriastrum Boiss. var. frigida Boiss.)

Arenaria pungens Clemente ex Lag. 0 0 1 1 2 Ch NL Be

Armeria splendens (Lag. & Rodr.) Webb 0 0 1 1 2 He VU Ne (Armeria splendens Boiss.)

Artemisia granatensis Boiss. 0 0 1 1 2 Ch CR Ne

Asplenium septentrionale (L.) Hoffm. 0 0 1 1 2 He NL Others

Biscutella glacialis (Boiss. & Reut.) Jordan 0 0 1 1 2 He NL Ne (Biscutella saxatilis Boiss. var. glacialis Boiss. & Reut.)

Bunium macuca Boiss. subsp. nivale (Boiss.) Mateo & López Udias 0 0 1 1 2 Ge NL Ne (Bunium nivale Boiss.)

Historical evidences on flora composition changes in a high vegetation belt, Sierra Nevada, Spain (1837-2009) 49

Taxon M S O C Nt Lf ThDi

Campanula herminii Hoffmm. & Link. 0 0 1 1 2 He NL Ib

Cardamine resedifolia L. 0 0 1 1 2 He NL Eu-N

Carduus carlinoides Gouan subsp. hispanicus (Kazmi) Franco 0 0 1 1 2 He NL Ne (Carduus carlinoides Gouan)

Carex capillaris L. 0 0 1 1 2 He NL Others

Carex furva Webb 0 0 1 1 2 He NL Ib (Carex lagopina Wahlenb var. baetica Gay)

Carex nevadensis Boiss. & Reuter 0 0 1 1 2 He NL Be (Carex flava L.)

Centranthus nevadensis Boiss. 0 1 1 1 3 Ch VU Be (Centranthus angustifolius DC.)

Cerastium alpinum L. subsp. aquaticum (Boiss.) Martínez Parra & Molero Mesa 0 0 0 1 1 Ch NL Ne (Cerastium alpinum L. var. aquatica Boiss.)

Cerastium alpinum L. subsp. nevadense (Pau) Martínez Parra & Molero Mesa 0 0 0 1 1 Ch NL Ne (Cerastium alpinum L.)

Cerastium cerastoides (L.) Britton 0 0 1 1 2 Ch NL Others (Stellaria cerastoides L.)

Chaenorrhinum glareosum (Boiss.) Willk 0 0 1 1 2 He NL Ne (Linaria origanifolia DC. var. glareosa Boiss.)

Cirsium gregarium Boiss. ex. Willk. 0 0 1 1 2 He NL Be (Cirsium acaule All. var. gregarium Boiss.)

Coincya monensis (L.) Greuter & Burdet subsp. nevadensis (Willk.) Leadlay 0 0 1 1 2 He NL Ne (Brassica cheiranthos Vill. var. montana DC.)

Comastoma tenellum (Rottb.)Toyok. 0 0 1 1 2 Te VU Others (Gentiana glacialis Thom.)

Conopodium bunioides ( Boiss.) Calestani 0 0 1 1 2 Ge NL Ib (Butinia bunioides Boiss.)

Crepis oporinoides Boiss. 0 0 1 1 2 Ch NL Be

Cryptogramma crispa (L.) R. Br. ex Hooker 0 0 1 1 2 Ge NL Others (Pteris crispa All.)

Cystopteris fragilis (L.) Bernh subsp. fragilis 1 1 1 1 4 He NL Others (Aspidium fragile SW.)

Dactylis juncinella Bory 0 0 1 1 2 He NL Ne (Dactylis glomaerata L. var. juncinella Boiss.)

Draba dubia Suter subsp. laevipes 0 0 0 1 1 Ch VU Eu (DC) B- Blanq. In Trav. (Draba frigida Saut.)

50 R. M. Fernández Calzado & J. Molero Mesa

Taxon M S O C Nt Lf ThDi Draba hispanica Boiss. subsp. laderoi Rivas Martínez, M.E. García & Penas 0 0 1 1 2 Ch NL Ne (Draba hispanica Boiss.)

Epilobium alsinifolium Vill. 0 0 1 1 2 He NL Eu (Epilobium origanifolium Lam.)

Erigeron frigidus Boiss. ex DC 0 0 0 1 1 He VU Ne

Erigeron major (Boiss.) Viehr 0 0 1 1 2 He NL Be (Erigeron alpinum Lam. var. major Boiss.)

Erodium cheilanthifolium Boiss. 0 1 1 1 3 Ch NL Be (Erodium trichomanefolium L`Her.)

Eryngium glaciale Boiss 0 0 1 1 2 He NL Ib-N

Euphorbia esula L. 0 1 1 1 3 He NL Others

Euphrasia willkommii Freyn 0 0 1 1 2 Te NL Ib-N (Euphrasia minima Schleich.)

Festuca clementei Boiss. 0 0 0 1 1 He VU Ne (Festuca duriuscula L. var. clementei Boiss.)

Festuca frigida (Hackel) K. Richter 0 0 1 1 2 He VU Ne (Festuca halleri All.)

Festuca pseudoeskia Boiss. 0 0 1 1 2 He NL Ne

Festuca rivularis Boiss. 0 0 1 1 2 He NL Eu (Festuca duriuscula L. var. rivularis Boiss.)

Gagea nevadensis Boiss. 1 1 1 1 4 Ge NL Ib-N (Gagea polimorfa Boiss. var. nevadensis Boiss.)

Galium nevadense Boiss. & Reuter 0 0 1 1 2 He NL Ib-N (Galium sylvestre Poll. var. alpestre Gaud)

Galium pyrenaicum Gouan 0 0 1 1 2 Ch NL Ib

Galium rosellum (Boiss.) Boiss. & Reuter 0 0 1 1 2 He NL Be (Galium sylvestre Poll. var. rosellum Gaud)

Gentiana alpina Vill. 0 0 1 1 2 He VU Eu

Gentiana boryi Boiss. 0 0 1 1 2 He VU Ib

Gentiana pneumonante L. subsp. depressa (Boiss.) Malag. 0 0 1 1 2 He VU Eu (Gentiana pneumonante L. var. depressa Boiss. )

Gentiana sierrae Briquet 0 0 1 1 2 He VU Ne (Gentiana verna L.)

Historical evidences on flora composition changes in a high vegetation belt, Sierra Nevada, Spain (1837-2009) 51

Taxon M S O C Nt Lf ThDi

Herniaria boissieri Gay 0 0 1 1 2 Ch NL Be (Herniaria alpina Vill.)

Holcus caespitosus Boiss. 0 0 1 1 2 He NL Ne

Hormathophylla spinosa (L.)Kupfer 1 1 1 1 4 Ch NL Eu-N (Ptilotrichum spinosum Boiss.)

Jasione crispa (Pourr.) Samp. subsp. tristis (Bory) G. López 0 0 1 1 2 Ch NL Ne (Jasione amethystina Lag. & Rodr.) Juniperus communis L. subsp. hemisphaerica (K.Presl) Nyman 0 1 1 1 3 Fa NL Others (Juniperus nana Willd. )

Leontodon boryi Boiss. 0 0 1 1 2 He NL Be

Leontodon microcephalus (Boiss.) Boiss. 0 0 1 1 2 He VU Ne (Leontodon microcephalum Boiss.)

Lepidium stylatum Lag.& Rodr. 0 0 1 1 2 He NL Ne

Leucanthemopsis pectinata (L.) G. López & Ch. E. Jarvis. 0 0 1 1 2 Ch NL Ne (Pyrethrum radicans Cav.)

Linaria glacialis Boiss. 0 0 0 1 1 He VU Ne

Linaria nevadensis (Boiss.) Boiss & Reut. 0 0 1 1 2 He NL Ne (Linaria supina L. var. nevadensis Boiss.)

Lotus corniculatus L. subsp. glacialis (Boiss.) Valdés 0 0 1 1 2 Ch NL Ne (Lotus corniculatus L. var. glacialis Boiss.)

Luzula hispanica Chrtek & Krisa 0 0 1 1 2 He NL Ib (Luzula spicata DC.)

Meum athamanticum Jacq. (Meum nevadense Boiss.) 0 0 1 1 2 He NL Eu-N

Murbeckiella boryi (Boiss.) Rothm. (Arabis boryi Boiss.) 0 0 1 1 2 He NL Ib-N

Nardus stricta L. 0 0 1 1 2 He NL Eu-N

Nevadensia purpurea (Lag. & Rodr.) Rivas Martínez 0 0 1 1 2 He NL Ne (Ptilotrichum purpureum Boiss.)

Omalotheca supina (L.) DC. var. pusilla (Haenke) Amich, Rico & Sánchez 0 0 1 1 2 He NL Eu (Omalotheca supina Cass. var. subacaulis Wahl.)

Papaver lapeyrousianum Guterm. 0 0 0 1 1 He EN Ib (Papaver pyrenaicum Willd.)

Parnassia palustris L. 0 1 1 1 3 He NL Others

52 R. M. Fernández Calzado & J. Molero Mesa

Taxon M S O C Nt Lf ThDi

Paronychia polygonifolia (Vill.) DC 0 1 1 1 3 Ch NL Others

Phleum abbreviatum (Boiss.) Rivas Martínez, Asensi, Molero Mesa & Valle 0 0 1 1 2 He VU Ne (Phleum pratense L. var. abbreviatum Boiss.)

Pinguicula nevadensis (Lindb.) Casper 0 0 1 1 2 He VU Ne (Pinguicola leptoceras Rchb.)

Plantago nivalis Boiss. 0 0 1 1 2 He NL Ne

Poa laxa Haenke 0 0 1 1 2 He NL Eu

Poa ligulata Boiss 0 1 1 1 3 He NL Ib-N

Polygonum aviculare L. 0 0 1 1 2 Te NL Others (Polygonum aviculare L. var. nana Boiss)

Polystichum lonchitis (L.) Roth 0 0 1 1 2 He NL Others (Aspidium lonchitis SW.)

Potentilla nevadensis Boiss. 0 0 1 1 2 Ch NL Ne (Potentilla nevadensis Boiss. var. condensata Boiss.)

Ranunculus acetosellifolius Boiss. 0 0 1 1 2 He NL Ne (Ranunculus acetosellaefolius Boiss.)

Ranunculus angustifolius subsp. alismoides (Bory) Malagarriga 0 0 1 1 2 He NL Ne (Ranunculus angustifolius DC. var. uniflorus Boiss.)

Ranunculus demissus DC 0 0 1 1 2 He NL Others (Ranunculus demissus DC. var. hispanicus Boiss.)

Ranunculus glacialis L. 0 0 0 1 1 He VU Eu

Reseda complicata Bory 0 0 1 1 2 Ch NL Ne

Sagina saginoides subsp. nevadensis 0 0 1 1 2 He NL Ib (Spergula saginoides L.)

Saxifraga gredensis Rivas Mateos 0 0 1 1 2 Ch VU Ib (Saxifraga stellaris L.)

Saxifraga nevadensis Boiss. 0 0 1 1 2 Ch NL Ne (Saxifraga mixta Lapeyr.)

Saxifraga oppositifolia L. 0 0 0 1 1 Ch NL Others

Scutellaria jabalambrensis Pau 0 0 1 1 2 He NL Ib (Scutellaria alpina L.)

Sedum amplexicaule DC 1 1 1 1 4 Ch NL Others

Historical evidences on flora composition changes in a high vegetation belt, Sierra Nevada, Spain (1837-2009) 53

Taxon M S O C Nt Lf ThDi

Sedum annuum L. 0 0 1 1 2 Te NL Eu (Sedum saxatile DC.)

Sedum candollei Raym.-Hamet 0 0 1 1 2 Te NL Ib (Umbilicus sedoides DC)

Sedum melanantherum DC 0 0 1 1 2 Ch NL Ib-N (Sedum rivulare Boiss.)

Senecio boissieri DC. 0 0 1 1 2 Ch NL Ib

Senecio nebrodensis L. 0 1 1 1 3 He NL Ib (Senecio duriaei Gay.)

Senecio nevadensis Boiss. & Reut. 0 0 1 1 2 Ch VU Ne (Senecio linifolius L. var. frigidus Boiss.)

Senecio pyrenaicus Loefl. subsp. granatensis (Boiss. ex DC) Rivas Martínez 0 0 1 1 2 Ch NL Be (Senecio tournefortii Lap. var. granatensis Boiss)

Sibbaldia procumbens L. 0 0 0 1 1 He VU Others

Sideritis glacialis Boiss. 0 0 1 1 2 Ch NL Ne (Sideritis scordioides L. var. vestita Boiss.)

Silene boryi Boiss. 0 1 1 1 3 He NL Ib

Silene rupestris L. 0 0 1 1 2 He NL Eu

Solidago virgaurea L. subsp. minuta (L.) Arcangeli 0 0 1 1 2 He NL Others (Solidago virga-aurea L. var. alpestris DC.)

Thymus serpylloides Bory 0 0 1 1 2 Ch NL Ne (Thymus angustifolius Pers. var. nevadensis Boiss.)

Trifolium pratense L. 1 1 1 1 4 He NL Others (Trifolium pratense L. var. hirsutum Boiss.)

Trifolium repens L. subsp. nevadense (Boiss.) D.E. Coombe 0 1 1 1 3 He NL Ib (Trifolium glareosum Schleicher.)

Trisetum glaciale (Bory) Boiss. 0 0 0 1 1 He VU Ne (Trisetum glacile Boiss.)

Vaccinium uliginosum L. subsp.nanum (Boiss.) Rivas Martínez, Asensi, Molero Mesa & Valle 0 0 1 1 2 Ch NL Ne (Vaccinium uliginosum L. var. nana Boiss.)

Veronica nevadensis (Pau) Pau 0 0 1 1 2 He NL Ib (Veronica repens DC.)

Veronica alpina L. 0 0 1 1 2 He NL Others

Veronica fruticans Jacq 0 0 1 1 2 Ch NL Others (Veronica saxatilis Jacq)

54 R. M. Fernández Calzado & J. Molero Mesa

Taxon M S O C Nt Lf ThDi

Viola crassiuscula Bory 0 0 1 1 2 He NL Ne (Viola nevadensis Boiss.)

Viola palustris L. 0 0 1 1 2 He NL Others

Table 2. List of new taxa on our catalogue (Thermotypes: M = mesoditerranean, S = supramediterranean, O = oromediterranean, C = cryoromediterranean; Nt: number of thermotypes where the taxa is present; Life forms key (Lf): Fa = phanerophytes, Ch = chamaephytes, He = hemicryptophytes, Ge = geophytes, Te = therophytes; Threat categories (Th): CR = critically endangered, EN = endangered, VU = vulnerable, NL = not list; Distribution: Ne = nevadense, Be = betican, Ib = iberian, Ib-N = iberian- northern Africa, Eu = european, Eu-N = european-northern Africa, Others = widely distributed).

Taxon M S O C Nt Lf Th Di Acinos alpinus (L.) Moench 0 1 1 1 3 Ch NL Eu-N subsp. meridionalis (Nyman) P.W.Ball Agrostis canina L. 0 0 1 1 2 He VU Ne subsp. granatensis Romero García, Blanca & C. Morales Anarrhinum laxiflorum Boiss. 0 1 1 1 3 He NL Ib-N

Anthericum baeticum (Boiss.) Boiss. 0 1 1 1 3 Ge NL Ib-N

Arenaria nevadensis Boiss. & Reuter 0 0 0 1 1 Te CR Ne Armeria filicaulis (Boiss.) Boiss. 0 0 1 1 2 He VU Ne subsp. nevadensis Nieto Feliner, Rosselló & Fuertes Arrhenaterum elatius (L.) Beauf. 0 1 1 1 3 He NL Ib-N subsp. baeticum Romero Zarco Artemisia umbelliformis Lam. 0 0 0 1 1 Ch EN Eu Asperula aristata L. fil. 1 1 1 1 4 He NL Eu-N subsp. scabra (J. & C.Presl.) Nyman Asplenium ruta-muraria L. 0 1 1 1 3 He NL Others

Asplenium viride Hudson 0 0 1 1 2 He NL Others

Astragalus incanus L. 1 1 1 1 4 Ch NL Eu-N

Avenella iberica (Rivas Martínez) Rivas Martínez, Fern-Gonz & Loidi 0 0 1 1 2 He NL Ib

Avenula levis (Hackel) J. Holub 0 0 1 1 2 He VU Be

Botrichium lunaria (L.) Swartz 0 0 1 1 2 Ge VU Others Campanula rotundifolia L. 0 0 1 1 2 He NL Eu subsp. hispanica (Willk. in Willk. & Lange) O. Bolos & Vigo Carex echinata Murray 0 0 1 1 2 He NL Others

Carex leporina L. 0 1 1 1 3 He NL Others Carex nigra (L.) 0 0 1 1 2 He NL Others subsp. intricata (Tineo) Rivas Martínez Cerastium ramosissimum Boiss. 0 1 1 1 3 Te NL Others

Cuscuta planiflora Ten. 0 0 1 1 2 Te NL Others Cystopteris fragilis (L.) Bernh 0 1 1 1 3 He NL Eu subsp. alpina (Lam.) Hartman Cystopteris fragilis (L.) Bernh 0 0 0 1 1 He NL Eu subsp. huteri (Hausm. ex Milde) Prada & Salvo Dianthus pungens L. 0 1 1 1 3 Ch NL Ib-N subsp. brachyanthus (Boiss.) Bernalet al. Dryopteris filix-max (L.) Schott 1 1 1 1 4 He NL Others

Historical evidences on flora composition changes in a high vegetation belt, Sierra Nevada, Spain (1837-2009) 55

Taxon M S O C Nt Lf Th Di Eleocharis quinqueflora (F.X.Hartmann) O.Schwartz 0 0 1 1 2 He NL Others

Epilobium anagallidifolium Lam. 0 0 1 1 2 He NL Others

Epilobium atlanticum Litard. & Maire 0 1 1 1 3 He VU Ib-N

Euphorbia nevadensis Boiss. & Reut. 0 0 1 1 2 Ch NL Ib

Festuca iberica (Hackel) K. Richter 0 0 1 1 2 He NL Ib-N

Festuca indigesta Boiss. 0 1 1 1 3 He NL Ib-N

Fritillaria lusitanica Wikstr. 1 1 1 1 4 Ge NL Ib-N Helictotrichon filifolium (Lag.) Henrad 0 1 1 1 3 He NL Ib-N subsp. velutinum (Boiss.) Romero Zarco Helictotrichon sedenense (Clarion ex DC.) J. Holub 0 1 1 1 3 He NL Eu-N Hieracium pilosella L. 0 1 1 1 3 He NL Eu subsp melanops Peter Hypericum undulatum Schousboe ex Willd. 1 1 1 1 4 He NL Eu-N Iberis carnosa Wild. 0 0 0 1 1 He EN Ne subsp. embergeri (Serve) Moreno Juncus alpinoarticulatus Chaix 0 0 1 1 2 He NL Eu

Juncus tenageia Ehrh. ex L. fil. 0 0 1 1 2 Te NL Others

Logfia arvensis (L.) J.Holub 1 1 1 1 4 Te NL Eu

Montia fontana L. 0 1 1 1 3 He NL Others

Myosotis minutiflora Boiss. & Reuter 1 1 1 1 4 Te NL Others Nepeta nepetella L. 0 1 1 1 3 Ch NL Ne subsp. laciniata (Willk.) Aedo Pedicularis verticillata L. 0 0 0 1 1 He VU Ne subsp. caespitosa (Webb) I. Soriano Phyteuma charmelii Vill. 0 0 1 1 2 He VU Eu

Pimpinella procumbens (Boiss.) Pau 0 0 1 1 2 He VU Ne

Plantago holosteum Scop. 0 1 1 1 3 Ch NL Eu Poa minor Gaudin 0 0 1 1 2 He NL Ne subsp. nevadensis Nannfeldt Poa nemoralis L. 0 1 1 1 3 He NL Eu subsp. glauca (Gaudin) Rouy Poa supina Schrader 0 1 1 1 3 He NL Others

Rhamnus pumila Turra 0 0 1 1 2 Ch NL Others

Ribes alpinum L. 0 0 1 1 2 Fa VU Eu-N

Sagina procumbens L. 0 1 1 1 3 He NL Others

Saxifraga granulata L. 1 1 1 1 4 He NL Others

Sedum brevifolium DC. 0 0 1 1 2 Ch NL Eu-N

Sedum dasyphyllum L. 0 0 1 1 2 Ch NL Eu-N

Sempervivum minutum (Kunze ex Willk.) Nyman ex Pau 0 1 1 1 3 Ch NL Be

Sesamoides prostrata (Boiss.) G. López 0 1 1 1 3 Ch NL Be

Silene saxifraga L. 0 1 1 1 3 Ch NL Eu

56 R. M. Fernández Calzado & J. Molero Mesa

Taxon M S O C Nt Lf Th Di Taraxacum nevadense H. Lind. fil. 0 0 1 1 2 He NL Ne

Trisetum antonii-josephii Font Quer & Muñoz Medina 0 0 1 1 2 He EN Ne

Valeriana apula Pourret 0 0 0 1 1 He VU Ib-N

Veronica ponae Gouan 0 0 1 1 2 He NL Ib

Vicia pyrenaica Pourret 0 1 1 1 3 He NL Eu

Viola hirta L. 0 1 1 1 3 He NL Others

International Journal of Geobotanical Research, Vol. nº 1. December 2011. pp. 57-80

Taxonomical system advance to Rhamnus L. & Frangula Mill. (Rhamnaceae) of Iberian Peninsula and Balearic Islands

Salvador RIVAS-MARTÍNEZ(1) & José María PIZARRO(1)

(1)Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid (España).

Abstract

Taxonomical approach to Rhamnus L. & Frangula Mill. (Rhamnaceae) for Flora Iberica, vol. IX: Accepted and new taxa, main synonyms, typifications, and clasification keys. Essential drawing details for the new taxa are included.

Keywords: Rhamnus, Frangula, Flora iberica, West Europe, , keys, iconography, corology.

Introduction Gen. Forgeruxia Neck. ex Raf., Sylva Tellur. 32: 61. 1838, typus: F. repens Raf. (Rhamnus pumila L.). A taxonomical approach to Rhamnus L. & Frangula Gen. Lithoplis Raf., Sylva Tellur. 32: 61. 1838, typus: Mill. in the Iberian Peninsula and the Balearic Islands is L. saxatilis (Jacq.) Raf. (Rhamnus saxatilis Jacq.). made. Gen. Oreoherzogia Vent in Feddes Repert. 65: 44. 1962, Specimens from the herbariums B, BM, C, G, HJBS, typus: O. fallax (Boiss.) Vent (Rhamnus fallax Boiss.). LINN, JACA, MA, MAF, SALA, S-LINN have been used Gen. Rhamzogia Vent. in Feddes Repert. 65: 108. 1962, and many collections have been made by the authors for pro hybrid. this occasion. Subgen. Eurhamnus Rouy in Rouy & Foucaud (eds.), Rhamnus and Frangula are considered independent Fl. Fr., 4: 163. 1897. genera due to their morphological diferences: and (fig. 6,7); cromosomical differences: Rhamnus, n= Typus: Rhamnus cathartica L., Sp. Pl. ed. 1: 193. 1753; lec- 24; Frangula, n= 20 (LÓPEZ PACHECO & al., 2001; IVANO- totypus: Britton & A. Brown, Ill. Fl. N.U.S., ed 2. 2: VA & VLADIMIROV, 2007; ROSSELLÓ CASTRO, 2008); and 502. 1913. molecular differences (BOLMGREN & OXELMAN, 2004). Sect. I. RHAMNUS L., Sp. Pl. ed. 1: 193. 1753. The taxa are arranged according to sections, species, sub- Sect. Cervispina DC., Prodr. 2: 24. 1825. species and forms. For each taxon the accepted name, Sect. Cervispina Boiss., Fl. Orientalis 2: 14. 1872. main synonyms, locotipic indication, type and bibliogra- Typus: Rhamnus cathartica L., Sp. Pl. ed. 1: 193. 1753. phical references for the iconography or alternative images are given; the new taxa proposed include a brief diagnosis 1. Rhamnus cathartica L., Sp. .Pl. 1: 193. 1753 in Latin, a drawing. and a distribution map. Cervispina cathartica Moench, Meth. 2: 686. 1794. Finally, dichotomic keys are made to identify all taxa. Rhamnus cadevallii Pau in Mem. Real Acad. Ci. Barce- lona 2: 71. 1896. Ind. loc./typus: “In nemorosis montis Results Sancti Laurentii nuncupati, in valle vulgo dicta Santa A. Acepted taxa and main synonyms Inés”; lectotypus: “Sant Llorens del Munt, barranco de Santa Inés, Cadevall, 10.VI.1896”, (MA76763); Rivas RHAMNUS L., Sp. Pl. ed. 1: 193. 1753 Mart. & J.M. Pizarro, hoc loco. Gen. Alaternus Mill., Gard. Dict. Abr. ed. 4, 1. 1754, lec- Rhamnus cathartica L. var. pubescens Willk. in Willk. totypus.: A. phylica Mill., Gard. Dict. ed. 8, 1. 1768 (Rham- & Lange, Prodr. Fl. Hispan. 3(2): 485. 1877. Ind. nus alaternus L.). loc./typus: "In Aragon. super. (in valle fl. Aragon int. Gen. Cervispina Ludwig, Instl. Regn. Veg. ed. 2: 141. 1757. Molino de Arres et Sta. Lucilia. Wk)"; lectotypus: "In Gen. Atadinus Raf., Sylva Tellur. 30: 57. 1838, typus: A. Aragonia superiore in nemoribus in/ valle fluvis Aragon alpinus (L.) Raf. (Rhamnus alpina L.). inter Molino de/ Arres et S(an)ta Lucilia./ 19.Jun.1850", Gen. Atulandra Raf., Sylva Tellur. 31: 60. 1838, typus: herb. Willkomm (COI); Rivas Mart. & J.M. Pizarro, hoc A. valentina (Willd.) Raf. (Rhamnus valentina Willd.). loco. ______Correspondence: José María Pizarro. Departamento de Biología vegetal II. Facultad de Farmacia . Universidad Complutense de Madrid. 24071 Madrid. (España).E-mail: [email protected] ISSN: 2253-6302 Print/ISSN: 2253-6515 on line © Editaefa DOI: 10.5616/ijgr 110004 58 S. Rivas-Martínez & J .M. Pizarro

Typus: "Rhamnus catharticus minor Bauh., Spina infec- Rhamnus cathartica L. f. pubescens (Willk.) Rivas toria pumila I. Clus., In Draunstein monte Aus- Mart. in Anales Real Acad. Farm. 28(5): 380. 1963. triaem et prope Badenam Austriae inferioris. An Ind. loc.: "Habitat in Europae australioris sepibus" potius sit Spina infectoria pumila altera Clusi?, Typus: Herb. Linn. n. 262.1 (LINN); lectotypus: Schira- [Linnaeus:] 8. Rhamnus infectorius"; herb. rend in Jarvis & al. (ed.), Regnum Veg. 127: 81. Burser XXV: 08, Access.n. V-175917 (UPS); 1993 lectotypus: Rivas Mart. & J.M. Pizarro, hoc loco Altera specimena: "infectorius, Austria [Scopoli] Ic.: Schlechtend., Langeth., E. Schenk & Hallier, Fl. 45", herb. Linn. 262. 2 (LINN); "[Seguier:] Deutschl., ed. 5, 21, tab. 2183. 1885 Rhamnus catharticus minor folio longior [J. Fl. 2. Rhamnus saxatilis Jacq., Enum. Stirp. Vindob.: 39, 212. ?] H. 593, Pl. Ver. 2. 270. n.. 2, [Linnaeus:] sa- 1762 xatilis ? [on Seguier's ticket:] Rhamnus cathar- Lithoplis saxatilis (Jacq.) Raf., Sylva Tellur. 32: 61. 1838. ticus", herb. Linn. 262. 5 (LINN) Rhamnus saxatilis var. nana Lange in Overs. Kongel. Ic.: Jacq., Fl. Austriacae, 1, tab. 53, 1773; Schlechtend., Danske Vidensk. Selsk. Forh. Medlemmers Arbeider Langeth., E. Schenk & Hallier, Fl. Deutschl., ed. 5, 1893: 14. 1893, nom. amb. Ind. loc./typus "Funden ved 21, tab. 2186. 1885 Casas del Cura i Grensebjergene mellem Prov. Cuenca 3. Rhamnus infectoria L., Mantissa: 49. 1767 og Teruel, og ved Uña i Prov. Cuenca (Dieck)", sub R. Rhamnus saxatilis subsp. infectorius (L.) P. Fourn., saxatilis var. nana. Ciudad Encantada (Cu) et R. Saxa- Quatre Fl. France: 645. 1937. tilis L., Casas del Cura (Cu), R. saxatilis Jacq. et R. In- Ind. loc.: "Habitat in Hispania, Gallia, Italia" fectorius L., quoad pertinet, herb. Lange (C); Rivas Mart. Typus: "Lycium gallicum, Buxdorn, Monspelii, [Lin- & J.M. Pizarro, hoc loco. naeus:] 9. Rhamnus saxatilis ", herb. Burser Rhamnus saxatilis f. inermis Dieck in Lange in Overs. XXV: 09, Access.n. V-175918 (UPS); lectoty- Kongel. Danske Vidensk. Selsk. Forh. Medlemmers pus: Rivas Mart. & J.M. Pizarro, hoc loco; Arbeider 1893: 14 (202). 1893, nom. illeg. Ind. loc./typus "Rhamnus pumilus, Dahl, ex herbario Joh "Valdemeca (Prov. Cuenca) Dieck!", Prunus spinosa L. Bauhini", herb. Linn. (S-LINN); "clastotypus" quoad pertinet, herb. Lange (C); Rivas Mart. & J.M. Piza- (fragment of UPS-Burser 25: 09?): Rivas Mart. rro, hoc loco & J.M. Pizarro, hoc loco Ic.: Schlechtend., Langeth., E. Schenk & Hallier, Fl. Ind. loc.: "Habitat in petrosis montium Badensium & alibi" Deutschl., ed. 5, 21, tab. 2185. 1885 Taxonomical system advance to Rhamnus L. & Frangula Mill. (Rhamnaceae) of Iberian Peninsula and Balearic Islands 59 60 S. Rivas-Martínez & J .M. Pizarro

3a. Rhamnus infectoria. L. f. infectoria Rhamnus lycioides var. velutina f. prostrata (v. Rhamnus infectoria) Borja in Anales Jard. Bot Madrid 9: 410. 1950, 3b. Rhamnus infectoria L. f. nana (Lange in Willk.) syn. susbst. Rivas Mart. in Anales Real Acad. Farm. 28(5): Rhamnus borgiae (Rivas Mart.) Ballester, Fi- 385. 1963 guerola, Peris & Stübing in Stübing Martínez, Rhamnus infectoria var. nana Lange in Willk., G., & A. Estévez (coords.), Estudio multidisci- Suppl. Prodr. Fl. Hispan.: 258. 1893 (basion.). plinar del parque natural del Montgó (Alicante), Ind. loc./typus: "In Serranía de Cuenca (pr. Monografies 10: 120-236, Generalitat Valencia- Casapolau, Dieck)", non vidimus na. 1991, nom. inval. Rhamnus lycioides var. pubescens Rouy in Bull. Ic.: fig. 10 f Soc. Bot. France 29: 46. 1882. Ind. loc./typus "Játiva, cerro de Vernisia, rocailles vers le som- Sect. II. LYCIOIDES Rivas Mart. & J.M. Pizarro, Sect. nova met", non vidimus Plantis spinosissimis; foliis alternis, obovatis vel linea- Rhamnus oleoides var. pseudolycioides Pau in ris, subcoriaceis et obsolete reticulato-nervata, intege- Anales Soc. Esp. Hist. Nat. 27: 427. 1899. Ind. rrima; seminibus sulcatis, sulcus bifurcatus et uvulatus loc. /typus "Collado de Bernisa [Játiva, Valen- Typus: Rhamnus lycioides L. cia]. 20 de Abril"; lectotypus: "Játiva: in monte 4. Rhamnus lycioides L., Sp. Pl. ed. 2, 1: 279. 1762 Vernisia, 20. Apr.1896", (MA76624); Rivas Rhamnus hispanorum Gand. in Bull. Soc. Bot. France Mart. & J.M. Pizarro, hoc loco 52: 440. 1905. Ind. loc./typus "Yecla, Murcia. Ubique Ind. loc.: "Hab. In fisuris rupium, Sierra de Cor- ad rupes in provinciis Murciae, Valentia, Albacete et bera in Reyno Valentino ubi Borja Baetica orientalis ubi copiosae legi", non vidimus. detectit [Sierra de Corbera o de la Murta, Rhamnus capillaris Pourr. in scheda (MAF-Pourret Alcira-Tabernes, Valencia]" 1066), nom. ined. Typus: "(Estudio fitogeográfico de la Sierra de Ind. loc.: "Habitat in Hispania"; "LYCIUM foliis lineari- Corbera) tesis doctoral, J. Borja, bus Hort. Cliff. fins nog pâ bárgen vid Ciempo habit.: fisuras de las peñas" (MAF46424); Rivas Mart. & J.M. zuelos vulgo del Gutarron och pâ hógderna vid Pizarro, hoc loco Aranjuez", Loefling, Iter: 76-78. 1758 [Cerros de Butarrón, Ciempozuelos, Madrid] (G. Ic.: fig. 11 e-g López, pers. com.). 5. Rhamnus velutina Boiss., Elench. Pl. Nov.: 29 1838 Typus: Herb. Linn. n. 262.3 (LINN); lectotypus: Jafri Rhamnus lycioides subsp. velutinus (Boiss.) Nyman, in Jafri & El-Gadi (ed.), Fl. Libya 30: 10. 1977 Consp. Fl. Eur.: 146. 1878 Ic.: http://www.linnean-online.org/2724/ (The Linnean Ind. loc.: "Habitat in rupibus calidis in Sierra Nevada, et Society of London); fig. 11 c-d prope Lanjarron [Lanjarón] in ditione 4a. Rhamnus lycioides L. subsp. lycioides Alpujarras dicta. alt. 2000’-3000’" (v. Rhamnus lycioides) Typus: "Herb. E. Boissier//Sa Nevada ad Rosales 4b. Rhamnus lycioides L. subsp. laderoi Rivas Mart. [Boissier]" (G); lectotypus: Burdet Charpin & & J.M. Pizarro, subsp. nova Jacquemoud in Candollea 44: 52, 1989. A subsp. lycioides typica foliis lanceolatis vel Ic.: fig. 7 a-b obovatis 3-5 mm latis, petiolis >1,5 mm, subtus 5a. Rhamnus velutina Boiss. subsp. velutina obsolete reticulato-nervata, nervio centrale (v. Rhamnus velutina) conspicuo atque prominente differt 5b. Rhamnus velutina Boiss. subsp. almeriensis Rhamnus oleoides subsp. bethurica Ladero in Rivas Mart. & J.M. Pizarro, subsp. nova F. Navarro & al. in Acta Bot. Malac. 12: 210. A subsp. velutina typica foliis linearis margi- 1987, nom. inval. nibus revolutis differt Rhamnus oleoides subsp. spiculosa Rivas Mart. in F. Navarro & al. in Acta Bot. Malac. Rhamnus lycioides var. stenophyllus Boiss. ex 12: 210. 1987, nom. inval. Lange in Vidensk. Meddal. Dansk. Naturhist. Foren. Kjobenhavn 1865: 123. 1866 (?) Ind. loc.: "Viso del Marqués (Ciudad Real)" Ind. loc.: "Río Aguas (Almería), S. Rivas Goday, Typus: "Viso del Marqués (Ciudad Real)", S. 5. julio. 1963" Rivas Martínez, 21. Feb. 1977 (MAF 99388) Typus: (MAF 66433); Rivas Mart. & J.M. Pi- zarro, hoc loco Ic.: fig. 1; fig. 11 a-b Ic.: fig. 2; fig. 7 c-d 4c. Rhamnus lycioides L. subsp. borgiae Rivas Mart. & J.M. Pizarro, subsp. nova 6. Rhamnus oleoides L., Sp. Pl. ed. 2, 1. 279. 1762 Rhamnus lycioides L. subsp. borgiae Rivas Rhamnus oleoides var. latifolius Lange in Vidensk. Mart. in Anales Real Acad. Farm. 28(5): 379. Meddal. Dansk. Naturhist. Foren. Kjobenhavn 1865: 1963, nom. inval. 318. 1866, nom inval. Taxonomical system advance to Rhamnus L. & Frangula Mill. (Rhamnaceae) of Iberian Peninsula and Balearic Islands 61 62 S. Rivas-Martínez & J .M. Pizarro Taxonomical system advance to Rhamnus L. & Frangula Mill. (Rhamnaceae) of Iberian Peninsula and Balearic Islands 63

Rhamnus oleoides var. latifolius Lange in Willk. & Lan- Rhamnus oleoides subsp. angustifolia (Lange) ge, Prodr. Fl. Hispan. 3 (2): 483. 1877. Ind. loc./typus Rivas Goday & Rivas Mart. in Anales Jard. Bot. "La Albaida, pr. Córdoba; San Juan de Aznalfarache Cavanilles 25: 169. 1969, nom. inval. pr. Sevilla!", lectotypus: "C. La Albaida, pr. Córdoba, Rhamnus lycioides subsp. oleoides f. angustifo- rochers. C. San Juan de Aznalfarache pr. Sevilla. lius (Lange) O. Bolós & Vigo in Butll. Inst. Ca- 4.Mart., Joh. Lange, plantae ex Hispania 1851-52" sub talana Hist. Nat. 38: 82. 1974, nom. inval. Rhamnus oleoides, herb Willkomm (COI); Rivas Mart. Ind. loc.: "Cerro Zumbalejo pr. Jaén; Málaga fre- & J.M. Pizarro, hoc loco. quens" Rhamnus lycioides subsp. oleoides (L.) Maire in Ja- Typus: "Málaga. 4 Jan. Joh. Lange plantae ex hand. & Maire, Cat. Pl. Maroc 2: 476. 1932. Hispania 1851-52." herb. Willkomm Ind. loc.: "Habitat in Hispania. C. Alströmer". (COI); lectotypus: Rivas Mart. & J.M. Typus: Alströmer 35, herb. Linn. n. 262.4 (LINN); lec- Pizarro, hoc loco totypus: Jafri in Jafri & El-Gadi (ed.), Fl. Libya Ic.: fig. 14 30: 10. 1977 6ba. Rhamnus oleoides L. subsp. angustifolia Ic.: http://www.linnean-online.org/2726/ (The Linnean f. angustifolia Society of London); fig. 13 (v. Rhamnus oleoides subsp. angustifolia) 6a. Rhamnus oleoides L. subsp. oleoides 6bb. Rhamnus oleoides L. subsp. angustifolia (v. Rhamnus oleoides) f. linearifolia Rivas Mart. & J.M. Pizarro, 6b. Rhamnus oleoides L. subsp. angustifolia (Lange f. nova ex Willk.) Rivas Mart. & J.M. Pizarro, subsp. A forma angustifolia typica foliis perangus- nova Rhamnus oleoides var. angustifolius Lange in tis <1,5 mm latis et petiolis minimis differt. Willk. & Lange, Prodr. Fl. Hispan. 3 (2): 483. Rhamnus aragonensis Asso, Syn. Stirp. 1877 (basion.) Aragon.: 27. 1779 (?). Ind. loc./typus "In Rhamnus oleoides var. angustifolius Lange in montosis circa Cesaraugustam, Caspe, Épi- Vidensk. Meddal. Dansk. Naturhist. Foren. Kjo- la, Pozuelo & c.", non vidimus benhavn 1865: 518. 1866, nom nud. 64 S. Rivas-Martínez & J .M. Pizarro

Ind. loc./typus: "Rhamnus lycioides L. vulg. Ic.: Saint-Hilaire, J.H.J., Traité des arbrisseaux et des artos, 76614, Montes bajos, Zuera (Zaragoza), arbustes, t. 115. 1825; http://www.linnean-online. julio 1883, leg. Odón de Buén" (MA 76614). org/2746/ (The Linnean Society of London) Ic.: fig. 16. 8a. Rhamnus alaternus L. subsp. alaternus 6c. Rhamnus oleoides L. subsp. rivasgodayana (v. Rhamnus alaternus) Rivas Mart. & J.M. Pizarro, subsp. nova 8aa. Rhamnus alaternus L. subsp. alaternus A subsp. oleoides typica foliis linearibus f. alaternus subtorulosis 0,8-1,2 mm latis, enervatis vel (v. Rhamnus alaternus) inconspicue nervatis differt 8ab. Rhamnus alaternus L. subsp. alaternus f. Ind. loc.: "Sierra de Bernia (Altea). En el neoparvifolia Rivas Mart. & J.M. Pizarro f. Querceto-Lentiscetum. Flora Lu- nova centina. A. Rigual, 25.5.57" A forma alaternus typica foliis minoris 30 Typus: (MA 375393); Rivas Mart. & J.M. mm longis, petiolis minoris 8 mm differt Pizarro, hoc loco Rhamnus alaternus var. parvifolius Lange, Ic.: fig. 3 Diagn. 3: 13. 1893, nom. illeg., non Rham- nus alaternus subsp. parvifolia Arcang. 1882 7. Rhamnus bourgaeana Gand. in Bull. Soc. Bot. Rhamnus alaternus var. parvifolius Lange France 47: 135. 1900 in Obers. Kongel. Danske Vidensk. Selsk. Rhamnus lycioides var. prostrata Willk., Spanien Ba- Medlemmers Arbeider 1893: 201. 1893, learem: 295. 1876. Ind. loc./typus: "...an den Hängen nom. illeg., non Rhamnus alaternus subsp. des Galatzókegels auch eine niedergestreckte intricate parvifolia Arcang. 1882. Form von Rhamnus lycioides L. (var. prostrata mihi!) Rhamnus alaternus L. subsp. alaternus f. vor welche im obersten Theile ganz niedriege platte, parvifolia (Lange) Rivas Mart. in Anales dem unterliegenden Gestein angedrückte Polster bil- Real Acad. Farm. 28(5): 368. 1963, nom. det"; lectotypus: "Mallorca: Puig de Galatzó in parte illeg., non Rhamnus alaternus subsp. parvi- superiore, ad cacumen usque caespites prostratos in folia Arcang. 1882. glareosis rupiumque fissuris formans. Legi 17. Apr. Ind. loc.: "Albayda (Valencia) Dieck! Den 1873, ap. Willkomm", herb. balear n. 284, (COI; MA samme Form er funden ved Sa- 632427-foto); Roselló & Sáez in Collect. Bot. 25(1): gunt (Hackel), jeg selv har samlet 153. 2000. den ved Bailén (Jaén) og i Frank- Rhamnus lycioides var. balearicum Sennen & Pau ex rig ved Avignon". Pau in Butll. Inst. Catalana Hist. Nat. 11: 17. 1911. Ind. Typus: "Baílen [Jaén], in fruticetis. 2 Apr.", loc./typus: "recogidas en las cercanías de Sóller, o en su Joh. Lange, planta ex Hispania 1851 jurisdicción, por el hermano Bianor", non vidimus. - 52, herb. Lange (C); Rivas Mart. & Rhamnus lycioides subsp. bourgaeanus (Gand.) Malag., J.M. Pizarro, hoc loco. Subsp. Variac. Geogr.: 12. 1973, nom. illeg. Ic.: fig. 18 b-d Ind. loc.: "Hab. Coma den Arbona ad rupes verticales 8b. Rhamnus alaternus L. subsp. munyozgarmen- parce". diae Rivas Mart. & J.M. Pizarro, subsp. nova Typus: (LY ?). A subsp. alaternus typica foliis ovatis atque Ic.: fig. 15. pilosis differt Ind. loc.: "Peña Ahumada, Carabaña (Madrid), Sect. III. ALATERNUS DC., Prodr. 2: 23. 1825. 2-julio-1967, legit. J. Izco". Typus: Rhamnus alaternus L. Typus: (MAF72488). Ic.: fig. 4; fig. 19. 8. Rhamnus alaternus L., Sp. Pl. ed. 1: 193. 1753 Rhamnus clusii Willd., Enum. Pl. Hort. Berol. 1: 2509. 9. Rhamnus myrtifolia Willk. in Linnaea 25: 18. 1852 1809. Ind. loc./typus: "Habitat in Lusitania"; lectotypus: Rhamnus alaternus var. prostratus Boiss., Voy. Bot. "Habitat in Hispania", herb. Willd. n. 4653 (B-Willde- Espagne 2: 128. 1840, syn. susbst. Ind. loc./typus "In now). fissuris rupium regionis montanae et alpinae, Sierra de Rhamnus alaternus var. balearicus DC., Prodr. 2: 23. la Nieve usquè ad locum Pilar de Tolox dictum, Sierra Bermeja propè cacumen, Sierra Tejeda propè Canillas, 1825. Ind. loc./typus: syntypus (G). Sierra Nevada circà Cortijo de Rosales. Alt. 3000'- Rhamnus balearica (DC.) Link, Handbuch 2. 121. 1831. 6000'"; lectotypus: "Herb. E. Boissier // Rhamnus ala- Rhamnus alaternus var. clusii (Willd.) Loret & Barran- ternus / prostratus / 1837 Sierra de la Nieve [Reu- don, Fl. Montpellier: 140. 1876. ter]" (G); Burdet, Charpin & Jacquemoud in Candollea Rhamnus alaternus var. integrifolia Orph. in Boiss., Fl. 44: 51. 1989 Orient. Suppl.: 156. 1888. Ind. loc./typus: "Hab. in insu- Rhamnus alaternus subsp. myrtifolius (Willk.) Maire lâ Amorgos (Orph.!)", non vidimus in Jahand. & Maire, Cat. Pl. Maroc 2: 475. 1932 Ind. loc.: " Habitat in Europa australi " Ind. loc.: "Hab. in fissuris rupium regionis montanae et alpinae (3000-8000’) regni Granatensis: in Se- Typus: Herb. Linn. n. 262. 24 (LINN); lectotypus: Jafri rranía de Ronda, Sierra Tejeda, Sierra Nevada, in Jafri & El-Gadi (ed.), Fl. Libya 30: 9. 1977 ubi cl. Boissier hanc speciem detexit" Taxonomical system advance to Rhamnus L. & Frangula Mill. (Rhamnaceae) of Iberian Peninsula and Balearic Islands 65 66 S. Rivas-Martínez & J .M. Pizarro Taxonomical system advance to Rhamnus L. & Frangula Mill. (Rhamnaceae) of Iberian Peninsula and Balearic Islands 67

Typus: "Rhamnus myrtifolius mihi! / (Rhamnus alaternus learica Camb.), Mallorca: in dumetis in regione silva- L. var. prostrata Boiss.) / Hab. in fissuris rupium num (Quercetosum) laterior australioris austro-orient. calcarearum prope pagum Canillas de Aceytuno montis Puig gross de Ternellas, legi d. 26 Apr. 1873. ad radices montis Sierra Tejeda prope monaste- herb. balear. n. 348", (COI); Rivas Mart. & J.M. Pizarro, hoc loco. rium / 2000’ / H.M. Willkomm iter hispanicum / Rhamnus balearica Willk. in Linnaea 40: 104. 1876, 8.junii.1845" herb. Willkomm (COI); lectotypus: nom illeg. Rivas Mart. & J.M. Pizarro, hoc loco Rhamnus ferrugineus Pourr. in scheda (MAF Pourret Ic.: Willk., Ill. Fl. Hispan. 2, tab. 117b. 1887; fig. 21 1057). 9a. Rhamnus myrtifolia Willk. subsp. myrtifolia Rhamnus alaternus var. balearicus Cambess. in Mém. (v. Rhamnus myrtifolia) Mus. Hist. Nat. 14: 230. 1827. Ind. loc./typus "In monti- bus insulae Majoris prope Lluch. Florebat Aprili". 9b. Rhamnus myrtifolia Willk. subsp. iranzoi Rivas Rhamnus alaternus subsp. ludovici-salvatoris (Chodat) Mart. & J.M. Pizarro, subsp. nova Rivas Mart. in Anales Real Acad. Farm. 28(5): 372. 1963. A subsp. myrtifolia typica foliis pilosis obscure Rhamnus ludovici-salvatoris var. garcia-fontis L. Cho- subdenticulatis differt dat in Bull. Soc. Bot. Genève ser. 2, 15 (1-9): 229. 1924. Ind. loc.: "Esp. Granada: Sierra Nevada, Collado Ind. loc./typus "Hab. Puig Campani ubi leg. cl. García de las Víboras, exp. N, Berberidion, 30S Font"; holotypus: (G) VG6009, 1600 m, calizas masivas y ta- Ind. loc.: "Majorque (Islas Baleares, Mallorca)". bleadas con margas, 27.VI.1996, C. Na- Typus: "Iles Baléares (Mallorca): de Pollensa à Castel varro & M. Gutiérrez Bustillo, cn 1736". dels Reis, 1904, R. Chodat" (G); lectotypus: Typus: (MAF152937); Rivas Mart. & J.M. Piza- Roselló & Sáez in Collect. Bot. 25(1): 153. rro, hoc loco 2000. Ic.: fig. 5; fig. 22 Ic.: Willk., Ill. Fl. Hispan. 2, tab. 117a. 1887; fig. 20.

10. Rhamnus ludovici-salvatoris Chodat in Bull. Soc. Bot. Sect. IV. RHAMNASTRUM Rouy in Rouy & Foucaud (eds.), Genève ser. 2, 1(6): 242. 1909 Fl. Fr. 4: 169. 1897. Rhamnus balearica Willk. in Oesterr. Bot. Z. 25: 112. Sect. Eurhamnus Boiss., Fl. Orientalis 2: 19, 1872, 1875, non Rh. balearicus (DC.) Link, Handbuch 2: 121. nom. illeg. 1831. Ind. loc./typus "Mallorca: in dumosis nemori- Sect. Chamaethamnos (Vent) M.J. López, E. Puente, busque regionis submontanae in parte tractus Sierra dicti F. Llamas & A. Penas in Stud. Bot. (Salamanca) orientali passim, ad alt. 300-400 m. die 26. April. c. flor. 16: 55. 1997. (quo die Rh. alaternus L. jam deflorata erat.)"; lectoty- pus: "Rhamnus balearicus mihi! (Rh. alaternus var ba- Typus: Rhamnus alpina L. 68 S. Rivas-Martínez & J .M. Pizarro

11. Rhamnus alpina L., Sp. Pl. ed. 1:193. 1753 12. Rhamnus pumila Turra in Giorn. Ital. Sci. Nat. 1: Frangula latifolia Mill., Gard. Dict. ed. 8. 1. 1768. 120. 1764 Ind. loc./typus: "It grows naturally on the Alps and Frangula rotundifolia Mill., Gard. Dict. ed. 8, 1. 1768. other mountainous pars of Europe, and is preserved in Ind. loc./typus: "this grows on the Pyrenean some gardens fot the sake of variety" Mountains, and is seldom preserved unless in botanic Oreoherzogia alpina (L.) Vent in Feddes Repert. 65: 64. gardens for variety" 1962 Rhamnus valentinus Willd., Sp. Pl. 1(2): 1906. 1799. Atadinus alpinus (L.) Raf., Sylva Tellur. 30: 57. 1838 Ind. loc./typus: "Habitat in regni Valentini montibus Ind. loc.: "Habitat in alpibus Helveticis" Meca et Palomera"; neotypus: " Palomera, Meca, Typus: "An Alnus nigra polycarpos Bauh. Monspelii in VII.1793, Cavanilles" (MA76565); Rivas Mart. & J.M. horto Regio", herb. Burser XXIII: 14 (UPS); Pizarro, hoc loco lectoypus: R. M. Baldini in Taxon 51, May Atulandra valentina (L.) Raf., Sylva Tellur. 31: 60. 1838 2002: 378. 2002 Forgeruxia repens Raf., Sylva Tellur. 32: 61. 1838, Ic.: Schlechtend., Langeth., E. Schenk & Hallier, Fl. nom. illeg. Deutschl., ed. 5, 21, tab. 2187. 1885; fig. 23 a-i Rhamnus alpinus subsp. pumilus (Turra) O. Bolós & 11a. Rhamnus alpina L. f. alpina Vigo in Butll. Inst. Catalana Hist. Nat. 38: 82. 1974 (v. Rhamnus alpina) Rhamnus pumilus subsp. valentinus (Willd.) O. Bolós 11b. Rhamnus alpina L. f. brevifolia (Lange) Rivas & Vigo, Fl. Paisos Catalans 2: 360. 1990 Mart. & J.M. Pizarro, comb. nova Ind. loc.: "Si Baldum monte petam, alia exemplaria niti- Rhamnus alpina var. brevifolia Lange in Obers. diora promitto (Monte Baldo, c. Verona, N. Kongel. Danske Vidensk. Selsk. Medlemmers Italia)" Arbeider 1893: 201. 1893, (basion.). Ind. Typus: "Frangula montana pumila/ saxatilis, folio loc./typus: "Laguna del Marquesado i Cuenca subrotundo T./ Fl. H. 612", "Pl. Ver. 2. 296 n. (Dieck)! Samme Varietet har M.E. Reverchon 2/", "Rhamnus catharticus", herb. Linn. 262.17: funden ved Bastelica (Corsica)"; lectotypus: (LINN); neotypus: R. M. Baldini in Taxon 51, "Laguna del Marquesado (Cuenca), Dr. Dieck, May 2002: 377. 2002 n. 462, 26.5.92", herb Lange (C); Rivas Mart. & J.M. Pizarro, hoc loco Ic.: Cav., Icon. 2, tab.181. 1793; fig. 24 a-m12a. Rhamnus alpina var. brevifolia Lange in Rhamnus pumila Turra subsp. pumila Willk.,Suppl. Prodr. Fl. Hispan.: 258. 1893, Oreoherzogia pumila subsp. hispanica Vent nom illeg. in Feddes Repert. 65: 91. 1962 Rhamnus alpina f. brevifolia (Lange in Willk.) (v. Rhamnus pumila) Rivas Mart. in Anales Real Acad. Farm. 28(5): 12b. Rhamnus pumila subsp. legionensis (Rothm.) 387. 1963, nom. illeg. Rothm. in Bol. Soc. Esp. Hist. Nat. 34:152. Ic.: fig. 24 j-o 1934 Taxonomical system advance to Rhamnus L. & Frangula Mill. (Rhamnaceae) of Iberian Peninsula and Balearic Islands 69

Rhamnus legionensis Rothm. in Bol. Soc. Typus: Frangula alnus Mill., Gard. Dict. ed. 8, 1. 1768 Esp. Hist. Nat. 34:152. 1934, (basion.). (Rhamnus frangula L. , Sp. Pl. ed. 1: 193. 1753); Oreoherzogia legionensis (Rothm.) Vent in lectotypus: Swart, Index Nom. Gen., Card n. Feddes Repert. 65: 102. 1962. 21073. 1965 Ind. loc.: "In fissuris rupium dolomiticarum; 13. Frangula alnus Mill., Gard. Dict. ed. 8, 1. 1768 l., Castillo Cornatel prope Villa- Rhamnus frangula L. , Sp. Pl. ed. 1: 193. 1753, (basion.) vieja, part. Ponferrada, prov. León, Frangularia nigra Samp., Herb. Portug.: 45. 1913. 600 m (leg. Rothmaler, 1933, Plan- Ind. loc.: " Habitat in Europa borealis nemorosis tae Hisp. Bor.-Occid., n. 126; l., humidiusculis" Peñas de Ferradillo, 1000 m (leg. Typus: Rhamnus 5, “Rhamnus frangula Linnaeus var. Rothmaler, 1933, herb. Rothm.); l., frangula”, herb. Clifford n. 70, (BM-000558106); Los Apóstoles montis La Guiana, lectoypus: Jonsell & Jarvis in Nordic J. Bot. 22: 80. 1500 m (leg. Rothmaler, 1933, 2002 herb. Rothm.)". Ic.: Schlechtend., Langeth., E. Schenk & Hallier, Fl. Deutschl., ed. 5, 21, tab. 2189. 1885; fig. 25 b-c Typus: "W. Rothmaler./ Plantae Hispaniae Boreali-Occidentalis/ n. 126/ Rham- 13a. Frangula alnus Mill. subsp. alnus nus pumila L./ ssp. Rh. legionensis (v. Frangula alnus) Rothm. nov. ssp./ Prov. León, Part. 13aa. Frangula alnus Mill. subsp. alnus f. alnus Ponferrada/ Los Alperrhecianos, (v. Frangula alnus) Castillo Cornatel prope Villavieja, in 13ab. Frangula alnus Mill. subsp. alnus f. re- fiss. rupium. Dolomit 600 m. s. m./ tusa Ladero in Anales Inst. Bot. Cavani- 1933 V 13. leg. W. Rothmaler” lles 27: 91. 1970. (MAF46450), holotypus; (MAF5645 Ind. loc./typus: "Risco del Prado, Sierra de 8), isotypus. Altamira, Carrascalejo (Cáceres), ubi legit M. Ladero Álvarez 11 juli 1968"; holotypus: Ic.: fig. 24 n-s. (MAF75660); isotypus: (MA, MACB)

FRANGULA Mill., Gard. Dict. Abr. ed. 4, 1. 1754 Rhamnus frangula var. rupicola Debeaux & Gen. Frangularia Samp., Herb. Portug.: 45. 1913 É. Rev. in Rev. Bot. Bull. Mens. 13: 348. Subgen. Frangula (Miller) S. F. Gray, Nat. Arr. Brit. 1895. Ind. loc./typus: "La Sierra de Noguera Pl. 2: 621. 1821 près d'Albarracin, sur les rochers escarpés et Subgen. Frangula Rouy in Rouy & Foucaud (eds.), Fl. à 1600 met. d'alt. (É. Rev.)" sub R. frangula Fr. 4: 171. 1897 var. saxalilis¨ É. Rev. in Plant. Teruel exsicc. Sect. Frangula DC., Prodr. 2: 26. 1825 n 984, non vidimus Sect. Frangula Boiss., Fl. Orientalis 2: 21, 1872 Ic.: fig. 25 d 70 S. Rivas-Martínez & J .M. Pizarro

13b. Frangula alnus subsp. baetica (Willk. & É. 3. Leaves deciduous, papery, sawed, without hyaline leaf- Rev.) Rivas Goday ex Devesa in Lagascalia margin and more than 5 pairs of secondary veins; 11 (1): 107. 1983 cymose fascicle , tetramerous; Rhamnus baeticus Willk. & É. Rev. in Oesterr. with straight furrow, furrow margins not Bot. Z. 41: 86. 1891, (basion.) increased ...... Rhamnus frangula subsp. baetica (Willk. & …………D. R. alpina coll., Sect. IV. RHAMNASTRUM É. Rev.) Maire in Cavanillesia 2: 48. 1929 Frangula alnus subsp. baetica (Willk. & É. A. R. cathartica coll. Rev.) Rivas Goday in Collect. Bot. 7 (2): Sect. I. RHAMNUS, typus: Rhamnus cathartica L. 1018. 1968, comb. illeg. Thorny; leaves deciduous, opposite or subopposite, Rhamnus frangula var. longifolia Rouy in broad, papery, sawed, with 3-5 pairs of secondary veins; Naturaliste ser. 2, 9(17): 199. 1887. Ind. cymose fascicle inflorescence, flowers tetramerous; seeds loc./typus: (?) with straight furrow Ind. loc.: "Baetica: in nemoribus udis mon- 1. R. cathartica, 2. R. saxatilis, 3. R. infectoria tium Sierra de Palma pr. Algeci- ras, Reverchon (d. 10. Jul. 1887 B. R. lycioides-oleoides coll. , typus: Rhamnus lycioides L. c. flor. et fruct. maturis)" Sect. II. LYCIOIDES Rivas Mart. & J.M. Pizarro sect. nova Typus: "Prov. Cádiz, Sierra de Palma, bois Thorny; leaves persistent, alternate, narrow, leathery, humides, Reverchon, E., 10. 7. 1887, quite entire, without secondary venation or reticulate; cy- Plantes de l’Andalusie 119"; isotypus: mose fascicle inflorescence, flowers tetramerous; seeds (JE9509); idem, "Plantes de l’Andalu- with forked furrow and uvula sie 52" (JE9508) B.1. Leaves hairy (R. lycioides coll.) Ic.: Willk., Ill. Fl. Hispan. 2, tab. 163. 1891; 4. R. lycioides, 5. R. velutina fig. 25 a B.2. Leaves glabrous (R. oleoides coll.) B. Key of Genera, Sections, Species, Subspecies and 6. R. oleoides, 7. R. bourgaeana Forms C. R. alaternus coll. Key to Genera (fig. 6, 7) Sect. III. ALATERNUS DC., typus: Rhamnus alaternus L. 1. Buds with scales; monoecious (polygamous-dioecious), Unarmed; leaves persistent, alternate, broad, leathery, thoothed or quite entire, leaf-margin hyaline, 3-4 pairs of flowers tetramerous or pentamerous, shorter than secondary veins; racemose inflorescence, flowers penta- , style divided into 2-4 stigmatic branches; seeds merous or rarely tetramerous (10); seeds with straight completely covered by the endocarpus but not linked furrow, furrow margins increased to it, with dorsal furrow; pollen convex triangular, 8. R. alaternus, 9. R. myrtifolia, 10. R. ludovici-salvatoris microreticulate (polar view); 2n: 24 ...... RHAMNUS 1. Buds naked; dioecious, flowers pentamerous, petals D. R. alpina coll. longer than stamens, covering the anthers with hooded Sect. IV. RHAMNASTRUM Rouy, typus: Rhamnus alpina L. shape, style undivided; seeds strongly linked to the en- Unarmed; leaves deciduous, alternate, broad, papery, docarpus and only partially covered by it, raphe visi- sawed, without hyaline leaf-margin, more than 5 pairs of ble, without dorsal furrow; pollen concave triangular, secondary veins; cymose fascicle inflorescence, flowers psilate (polar view); 2n:20 ...... FRANGULA tetramerous; seeds with straight furrow, furrow margins not increased Key to Collective Species and Sections (fig. 8) 11. R. alpina, 12. R. pumila 1. Thorny plants ...... 2 Key to accepted Species 1. Unarmed plants ...... 3 2. Leaves deciduous, opposite or subopposite, broad, 1. Thorny plants ...... 2 papery, with 3-5 pairs of secondary veins; seeds with 1. Unarmed plants ...... 8 straight furrow ...... 2. Leaves deciduous, suborbicular, ovate or lanceolate, ...... …………A. R. cathartica coll., Sect. I. RHAMNUS leaf-margin sawed, 3-5 pairs of secondary veins; seeds 2. Leaves persistent, alternate, narrow, leathery, venation with straight furrow [R. cathartica coll., fig 9a] ...... 3 reticulate or inconspicuous; seeds with forked furrow 2. Leaves persistent, linear, lanceolate, ovate or obovate, and uvula ...... leaf-margin quite entire, venation reticulate or incons- ...... B. R. lycioides-oleoides coll., Sect. II. LYCIOIDES picuous; seeds with forked furrow and uvula [R. 3. Leaves persistent, leathery, thoothed or quite entire, lycioides-oleoides coll. , fig 9b] ...... 5 with hyaline leaf-margin and less than 5 pairs of se- 3. Leaves 0.7-3.5 cm, 2-6 mm, blade-petiole rela- condary veins; racemose inflorescence, flowers penta- tion > 3.5, stipules subequal to petiole (fig 10b-e) ...... 4 merous or tetramerous (10); seeds with straight furrow, 3. Leaves 2.5-12 cm, petiole 5-20 mm, blade-petiole furrow margins increased ...... relation < 3, stipules smaller than the petiole (fig 10a) ...... C. R. alaternus coll., Sect. III. ALATERNUS ...... 1. R. cathartica Taxonomical system advance to Rhamnus L. & Frangula Mill. (Rhamnaceae) of Iberian Peninsula and Balearic Islands 71

72 S. Rivas-Martínez & J .M. Pizarro

4. Young branches glandaceous, old branches ocre-co- apex; flowers pentamerous; style triphid; 2-4 loured; leaf-margin with marked teeth (fig 10b,c)...... carpels; fruit 2-4 seeds (fig 18, 19, 21, 22) ...... 10 ...... 2. R. saxatilis 4. Young branches red-brown, old branches greyish; leaf- 9. Leaves greyish-yellow or rusty beneath in desiccation, margin with little marked teeth (fig 10d,e) ...... leaf-margin toothed > 12 pairs of teeth arranged per- ...... 3. R. infectoria pendicularly to the margin; flowers tetramerous; style biphid; ovary bicarpelate; fruit 2 seeds (fig 20) ...... 5. Leaves hairy, with short hairs > 100 μ [R. lycioides ...... 10. R. ludovici-salvatoris coll., fig 11,12] ...... 6 5. Leaves glabrous [R. oleoides coll. , fig 13-17] ...... 7 10. Leaves < 2 cm, univeined, leaf-margin quite entire or very little thoothed, with 1 to 3 short teeth on both 6. Leaves hispidule, with straight or little curved hard sides (fig 21, 22) … ...... 9. R. myrtifolia hairs, 20-70 μ, leaf-margin not increased; seminal 10. Leaves 1.5-17 cm, multiveined, leaf-margin quite en- furrow not filled with remains of the strophiole (fig 11) . tire or thoothed, with more than 3 teeth on both sides ...... 4. R. lycioides (fig 18, 19) ...... 8. R. alaternus 6. Leaves velveted, with dense indumente of hairs, most of them straight, 50-100 μ, leaf-margin not increased 11. Dioecious or polygamous dioecious; leaf-margin to revolute; seminal furrow frequently filled with toothed; flowers tetramerous, petals smaller or remains of the strophiole (fig 12) ...... 5. R. velutina similar to the ; style with 2-4 stigmatic branches; seed totally surrounded by the endocarp, 7. Leaves linear to broadly obovate, leaf-margin not re- not linked to it, with dorsal furrow (fig 9d) ...... 12 volute, apex acute to obtuse (fig 13,14,15,17) ...... 11. Monoecious; leaf-margin quite entire; flowers ...... 6. R. oleoides pentamerous, petals longer than the stamens, hooded, 7. Linear leaves, leaf-margin slightly revolute, apex shar- cuculated; style undivided; seeds strongly linked to ply rounded and mucronated (endemic from Majorca) the endocarpus and only partially covered by it, raphe (fig 16) ...... 7. R. bourgaeana visible, without dorsal furrow (fig 9e, 25) ...... 8. Leaves persistent, leathery; seeds furrowed, furrow ...... Frangula alnus margins increased [R. alaternus coll. , fig 9c] ...... 9 12. Leaves 3-10 cm, with 7-20 secondary veins; shrub 8. Leaves deciduous, papery; seeds furrowed, furrow erected 0.5-4 m (fig 23) ...... 11. R. alpina margins not increased or seeds without furrow and 12. Leaves 1-4 cm, with 5-10 secondary veins; shrub linked to the endocarpus (fig 9d, 9e) ...... 11 generally small and prostated 0.1-0.4 m (fig 24) ...... 9. Leaves greyish-green beneath in desiccation, leaf- ...... 12. R. pumila margin quite entire or < 8 pairs of teeth heading the Taxonomical system advance to Rhamnus L. & Frangula Mill. (Rhamnaceae) of Iberian Peninsula and Balearic Islands 73

Key to Subspecies and Forms 9. Rhamnus myrtifolia Willk. 3. Rhamnus infectoria L. 1. Leaf-blade glabrous, except in the apex and base, frequently entire, shining; petiole glabrous only hairy 1. Erected shrub ...... 3a. R. infectoria f. infectoria in the furrow (fig 21) ...... 1. Prostated shrub < 20 cm ...... 3b. R. infectoria f. nana ...... 9a. R. myrtifolia subsp. myrtifolia 4. Rhamnus lycioides L. 1. Leaf-blade hairy, more conspicuous in the margin, fre- quently denticulated, dull; petiole very hairy (fig 22) ..... 1. Prostated shrub; leaves linear, subcylindrical, very short ...... 9b. R. myrtifolia subsp. iranzoi and narrow, < 1 mm wide, leaf-blade hispidule, hairs 40-70 μ, sessile (fig 11e-g) ...... 11. Rhamnus alpina L...... 4c. Rhamnus lycioides subsp. borgiae 1. Leaves 4-8 cm. petioles 7-13 mm (fig.23a-m) ...... 1. Erected shrub; leaves from linear to eliptic-obovate, ...... 11a. R. alpina f. alpina longer and wider, >1 mm wide, leaf-blade hispidule, 1. Leaves 3-4 cm , petioles 5-8 mm (fig 23n-s)...... hairs 20-50 μ, sessile or with a very short petiole ...... 2 ...... 11b. R. alpina f. brevifolia 2. Leaves from linear to linear lanceolate, 1-3 mm wide, base attenuated, sessile < 1,5 mm, without secondary 12. Rhamnus pumila Turra veins or with little conspicuous, reticulate venation 1. Leaves glabrous or hairy in the base, apex or main beneath (fig 11c-d) ...... 4a. R. lycioides subsp. lycioides veins, petioles glabrous or hairy in the furrow; flowers 2. Leaves from narrowly eliptic to obovate, 3-5 mm glabrous (fig 24a-i) ...... 12a. R. pumila subsp. pumila wide, base abruptly attenuated, conspicuous petiole 1. Leaves and petioles very hairy; flowers hairy (fig 24j-q) . >1,5 mm, with conspicuous, reticulate venation ...... 12b. R. pumila subsp. legionensis beneath (fig 11a-b) ...... 4b. R. lycioides subsp. laderoi 13. Frangula alnus Mill. 5. Rhamnus velutina Boiss. 1. Leaves deciduous, oval to obovate 3-8 cm; seeds 5-6 1. Erected shrub, 0,3-2 m; leaves oval, lanceolate or mm (fig 25b-d) ...... 13a. F. alnus subsp. alnus (2) spatulate, 2-5 mm wide, leaf-blade not revoluted. (fig 1. Leaves persistent, oval to lanceolate 7-11 cm; seeds 7- 12a-b) ...... 5aa. Rhamnus velutina subsp. velutina 8 mm (fig 25a) ...... 13b. F. alnus subsp. baetica 1. Prostated shrub, 0,1-0,5 m; linear leaves, < 2mm wide, 2. Leaves 4-8 cm, apex acuted or rounded (fig 25b,c) ...... leaf-blade strongly revoluted (fig 12c-d) ...... 13aa. F. alnus f. alnus ...... 5ab. Rhamnus velutina subsp. almeriensis 2. Leaves 3-4 cm, apex rounded or retused (fig 25d) ...... 13ab. F. alnus f. retusa 6. Rhamnus oleoides L. Acknowledgements 1. Leaves linear, subcylindrical, < 1,2 mm wide, sessile or with a very short petiole, without secondary veins We wish to thank the following institutions for their (fig 17) ...... 6c. R. oleoides subsp. rivasgodayana invaluable support in the development of this project: 1. Leaves broadly obovate to linear, > 1,2 mm wide, pe- The British Museum (BM), University of Copenhagen tiolated or with a very short petiole, with conspicuous (C), Les conservatoire et jardin botaniques de la Ville de reticulate venation beneath or without it ...... 2 Genève (G), Fundación Jardín Botánico de Sóller (HJBS), The Linnaean Society of London (LINN), Real Jardín 2. Leaves broadly obovate to lanceolate, abruptly atte- Botánico de Madrid (MA) and Swedish Museum of nuated or truncated base, petiole > 3 mm, 1/3 to 1/4 Natural History (S). blade length (fig 13) ...... 6a. R. oleoides subsp. oleoides We would also like to thank Charlie E. Jarvis (BM), Olof 2. Leaves lanceolate to linear, gradually attenuated base, Ryding (C), Fernand Jacquemoud (G), Josep L. Gradaille- petiole < 3 mm, 1/5 to 1/8 blade length (fig 14, 15) ...... Tortella,Magdalena Vicens (HJBS),Daniel Gómez (JACA), ...... 6b. R. oleoides subsp. angustifolia (3) Lynda Brooks (LINN), F. Javier Fernández Casas, Ginés 3. Leaves lanceolate to broadly linear > 1.5 mm wide (fig López González, Félix Muñoz Garmendía, Carmen Navarro 14) ...... (MA) for their kind help and contributions to this project...... 6ba. R. oleoides subsp. angustifolia f. angustifolia References 3. Leaves narrowly linear < 1.5 mm wide (fig 15) ...... 6bb. R. oleoides subsp. angustifolia f. linearifolia Bolmgren K. & Oxelman B. 2004. Generic limits in Rham- nus L. s.l. (Rhamnaceae) inferred from nuclear and chlo- 8. Rhamnus alaternus L. roplast DNA sequence phylogenies. Taxon 53 (2): 383– 390. 1. Leaf-blade glabrous, except in the apex and base;petiole glabrous or hairy only in the furrow (fig Ivanova, D. & Vladimirov V. 2007. Chromosome numbers of some woody species from the Bulgarian flora. Phytol. 18) ...... 8aa. R. alaternus subsp. alaternus (2) Balcan. 13(2): 205-207. 1. Leaf-blade hairy, more conspicuous in the margin; petiole very hairy (fig 19) ...... López Pacheco, M.J., Puente García E., García González ...... 8b. R. alaternus subsp. munyozgarmendiae ME. & Alonso Redondo R. 2001. Números cromosomá- ticos de plantas occidentales 880-884, Anales Jard. Bot. 2. Leaves > 25 mm; petiole > 8 mm (fig 18a) ...... Madrid, 58(2): 342-343...... 8aa. R. alaternus subsp. alaternus f. alaternus Rosselló J. A. & Castro M. 2008. Karyological evolution of 2. Leaves < 30 mm; petiole < 8 mm (fig 18b-e) ...... the angiosperm endemic flora of the Balearic Islands, Taxon ...... 8ab. R. alaternus subsp. alaternus f. neoparvifolia 57 (1): 259–273. 2008. 74 S. Rivas-Martínez & J .M. Pizarro

Fig. 10. a) Rhamnus cathartica, M. El Escorial; b,c) R. saxatilis, b) CU, Río Cuervo, c) HU, Sabiñanigo (JACA 366674; d,e) R. infectoria f. infectoria, d) M. Pontón de la Oliva; e) GrR, Sierra Nevada (MAF 143923); f) R. infectoria f. nana, Gu, Tamajón (MAF716558)

Fig. 11. Rhamnus lycioides: leaves and foliar apez. a,b) R. lycioides susbsp. laderoi, CR, Viso del Marqués (MAF 99388, HT); c,d), R. lycioides subsp. lycioides, M. Cerros de Guarratón (MA 150252); e, g) R. lycioides subsp. borgiae, V, Sierra de Corbera (MAF 46424, HT) Taxonomical system advance to Rhamnus L. & Frangula Mill. (Rhamnaceae) of Iberian Peninsula and Balearic Islands 75

Fig. 12. Rhamnus velutina: Leaves and foliar apex; a,b) R. velutina subsp. velutina, MA, Nerja (MA 76695); c,d) R. velutina subsp. alemeriensis, AL, Río Aguas (MAF 66433, HT)

Fig. 13. Rhamnus oleides subsp. oleides; a) CA, Vejer (MAF, s/n); b) P, Elvás (MA 301483); c) A, Xávia (MA 141833); d) P, Beja (MAF 115146); e-g) apex 76 S. Rivas-Martínez & J .M. Pizarro

Fig. 14. R. oleides subsp. angustifolia; a) V, Saler (MAF s/n); b) MA, Málaga (MA 76666); c-e) apex

Fig. 15 R. oleoides subsp. angustifolia f. linearifolia; a) TO, Cabañas de Yepes (MAF 110456); b) AL, Río Aguas (MAF 115340); c) M, Dehesa de Arganda-Chinchón (MAF 72489); d) Z, Zuera (MA 76614); e-i) apex

Fig. 16. R. bourgueana, MLL, Talaia Moreia (MA 619688)) Taxonomical system advance to Rhamnus L. & Frangula Mill. (Rhamnaceae) of Iberian Peninsula and Balearic Islands 77

Fig. 17. R. oleides subsp. rivasgodayana; A, Sierra de Bernia, (MA 373393, HT)

Fig. 18. Rhamnus alaternus subsp. alaternus, a) R. alaternus subsp. alaternus f. alaternus. a) GE, Aiguablava (MAF Pizarro s/n); b,e) R. alaternus subsp. alaternus f. neoparvifolia; b,c) V, Sagunto (MAF Pizarro s/n); d,e) CR, Bailén (C-Lange, HT) 78 S. Rivas-Martínez & J .M. Pizarro

Fig. 19. Rhamnus alaternus subsp. munyozgarmendiae. f,g) TO, Yepes (MAF Fig.20. R. ludovici-salvatoris; MLL, Artá, Pizarro s/n), h, i) M, Peña Ahumada Carabaña (MAF 72488, HT); f,g) leaves; pinar dels Olors (MAF 46408), j) leave; h,i) foliar margin k) foliar margin

Fig. 21. Rhamnus myrtifolia subsp. myrtifolia. l) MA, Sierra de la Nieve (MAF 56449); m) ibidem (G); n,o) ibidem MAF Pizarro s/n); i, m) leaves; n) foliar margin; o) female flowers Taxonomical system advance to Rhamnus L. & Frangula Mill. (Rhamnaceae) of Iberian Peninsula and Balearic Islands 79

Fig. 22. R. myrtifolia subsp. iranzoi. p) GR, Sierra Nevada, Collado de las Víboras (MAF152937, HT); q,r) CA, Grazalema (MAF Pizarro s/n); p) leaves; q) foliar margin; r) female flowers

Fig. 23. Rhamnus alpina: leaves; a, m) R. alpina f. alpina. a, b, d, e, g-i) LE, Llánaves de la Reina (MAF 125207); c, j-l) FR, L’Herault, Ste. Ghilhem-le Désert (MAF 46371); n,s) Rhamnus alpina f. brevifolia, CU, Laguna del Marquesado, (C-Lange, HT) 80 S. Rivas-Martínez & J .M. Pizarro

Fig. 24. Rhamnus pumila. a,i) R. pumila subsp. pumila, SG, Peñacuerno (MAF Pizarro, CN 2474); j-q) R. pumila subsp. legionensis, LE, Villavieja (MAF 46450, HT); a-g, j-o) leaves; h, p) foliar margin; i,q) flowers

Fig. 25. Frangula alnus, a) F. alnus subsp. baetica; b,c) F. alnus subsp. alnus; d) F. alnus subsp. alnus f. retusa; a) CA, Barranco de Ojén (MAF 94957); b) GU, Retiendas (MAF 1212214); c) PO, Vigo (MAF 72614); d) CC, Carrascalejo (MAF 75660, HT)